Preliminary Technical Information
VCES
IC110
VCE(sat)
tfi(typ)
IXGH40N120C3D1
GenX3TM C3-Class
IGBT w/Diode
High Speed PT IGBT
for 20 - 50 kHz Switching
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
VGES
VGEM
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
IF110
ICM
TC
TC
TC
TC
75
40
25
180
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
30
500
A
mJ
SSOA
(RBSOA)
VGE = 15V, TJ = 125°C, RG = 3Ω
Clamped inductive load
ICM = 80
@VCE 0.5 VCES,
Higher TJ or Increased RG.
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH40N120C3D1
Fig. 1. Output Characteristics
@ 25ºC
80
Fig. 2. Extended Output Characteristics
@ 25ºC
250
VGE = 15V
13V
11V
70
200
60
9V
175
50
IC - Amperes
IC - Amperes
VGE = 15V
13V
225
40
7V
30
11V
150
125
9V
100
75
20
7V
50
10
25
5V
0
5V
0
0
1
2
3
4
5
6
0
3
6
9
Fig. 3. Output Characteristics
@ 125ºC
18
21
24
27
30
1.3
VGE = 15V
13V
11V
70
VGE = 15V
1.2
60
50
7V
40
I
1.1
9V
VCE(sat) - Normalized
IC - Amperes
15
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
80
30
20
C
= 80A
1.0
0.9
0.8
I
C
= 40A
I
C
= 20A
0.7
0.6
10
5V
0.5
0.4
0
0
1
2
3
4
5
25
6
50
75
VCE - Volts
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
100
8.0
90
TJ = 25ºC
7.5
80
7.0
70
6.0
I
C
IC - Amperes
6.5
VCE - Volts
12
VCE - Volts
VCE - Volts
= 80A
5.5
5.0
60
50
TJ = 125ºC
25ºC
- 40ºC
40
30
40A
4.5
20
4.0
10
20A
3.5
0
5
6
7
8
9
10
11
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
IXGH40N120C3D1
Fig. 7. Transconductance
Fig. 8. Gate Charge
45
16
TJ = - 40ºC
40
25ºC
30
VGE - Volts
g f s - Siemens
35
125ºC
25
20
15
14
VCE = 600V
12
I G = 10mA
I C = 40A
10
8
6
4
10
2
5
0
0
0
10
20
30
40
50
60
70
80
90
100
0
20
40
Fig. 9. Capacitance
80
100
120
140
160
Fig. 10. Reverse-Bias Safe Operating Area
10,000
90
f = 1 MHz
80
70
Cies
1,000
60
IC - Amperes
Capacitance - PicoFarads
60
QG - NanoCoulombs
IC - Amperes
Coes
100
Cres
5
10
15
20
25
30
35
40
30
20
TJ = 125ºC
10
RG = 3Ω
dV / dt < 10V / ns
0
200
10
0
50
40
400
600
VCE - Volts
800
1000
1200
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_40N120C3(6N)2-18-09-A
IXGH40N120C3D1
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
6
4.0
9
Eon -
Eoff
---
TJ = 125ºC , VGE = 15V
5
5
Eoff - MilliJoules
Eoff - MilliJoules
2
- MilliJoules
6
I C = 30A
1
4
0
14
18
22
26
2.5
5
2.0
1.5
3
1.0
2
0.0
0
15
30
20
25
30
3.5
1.0
3
0.5
2
t f - Nanoseconds
4
I C = 30A
0.0
55
65
75
85
95
105
115
td(off) - - - -
700
300
600
I
500
200
400
150
I
100
200
50
100
0
4
6
8
10
12
16
18
20
22
24
26
28
350
30
RG = 3Ω , VGE = 15V
190
350
VCE = 600V
180
200
300
170
TJ = 125ºC
160
200
150
150
140
TJ = 25ºC
tf
300
td(off) - - - -
180
RG = 3Ω , VGE = 15V
t f - Nanoseconds
td(off) - - - -
190
I
VCE = 600V
250
C
= 30A
170
200
160
150
I C = 60A
150
100
140
50
130
130
50
120
0
110
30
35
40
45
50
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
55
60
0
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
120
125
t d(off) - Nanoseconds
tf
400
t d(off) - Nanoseconds
t f - Nanoseconds
14
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
450
25
300
= 60A
0
1
125
210
20
C
RG - Ohms
500
15
= 30A
C
250
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
100
800
VCE = 600V
TJ - Degrees Centigrade
250
60
t d(off) - Nanoseconds
5
45
tf
350
1.5
35
55
TJ = 125ºC, VGE = 15V
6
I C = 60A
25
50
900
400
7
VCE = 600V
2.0
45
450
Eon - MilliJoules
Eoff - MilliJoules
----
RG = 3Ω , VGE = 15V
2.5
40
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
8
Eon
35
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
Eoff
1
TJ = 25ºC
RG - Ohms
3.0
4
TJ = 125ºC
0.5
3
10
6
VCE = 600V
- MilliJoules
on
3
7
on
7
----
E
= 60A
E
C
Eon
RG = 3Ω , VGE = 15V
3.0
I
4
6
Eoff
3.5
8
VCE = 600V
2
8
IXGH40N120C3D1
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
180
90
60
tr
160
td(on) - - - -
80
55
TJ = 125ºC, VGE = 15V
C
45
= 60A
100
40
80
I
C
35
= 30A
t r - Nanoseconds
t r - Nanoseconds
I
t d(on) - Nanoseconds
120
22
RG = 3Ω , VGE = 15V
70
50
VCE = 600V
td(on) - - - -
21
VCE = 600V
60
20
50
19
TJ = 125ºC, 25ºC
40
18
30
17
60
30
40
25
20
16
20
20
10
15
15
0
0
2
4
6
8
10 12
14
16 18
20 22 24 26
28 30
14
15
RG - Ohms
t d(on) - Nanoseconds
140
23
tr
20
25
30
35
40
45
50
55
60
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
90
22
80
21
70
20
tr
60
td(on) - - - -
RG = 3Ω , VGE = 15V
VCE = 600V
50
I
40
C
19
18
= 30A
17
30
t d(on) - Nanoseconds
t r - Nanoseconds
I C = 60A
16
20
25
35
45
55
65
75
85
95
105
115
15
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_40N120C3(6N)2-18-09-A
IXGH40N120C3D1
1000
60
A
50
IF
30
TVJ= 100°C
800
Qr
TVJ=150°C
30
25
IF= 60A
IF= 30A
IF= 15A
40
600
IF= 60A
IF= 30A
IF= 15A
IRM
20
15
TVJ=100°C
400
20
10
TVJ=25°C
200
10
0
TVJ= 100°C
VR = 300V
A
nC V = 300V
R
0
1
0
100
3 V
2
5
A/μs 1000
-diF /dt
VF
Fig. 21. Forward Current IF Versus VF
Fig. 22. Reverse Recovery Charge Qr
Versus -diF/dt
2.0
90
Kf
IF= 60A
IF= 30A
IF= 15A
IRM
400
600 A/μs
800
-diF /dt
1000
1.00
TVJ= 100°C
IF = 30A
μs
VFR
tfr
80
1.0
200
Fig. 23. Peak Reverse Current IRM
Versus -diF/dt
V
V FR
15
trr
1.5
0
20
TVJ= 100°C
VR = 300V
ns
0
tfr
0.75
10
0.50
5
0.25
70
0.5
Qr
0.0
0
40
80
120 °C 160
60
0
200
T VJ
400
600
800
A/μs
1000
-diF /dt
Fig. 24. Dynamic Parameters Qr, IRM
Versus TVJ
Fig. 25. Recovery Time trr Versus -diF/dt
1
K/W
0.1
Z thJC
0.01
0.001
0.00001
DSEP 29-06
0.0001
0.001
0.01
Fig. 27. Transient Thermal Resistance Junction to Case
Note: Fig. 21to Fig. 22 show typical values
© 2009 IXYS CORPORATION, All Rights Reserved
0.1
t
s
1
0
0
200
400
0.00
600 A/μs
800 1000
diF /dt
Fig. 26. Peak Forward Voltage VFR and
tfr Versus diF/dt
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.