High Voltage
IGBT
IXGT6N170A
IXGH6N170A
VCES
=
IC25
=
VCE(sat)
tfi(typ)
=
1700V
6A
7.0V
32ns
TO-268 (IXGT)
Symbol
Test Conditions
Maximum Ratings
VCES
TC = 25°C to 150°C
1700
V
VCGR
TJ = 25°C to 150°C, RGE = 1M
1700
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC = 25°C
6
A
IC110
TC = 110°C
3
A
ICM
TC = 25°C, 1ms
14
A
SSOA
VGE = 15V, TVJ = 125°C, RG = 33
ICM = 12
A
(RBSOA)
Clamped Inductive Load
tSC
TJ = 125C, VCE = 1200 V, VGE = 15 V, RG = 33
10s
PC
TC = 25°C
75
W
- 55 ... +150
C
G
@ 0.8 • VCES
TJ
TJM
150
C
Tstg
- 55 ... +150
C
300
260
°C
°C
1.13/10
Nm/lb.in.
4
6
g
g
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque (TO-247)
Weight
TO-268
TO-247
E
C (Tab)
TO-247 (IXGH)
G
Characteristic Values
Min.
Typ.
Max.
BVCES
IC = 250A, VGE = 0V
1700
VGE(th)
IC = 250A, VCE = VGE
3.0
ICES
VCE = 0.8 • VCES, VGE = 0V
IGES
VCE = 0V, VGE = ± 20V
VCE(sat)
IC = IC110, VGE = 15V, Note 1
TJ = 125°C
5.0
TJ = 125°C
© 2015 IXYS CORPORATION, All Rights Reserved
International Standard Packages
High Voltage Package
Advantages
High Power Density
Low Gate Drive Requirement
V
Applications
V
μA
μA
±100
nA
7.0
V
C
= Collector
Tab = Collector
Features
10
500
C (Tab)
E
G = Gate
E = Emitter
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
C
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Welding Machines
5.4
DS98990C(9/15)
IXGH6N170A
IXGT6N170A
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
gfs
IC = 6A, VCE = 20V, Note 1
Cies
Coes
Cres
Characteristic Values
Min.
Typ.
Max.
2.0
3.5
S
VCE = 25V, VGE = 0V, f = 1MHz
390
20
7
pF
pF
pF
IC = 6A, VGE = 15V, VCE = 0.5 • VCES
18.5
2.8
8.2
nC
nC
nC
46
ns
40
0.59
ns
mJ
Qg
Qge
Qgc
td(on)
tri
Eon
Inductive load, TJ = 25°C
IC = 6A, VGE = 15V
td(off)
VCE = 0.5 • VCES, RG = 33
tfi
Note 2
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCK
TO-268 Outline
Inductive load, TJ = 125°C
IC = 6A, VGE = 15V
VCE = 0.5 • VCES, RG = 33
Note 2
TO-247
220
400
ns
32
65
ns
0.18
0.36
mJ
48
43
0.62
230
41
0.25
ns
ns
mJ
ns
ns
mJ
0.21
1.65 °C/W
°C/W
Terminals: 1 - Gate
3 - Emitter
TO-247 Outline
1
Notes:
2,4 - Collector
2
P
3
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
e
Terminals: 1 - Gate
3 - Emitter
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH6N170A
IXGT6N170A
Fig. 1. Output Characteristics @ TJ = 25ºC
12
VGE = 15V
13V
11V
10
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
24
VGE = 15V
20
13V
16
I C - Amperes
I C - Amperes
8
9V
6
4
7V
2
11V
12
9V
8
7V
4
5V
0
0
0
2
4
6
8
10
12
0
5
10
15
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 125ºC
12
1.8
30
VGE = 15V
I C = 12A
VCE(sat) - Normalized
1.6
8
I C - Amperes
25
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
2.0
VGE = 15V
13V
11V
10
20
VCE - Volts
9V
6
4
7V
1.4
1.2
I C = 6A
1.0
0.8
2
I C = 3A
0.6
5V
0.4
0
0
2
4
6
8
10
12
-50
14
-25
0
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
18
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 6. Input Admittance
12
TJ = 25ºC
16
10
14
I C - Amperes
VCE - Volts
8
I C = 12A
12
10
8
6
4
TJ = 125ºC
25ºC
- 40ºC
6A
2
6
3A
4
0
6
8
10
12
14
16
VGE - Volts
© 2015 IXYS CORPORATION, All Rights Reserved
18
20
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
7.5
8.0
8.5
9.0
9.5
IXGH6N170A
IXGT6N170A
Fig. 8. Gate Charge
Fig. 7. Transconductance
5
16
TJ = - 40ºC
VCE = 850V
14
I C = 6A
3
25ºC
12
125ºC
10
VGE - Volts
g f s - Siemens
4
2
I G = 10mA
8
6
4
1
2
0
0
0
2
4
6
8
10
12
0
2
4
6
I C - Amperes
8
10
12
14
16
18
20
QG - NanoCoulombs
Fig. 9. Reverse-Bias Safe Operating Area
Fig. 10. Capacitance
1,000
Capacitance - PicoFarads
12
10
I C - Amperes
8
6
4
TJ = 125ºC
100
C oes
10
Cres
RG = 33Ω
dv / dt < 10V / ns
2
f = 1 MHz
0
1
200
400
600
800
1000
1200
1400
1600
1800
VCE - Volts
Fig. 11. Forward-Bias Safe Operating Area
VCE(sat) Limit
10
25µs
1
100µs
1ms
0.1
TJ = 150ºC
TC = 25ºC
Single Pulse
10ms
0.01
1
10
100
0
5
10
15
20
VCE - Volts
100
I D - Amperes
C ies
1000
10000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
25
30
35
40
IXGH6N170A
IXGT6N170A
0.8
Eoff
Eon -
---
TJ = 125ºC , VGE = 15V
VCE = 850V
0.6
0.7
3.0
0.6
2.5
0.5
0.5
2.0
0.4
1.5
0.3
I C = 6A
0.2
0.1
30
40
50
60
70
80
90
100
110
Fig. 13. Inductive Switching Energy Loss
vs. Collector Current
Eoff
Eon
----
VCE = 850V
0.4
2.5
Eoff
Eon
2.0
TJ = 125ºC, 25ºC
0.3
1.5
1.0
0.2
1.0
0.5
0.1
0.5
0.0
120
0
0.0
6
7
8
9
10
11
12
I C - Amperes
Fig. 14. Inductive Switching Energy Loss
vs. Junction Temperature
0.7
3.0
RG = 33ΩVGE = 15V
RG - Ohms
0.8
3.5
Eon - MilliJoules
I C = 12A
Eon - MilliJoules
Eo f f - MilliJoules
0.7
3.5
Eo f f - MilliJoules
Fig. 12. Inductive Switching Energy Loss
vs. Gate Resistance
----
Fig. 15. Maximum Transient Thermal Impedance
2.00
10
1.75
RG = 33ΩVGE = 15V
VCE = 850V
1.25
I C = 12A
0.4
1.00
0.3
0.75
Z (th)JC - ºC / W
0.5
1.50
Eon - MilliJoules
Eo f f - MilliJoules
0.6
1
0.1
I C = 6A
0.2
0.50
0.1
25
35
45
55
65
75
85
95
105
115
0.25
125
0.01
0.00001
0.0001
0.001
TJ - Degrees Centigrade
0.01
0.1
1
10
Pulse Width - Seconds
Fig. 16. Cauer Thermal Network
i
1
2
3
© 2015 IXYS CORPORATION, All Rights Reserved
Ri (°C/W)
0.11615
0.29930
0.26377
Ci (J/°C)
0.0019257
0.0016574
0.0262960
IXYS REF: G_6N170A (2N) 9-23-15-B
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.