Advance Technical Information
IXGH56N60A3
GenX3TM 600V IGBT
VCES =
IC110 =
VCE(sat) ≤
600V
56A
1.35V
Ultra-Low Vsat PT IGBT for up to
5 kHz Switching
TO-247
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TC = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
VGES
600
600
V
V
VGEM
Continuous
Transient
± 20
± 30
V
V
IC25
IC110
ICM
TC = 25°C (Chip Capability)
TC = 110°C
TC = 25°C, 1ms
150
56
370
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 5Ω
Clamped Inductive Load
ICM = 150
VCE ≤ 0.8 • VCES
A
Pd
TC = 25°C
330
W
- 55 ... +150
150
- 40 ... +150
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
TJ
TJM
Tstg
TL
TSOLD
1.6mm (0.062 in.) from Case for 10s
Plastic Body for 10 seconds
Md
Mounting torque
Weight
G
G
CD
ES
G = Gate
E = Emitter
(TAB)
C = Collector
TAB = Collector
Features
z
z
Optimized for Low Conduction Losses
International Standard Package
Advantages
z
z
High Power Density
Low Gate Drive Requirement
Applications
z
z
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VCE = 0V
600
VGE(th)
IC
= 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 44A, VGE = 15V, Note 1
z
z
V
5.0
V
50 μA
500 μA
TJ = 125°C
±100 nA
TJ = 125°C
© 2009 IXYS CORPORATION, All Rights Reserved
1.22
1.22
1.35
z
z
z
z
z
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
V
V
DS100174(08/09)
IXGH56N60A3
Symbol Test Conditions
(TJ = 25°C unless otherwise specified)
Characteristic Values
Min.
Typ.
Max.
gfs
IC = 44A, VCE = 10V, Note 1
33
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
IC = 44A, VGE = 15V
VCE = 480V, RG = 5Ω
Note 2
Inductive load, TJ = 125°C
IC = 44A, VGE = 15V
VCE = 480V, RG = 5Ω
Note 2
RthJC
RthCS
Notes:
55
S
3950
220
56
pF
pF
pF
140
nC
26
nC
52
nC
26
42
1.00
310
315
3.75
ns
ns
mJ
ns
ns
mJ
IC = 44A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
TO-247 (IXGH) Outline
550
6.50
24
42
2.00
495
415
6.75
ns
ns
mJ
ns
ns
mJ
0.21
0.375 °C/W
°C/W
1
2
∅P
3
e
Terminals: 1 - Gate
3 - Source
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Drain
Tab - Drain
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH56N60A3
Fig. 1. Output Characteristics
Fig. 2. Extended Output Characteristics
@ T J = 25ºC
@ T J = 25ºC
350
90
VGE = 15V
13V
11V
80
70
VGE = 15V
13V
11V
300
50
IC - Amperes
IC - Amperes
250
60
9V
40
30
7V
200
9V
150
100
20
50
10
0
7V
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0
1.8
1
2
4
5
6
7
8
VCE - Volts
Fig. 3. Output Characteristics
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
@ T J = 125ºC
9
10
1.4
90
VGE = 15V
13V
11V
80
VGE = 15V
1.3
70
9V
VCE(sat) - Normalized
IC - Amperes
3
VCE - Volts
60
50
7V
40
30
I
C
= 88A
I
C
= 44A
I
C
= 22A
1.2
1.1
1.0
0.9
20
10
0.8
5V
0.7
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
-50
2.0
-25
0
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
50
75
100
125
150
7.0
7.5
8.0
Fig. 6. Input Admittance
100
3.2
90
TJ = 25ºC
2.8
80
TJ = 125ºC
25ºC
- 40ºC
70
I
2.0
C
= 88A
44A
22A
IC - Amperes
2.4
VCE - Volts
25
TJ - Degrees Centigrade
1.6
60
50
40
30
20
1.2
10
0.8
0
5
6
7
8
9
10
11
12
13
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
14
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
IXGH56N60A3
Fig. 7. Transconductance
Fig. 8. Gate Charge
70
16
60
TJ = - 40ºC
25ºC
125ºC
VCE = 300V
12
I G = 10mA
I C = 44A
VGE - Volts
g f s - Siemens
50
14
40
30
20
10
8
6
4
10
2
0
0
0
10
20
30
40
50
60
70
80
90
100
0
20
40
IC - Amperes
60
80
100
120
140
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
10,000
160
120
1,000
100
IC - Amperes
Capacitance - PicoFarads
140
Cies
Coes
100
Cres
f = 1 MHz
10
0
5
10
15
20
25
30
35
40
80
60
40
TJ = 125ºC
20
RG = 5Ω
dv / dt < 10V / ns
0
100
200
VCE - Volts
300
400
500
600
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: G_56N60A3(65)8-04-09-C
IXGH56N60A3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
20
Eon -
Eoff
18
---
8
18
7
16
TJ = 125ºC , VGE = 15V
VCE = 480V
= 88A
5
12
4
10
3
I C = 44A
8
4
5
10
15
20
25
30
35
40
45
3.5
3.0
2.5
TJ = 125ºC
8
2.0
6
1.5
4
1
2
0
0
1.0
TJ = 25ºC
0.0
20
30
40
50
60
70
80
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
RG = 5Ω , VGE = 15V
I
C
= 88A
4.8
500
4.0
10
3.2
8
2.4
I C = 44A
Eon - MilliJoules
12
520
1100
tfi
td(off) - - - -
1000
TJ = 125ºC, VGE = 15V
VCE = 480V
900
480
800
I
460
C
= 88A
700
440
I
C
600
= 44A
6
1.6
420
500
4
0.8
400
400
0.0
125
380
25
35
45
55
65
75
85
95
105
115
300
5
10
15
20
25
TJ - Degrees Centigrade
td(off) - - - -
300
280
TJ = 25ºC
200
200
70
80
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
90
t f i - Nanoseconds
360
60
50
500
VCE = 480V
500
450
450
400
IC = 44A
400
350
IC = 88A
350
300
300
250
250
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
200
125
t d(off) - Nanoseconds
400
t d(off) - Nanoseconds
440
TJ = 125ºC
td(off) - - - -
RG = 5Ω , VGE = 15V
520
500
50
45
550
tfi
550
RG = 5Ω , VGE = 15V
VCE = 480V
40
40
600
600
tfi
30
35
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
700
20
30
RG - Ohms
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
600
t d(off) - Nanoseconds
VCE = 480V
5.6
t f i - Nanoseconds
----
90
540
6.4
Eon
2
t f i - Nanoseconds
0.5
RG - Ohms
Eoff
14
4.0
VCE = 480V
10
50
18
16
----
12
2
6
Eoff - MilliJoules
Eoff - MilliJoules
C
Eon
RG = 5Ω , VGE = 15V
Eon - MilliJoules
I
14
Eoff
14
6
Eon - MilliJoules
Eoff - MilliJoules
16
4.5
IXGH56N60A3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
240
120
100
100
tri
t r i - Nanoseconds
80
I
C
60
= 88A
I
80
C
= 44A
0
5
10
15
20
25
30
35
40
45
40
VCE = 480V
80
35
TJ = 25ºC, 125ºC
60
30
40
25
20
20
20
0
0
40
40
td(on) - - - -
RG = 5Ω , VGE = 15V
50
t d(on) - Nanoseconds
160
t d(on) - Nanoseconds
VCE = 480V
120
45
td(on) - - - -
TJ = 125ºC, VGE = 15V
t r i - Nanoseconds
tri
200
120
15
20
30
40
50
60
70
80
90
IC - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
120
40
tri
110
100
38
36
VCE = 480V
I C = 88A
90
34
80
32
70
30
60
28
50
26
40
I
C
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
RG = 5Ω , VGE = 15V
24
= 44A
30
22
20
25
35
45
55
65
75
85
95
105
115
20
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: G_56N60A3(65)8-04-09-C
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.