IXGH72N60B3
IXGT72N60B3*
GenX3TM B3-Class
IGBTs
VCES
IC110
VCE(sat)
tfi(typ)
*Obsolete Part Number
Medium Speed low Vsat PT
IGBTs 5-40 kHz Switching
=
=
≤£
=
600V
72A
1.80V
90ns
TO-247 AD (IXGH)
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
600
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
TC = 25°C (Limited by Leads)
75
A
IC110
TC = 110°C
72
A
ICM
TC = 25°C, 1ms
400
A
IA
TC = 25°C
20
A
EAS
TC = 25°C
200
mJ
SSOA
VGE = 15V, TVJ = 125°C, RG = 3Ω
ICM = 240
A
(RBSOA)
Clamped Inductive Load
@ VCE ≤ 600
V
PC
TC = 25°C
540
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
1.13 / 10
Nm/lb.in.
TJ
Md
Mounting Torque (TO-247)
TL
1.6mm (0.062 in.) from Case for 10s
300
°C
TSOLD
Plastic Body for 10 seconds
260
°C
Weight
TO-247
TO-268
6
5
g
g
G
C
(TAB)
E
TO-268 (IXGT)
G
E
(TAB)
G = Gate
E = Emitter
C
= Collector
TAB = Collector
Features
z
z
z
z
Optimized for Low Conduction and
Switching Losses
Square RBSOA
Avalanche Rated
International Standard Packages
Advantages
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC = 250μA, VGE = 0V
600
VGE(th)
IC = 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC = 60A, VGE = 15V, Note 1
z
V
TJ = 125°C
TJ = 125°C
z
1.51
1.48
Applications
5.0
V
75
750
μA
μA
±100
nA
z
1.80
V
V
z
z
z
z
z
z
z
© 2009 IXYS CORPORATION, All Rights Reserved
High Power Density
Low Gate Drive Requirement
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS99847A(02/09)
IXGH72N60B3
IXGT72N60B3
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
50
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
83
S
6800
575
80
pF
pF
pF
230
40
82
nC
nC
nC
31
ns
33
1.38
ns
mJ
Qg
Qge
Qgc
IC = 60A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
TO-247 AD Outline
Inductive load, TJ = 25°°C
IC = 50A, VGE = 15V
150
330
ns
90
160
ns
Eoff
1.05
2.0
mJ
td(on)
tri
Eon
td(off)
tfi
Eoff
29
34
2.70
228
142
2.20
ns
ns
mJ
ns
ns
mJ
0.25
0.23 °C/W
°C/W
tfi
RthJC
RthCS
VCE = 480V, RG = 3Ω
Inductive load, TJ = 125°°C
IC = 50A,VGE = 15V
VCE = 480V,RG = 3Ω
(TO-247)
∅P
e
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
TO-268 Outline
Note 1: Pulse Test, t ≤ 300μs, Duty Cycle, d ≤ 2%.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH72N60B3
IXGT72N60B3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
120
330
VGE = 15V
13V
11V
100
270
9V
240
80
60
IC - Amperes
IC - Amperes
VGE = 15V
13V
11V
300
7V
40
210
9V
180
150
120
90
7V
60
20
30
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
0
1
2
VCE(sat) - Normalized
IC - Amperes
6
7
8
125
150
7.5
8.0
VGE = 15V
1.2
80
60
7V
40
20
I
C
= 120A
I
C
= 60A
I
C
= 30A
1.1
1.0
0.9
0.8
5V
0.7
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
-50
2.4
-25
0
VCE - Volts
25
50
75
100
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
180
4.5
TJ = 25ºC
4.0
C
160
= 120A
60A
30A
140
IC - Amperes
I
3.5
VCE - Volts
5
1.3
VGE = 15V
13V
11V
9V
100
4
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
120
3
VCE - Volts
VCE - Volts
3.0
2.5
120
100
80
TJ = 125ºC
25ºC
- 40ºC
60
2.0
40
1.5
20
1.0
0
5
6
7
8
9
10
11
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
7.0
IXGH72N60B3
IXGT72N60B3
Fig. 7. Transconductance
Fig. 8. Gate Charge
130
16
120
TJ = - 40ºC
25ºC
125ºC
100
90
g f s - Siemens
VCE = 300V
14
110
I C = 60A
I G = 10mA
12
VGE - Volts
80
70
60
50
10
8
6
40
4
30
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
200
0
20
40
60
80
IC - Amperes
Fig. 9. Capacitance
140
160 180
200
220 240
Fig. 10. Reverse-Bias Safe Operating Area
280
10,000
Cies
240
200
1,000
IC - Amperes
Capacitance - PicoFarads
100 120
QG - NanoCoulombs
Coes
160
120
100
80
Cres
40
f = 1 MHz
0
100
10
0
5
10
15
20
25
30
35
TJ = 125ºC
RG = 3Ω
dV / dt < 10V / ns
40
200
300
VCE - Volts
400
500
600
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_72N60B3(76)02-10-09-D
IXGH72N60B3
IXGT72N60B3
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
8
9
7
7
8
6
=100A
7
VCE = 480V
TJ = 125ºC , VGE = 15V
I C = 50A
2
4
1
5
10
15
20
25
30
35
40
45
50
TJ = 125ºC
4
4
3
3
TJ = 25ºC
20
55
30
40
50
7
---I C = 50A
VCE = 480V
2
3
- MilliJoules
Eon
t f - Nanoseconds
on
4
2
1
0
25
35
45
55
65
75
85
95
105
115
C
= 100A
180
850
160
I
C
140
550
I
100
C
5
10
15
t f - Nanoseconds
50
55
200
245
220
180
130
175
110
160
TJ = 25ºC
70
70
45
235
205
60
100
40
260
190
50
35
220
150
40
30
250
VCE = 480V
30
25
80
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
90
230
I
C
= 25A, 50A, 100A
160
215
140
200
120
185
100
145
80
130
100
60
tr
td(off) - - - -
RG = 3Ω , VGE = 15V
170
155
VCE = 480V
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
140
125
t d(off) - Nanoseconds
RG = 3Ω , VGE = 15V
20
20
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
t d(off) - Nanoseconds
td(off) - - - -
90
250
TJ = 125ºC, VGE = 15V
VCE = 480V
0
t f - Nanoseconds
TJ = 125ºC
170
400
td(off) - - - -
RG - Ohms
230
tf
tf
= 25A
80
0
125
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
190
700
= 50A
TJ - Degrees Centigrade
210
1150
1000
I
120
1
I C = 25A
= 25A, 50A, 100A
200
5
4
C
t d(off) - Nanoseconds
= 100A
RG = 3Ω , VGE = 15V
0
100
90
1300
I
220
6
Eoff
80
240
E
Eoff - MilliJoules
6
3
70
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
7
C
60
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
I
2
1
RG - Ohms
5
5
0
1
0
VCE = 480V
5
1
2
0
6
2
3
I C = 25A
----
- MilliJoules
3
5
Eon
RG = 3Ω , VGE = 15V
on
4
---
Eoff
E
6
Eon -
Eoff
- MilliJoules
5
on
E
Eoff - MilliJoules
6
C
Eoff - MilliJoules
I
7
IXGH72N60B3
IXGT72N60B3
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
170
140
150
TJ = 125ºC, VGE = 15V
VCE = 480V
70
95
90
80
70
65
I
50
C
= 50A
I
C
0
5
10
15
20
25
30
35
40
45
50
33
RG = 3Ω , VGE = 15V
VCE = 480V
32
TJ = 25ºC, 125ºC
60
31
50
25ºC < TJ < 125ºC
30
29
30
28
35
20
27
20
10
= 25A
10
td(on) - - - -
40
50
30
- Nanoseconds
t r - Nanoseconds
= 100A
110
34
tr
t d(on) - Nanoseconds
110
C
80
d(on)
I
125
t
130
90
td(on) - - - -
t r - Nanoseconds
tr
55
20
RG - Ohms
30
40
50
60
70
80
90
26
100
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
100
35
90
34
33
I C = 100A
tr
70
td(on) - - - -
RG = 3Ω , VGE = 15V
60
VCE = 480V
50
32
31
30
I C = 50A
40
29
30
28
20
t d(on) - Nanoseconds
t r - Nanoseconds
80
27
I
10
C
= 25A
26
0
25
35
45
55
65
75
85
95
105
115
25
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_72N60B3(76)02-10-09-D
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.