Preliminary Technical Information
GenX3TM 1200V IGBT
VCES =
IC110 =
VCE(sat) ≤
tfi(typ) =
IXGH40N120C3
High speed PT IGBTs
for 20 - 50 kHz switching
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
VGES
VGEM
1200V
40A
4.4V
57ns
Maximum Ratings
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C (limited by leads)
TC = 110°C
TC = 25°C, 1ms
75
40
200
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
30
500
A
mJ
SSOA
(RBSOA)
VGE = 15V, TJ = 125°C, RG = 3Ω
Clamped inductive load @VCE≤ 1200V
ICM = 80
A
PC
TC = 25°C
380
W
-55 ... +150
150
-55 ... +150
°C
°C
°C
1.13 / 10
Nm/lb.in.
300
260
°C
°C
6
g
TJ
TJM
Tstg
Md
Mounting torque
TL
TSOLD
Maximum lead temperature for soldering
1.6mm (0.062 in.) from case for 10s
Weight
TO-247 (IXGH)
G
C
TAB
E
G = Gate
E = Emitter
C = Collector
TAB = Collector
Features
z
z
z
International standard packages:
JEDEC TO-247AD
IGBT and anti-parallel FRED in one
package
MOS Gate turn-on
- drive simplicity
Applications
z
z
z
z
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
BVCES
VGE(th)
IC
IC
ICES
VCE = VCES
VGE = 0V
Characteristic Values
Min. Typ.
Max.
= 250μA, VGE = 0V
= 250μA, VCE = VGE
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
1200
3.0
TJ = 125°C
= 30A, VGE = 15V, Note 1
TJ = 125°C
© 2008 IXYS CORPORATION, All rights reserved
2.7
z
5.0
V
V
75
1.5
μA
mA
±100
nA
4.4
V
V
AC motor speed control
DC servo and robot drives
DC choppers
Uninterruptible power supplies (UPS)
Switch-mode and resonant-mode
power supplies
DS99997(06/08)
IXGH40N120C3
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
gfs
Cies
Coes
Cres
Characteristic Values
Min.
Typ.
Max.
IC = 30A, VCE = 10V, Note 1
18
VCE = 25V, VGE = 0V, f = 1MHz
Qg
TO-247 (IXGH) Outline
30
S
2930
225
93
pF
pF
pF
142
nC
19
nC
Qgc
62
nC
td(on)
tri
Eon
td(off)
tfi
17
33
1.8
130
57
ns
ns
mJ
ns
ns
Qge
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
IC = 40A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°°C
IC = 30A, VGE = 15V
VCE = 600V, RG = 3Ω
Note 1
0.55
Inductive load, TJ = 125°°C
IC = 30A, VGE = 15V
VCE = 600V, RG = 3Ω
Note 1
RthJC
RthCK
1.0
mJ
17
35
3.5
177
298
1.6
ns
ns
mJ
ns
ns
mJ
0.21
0.33 °C/W
°C/W
1
2
∅P
3
e
Terminals: 1 - Gate
3 - Source
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Drain
Tab - Drain
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
Notes: 1. Pulse test, t ≤ 300μs; duty cycle, d ≤ 2%.
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH40N120C3
Fig. 1. Output Characteristics
@ 25ºC
80
Fig. 2. Extended Output Characteristics
@ 25ºC
250
VGE = 15V
13V
11V
70
200
60
9V
175
50
IC - Amperes
IC - Amperes
VGE = 15V
13V
225
40
7V
30
11V
150
125
9V
100
75
20
7V
50
10
25
5V
0
5V
0
0
1
2
3
4
5
6
0
3
6
9
Fig. 3. Output Characteristics
@ 125ºC
18
21
24
27
30
1.3
VGE = 15V
13V
11V
70
VGE = 15V
1.2
60
50
7V
40
I
1.1
9V
VCE(sat) - Normalized
IC - Amperes
15
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
80
30
20
C
= 80A
1.0
0.9
0.8
I
C
= 40A
I
C
= 20A
0.7
0.6
10
5V
0.5
0.4
0
0
1
2
3
4
5
25
6
50
75
VCE - Volts
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
100
8.0
90
TJ = 25ºC
7.5
80
7.0
70
6.0
I
C
IC - Amperes
6.5
VCE - Volts
12
VCE - Volts
VCE - Volts
= 80A
5.5
5.0
60
50
TJ = 125ºC
25ºC
- 40ºC
40
30
40A
4.5
20
4.0
10
20A
3.5
0
5
6
7
8
9
10
11
VGE - Volts
© 2008 IXYS CORPORATION, All rights reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
IXGH40N120C3
Fig. 7. Transconductance
Fig. 8. Gate Charge
45
16
TJ = - 40ºC
40
25ºC
30
VGE - Volts
g f s - Siemens
35
125ºC
25
20
15
14
VCE = 600V
12
I G = 10mA
I C = 40A
10
8
6
4
10
2
5
0
0
0
10
20
30
40
50
60
70
80
90
100
0
20
40
Fig. 9. Capacitance
80
100
120
140
160
Fig. 10. Reverse-Bias Safe Operating Area
10,000
90
f = 1 MHz
80
70
Cies
1,000
60
IC - Amperes
Capacitance - PicoFarads
60
QG - NanoCoulombs
IC - Amperes
Coes
100
Cres
5
10
15
20
25
30
35
40
30
20
TJ = 125ºC
10
RG = 3Ω
dV / dt < 10V / ns
0
200
10
0
50
40
400
600
VCE - Volts
800
1000
1200
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_40N120C3(6N)6-03-08
IXGH40N120C3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
6
4.0
9
Eon -
Eoff
---
TJ = 125ºC , VGE = 15V
5
5
Eoff - MilliJoules
Eoff - MilliJoules
2
- MilliJoules
6
I C = 30A
1
4
0
14
18
22
26
2.5
5
2.0
1.5
3
1.0
2
0.0
0
15
30
20
25
30
3.5
1.0
3
0.5
2
t f - Nanoseconds
4
I C = 30A
0.0
55
65
75
85
95
105
115
td(off) - - - -
700
300
600
I
500
200
400
150
I
100
200
50
100
0
4
6
8
10
12
16
18
20
22
24
26
28
350
30
RG = 3Ω , VGE = 15V
190
350
VCE = 600V
180
200
300
170
TJ = 125ºC
160
200
150
150
140
TJ = 25ºC
tf
300
td(off) - - - -
180
RG = 3Ω , VGE = 15V
t f - Nanoseconds
td(off) - - - -
190
I
VCE = 600V
250
C
= 30A
170
200
160
150
I C = 60A
150
100
140
50
130
130
50
120
0
110
30
35
40
45
IC - Amperes
© 2008 IXYS CORPORATION, All rights reserved
50
55
60
0
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
120
125
t d(off) - Nanoseconds
tf
400
t d(off) - Nanoseconds
t f - Nanoseconds
14
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
450
25
300
= 60A
0
1
125
210
20
C
RG - Ohms
500
15
= 30A
C
250
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
100
800
VCE = 600V
TJ - Degrees Centigrade
250
60
t d(off) - Nanoseconds
5
45
tf
350
1.5
35
55
TJ = 125ºC, VGE = 15V
6
I C = 60A
25
50
900
400
7
VCE = 600V
2.0
45
450
Eon - MilliJoules
Eoff - MilliJoules
----
RG = 3Ω , VGE = 15V
2.5
40
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
8
Eon
35
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
Eoff
1
TJ = 25ºC
RG - Ohms
3.0
4
TJ = 125ºC
0.5
3
10
6
VCE = 600V
- MilliJoules
on
3
7
on
7
----
E
= 60A
E
C
Eon
RG = 3Ω , VGE = 15V
3.0
I
4
6
Eoff
3.5
8
VCE = 600V
2
8
IXGH40N120C3
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
180
90
60
tr
160
td(on) - - - -
80
55
TJ = 125ºC, VGE = 15V
C
45
= 60A
100
40
80
I
C
35
= 30A
t r - Nanoseconds
t r - Nanoseconds
I
t d(on) - Nanoseconds
120
22
RG = 3Ω , VGE = 15V
70
50
VCE = 600V
td(on) - - - -
21
VCE = 600V
60
20
50
19
TJ = 125ºC, 25ºC
40
18
30
17
60
30
40
25
20
16
20
20
10
15
15
0
0
2
4
6
8
10 12
14
16 18
20 22 24 26
28 30
14
15
RG - Ohms
t d(on) - Nanoseconds
140
23
tr
20
25
30
35
40
45
50
55
60
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
90
22
80
21
70
20
tr
60
td(on) - - - -
RG = 3Ω , VGE = 15V
VCE = 600V
50
I
40
C
19
18
= 30A
17
30
t d(on) - Nanoseconds
t r - Nanoseconds
I C = 60A
16
20
25
35
45
55
65
75
85
95
105
115
15
125
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_40N120C3(6N)6-03-08
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.