GenX3TM 600V IGBT
IXGH72N60C3*
VCES
IC110
VCE(sat)
tfi (typ)
*Obsolete Part Number
High-Speed PT IGBT for
40-100kHz Switching
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
600
600
VGES
Continuous
±20
VGEM
Transient
±30
IC25
IC110
ICM
TC = 25°C (Limited by Leads)
TC = 110°C (Chip Capability)
TC = 25°C, 1ms
75
72
360
IA
EAS
TC = 25°C
TC = 25°C
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 2Ω
Clamped Inductive Load
PC
TC = 25°C
Md
Mounting Torque
Weight
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
-55 ... +150
150
-55 ... +150
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
C
E
G = Gate
E = Emitter
z
z
z
z
3.0
ICES
VCE = VCES, VGE = 0V
V
5.5
TJ = 125°C
© 2009 IXYS CORPORATION, All Rights Reserved
V
50 μA
1 mA
TJ = 125°C
2.10
1.65
Optimized for Low Switching Losses
Square RBSOA
Avalanche Rated
International Standard Package
Advantages
z
z
= 250μA, VCE = VGE
C
= Collector
Tab = Collector
High Power Density
Low Gate Drive Requirement
Applications
Characteristic Values
Min.
Typ.
Max.
IC
Tab
Features
z
VGE(th)
= 50A, VGE = 15V
A
mJ
W
600
IC
A
A
A
540
= 250μA, VGE = 0V
VCE(sat)
G
V
A
IC
VCE = 0V, VGE = ±20V
V
ICM = 150
VCE ≤ VCES
BVCES
IGES
TO-247 AD
ol
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
O
TL
TSOLD
600V
72A
2.5V
55ns
V
V
50
500
bs
TJ
TJM
Tstg
Maximum Ratings
e
Test Conditions
et
Symbol
=
=
≤
=
±100
nA
2.50
V
V
z
z
z
z
z
z
z
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS99961B(11/09)
IXGH72N60C3
Characteristic Values
Min.
Typ.
Max.
gfs
IC
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg
Qge
Qgc
IC = 50A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive Load, TJ = 25°°C
IC = 50A, VGE = 15V
VCE = 480V, RG = 2Ω, Note 2
55
S
4780
330
117
pF
pF
pF
174
33
72
nC
nC
nC
27
37
1.03
77
55
0.48
ns
ns
mJ
ns
ns
mJ
26
36
1.48
120
124
0.93
Inductive Load, TJ = 125°°C
IC = 50A, VGE = 15V
VCE = 480V, RG = 2Ω, Note 2
130
110
0.95
1
e
Dim.
ns
ns
mJ
ns
ns
mJ
0.23 °C/W
°C/W
∅P
3
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Tab - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
bs
0.21
2
Terminals: 1 - Gate
3 - Emitter
ol
RthJC
RthCK
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
O
Notes:
33
et
td(on)
tri
Eon
td(off)
tfi
Eoff
= 50A, VCE = 10V, Note 1
TO-247 (IXGH) Outline
e
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGH72N60C3
Fig. 1. Output Characteristics @ T J = 25ºC
Fig. 2. Extended Output Characteristics @ T J = 25ºC
100
350
VGE = 15V
13V
11V
90
80
11V
9V
250
IC - Amperes
70
IC - Amperes
VGE = 15V
13V
300
60
50
7V
40
30
200
9V
150
100
20
7V
50
10
5V
5V
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
0
VCE - Volts
4
8
10
12
14
et
Fig. 4. Dependence of VCE(sat) on
JunctionTemperature
1.3
100
VGE = 15V
13V
11V
90
80
VGE = 15V
1.2
1.1
ol
VCE(sat) - Normalized
9V
70
60
50
7V
40
bs
30
20
5V
10
0
0.0
0.4
0.8
1.2
1.6
2.0
0.9
O
4.5
C
C
= 50A
I
C
= 25A
0.6
0.5
0
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 6. Input Admittance
100
TJ = 25ºC
90
80
TJ = 125ºC
25ºC
- 40ºC
70
= 100A
50A
25A
IC - Amperes
I
I
0.7
2.4
4.0
3.5
= 100A
C
0.8
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
5.0
I
1.0
VCE - Volts
VCE - Volts
6
VCE - Volts
Fig. 3. Output Characteristics @ T J = 125ºC
IC - Amperes
2
e
0.0
0
3.0
60
50
40
30
2.5
20
2.0
10
1.5
0
6
7
8
9
10
11
12
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
7.0
7.5
8.0
IXGH72N60C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
90
TJ = - 40ºC
80
70
60
VGE - Volts
125ºC
50
I C = 50A
I G = 10mA
12
25ºC
g f s - Siemens
VCE = 300V
14
40
30
10
8
6
4
20
2
10
0
0
0
10
20
30
40
50
60
70
80
90
0
100
20
40
60
80
100
120
140
160
180
QG - NanoCoulombs
e
IC - Amperes
Fig. 10. Reverse-Bias Safe Operating Area
et
Fig. 9. Capacitance
160
10,000
140
Capacitance - PicoFarads
Cies
120
100
ol
IC - Amperes
1,000
Coes
100
Cres
10
0
5
10
15
20
25
60
40
bs
f = 1 MHz
80
30
35
40
TJ = 125ºC , RG = 2Ω
dv / dt < 10V / ns
20
0
100
200
300
Z (th)JC - ºC / W
1.00
O
VCE - Volts
400
500
600
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
0.10
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXGH72N60C3
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
5.0
Eoff
4.5
Eon -
---
5.5
TJ = 125ºC , VGE = 15V
4.0
5.6
Eoff
2.4
VCE = 480V
I
C
4.0
= 100A
2.5
3.5
2.0
3.0
1.5
2.5
I C = 50A
1.0
Eoff - MilliJoules
3.0
4.0
1.6
3.2
1.2
2.4
TJ = 125ºC, 25ºC
0.8
1.6
0.4
0.8
2.0
0.5
1.5
0.0
0.0
1.0
3
4
5
6
7
8
9
10
11
12
13
14
20
15
RG - Ohms
4.8
RG = 2Ω , VGE = 15V
3.2
I C = 100A
1.5
2.4
bs
1.6
I C = 50A
0.5
0.0
35
Eon - MilliJoules
2.0
25
180
tf
45
55
65
75
170
TJ = 125ºC, VGE = 15V
85
95
105
115
0.8
0.0
125
O
VCE = 480V
140
C
120
100
110
80
100
60
90
TJ = 25ºC
40
80
20
20
30
40
50
60
70
80
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
90
70
100
= 100A
250
130
200
I
120
C
= 50A
150
110
100
100
50
90
0
2
3
4
5
6
7
8
9
10
11
12
13
14
15
RG - Ohms
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
125
tf
td(off) - - - -
115
RG = 2Ω , VGE = 15V
VCE = 480V
120
105
100
95
I C = 100A
I C = 50A
80
60
85
75
40
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
115
65
125
t d(off) - Nanoseconds
TJ = 125ºC
350
300
I
140
130
120
400
150
140
t d(off) - Nanoseconds
t f - Nanoseconds
140
RG = 2Ω , VGE = 15V
t f - Nanoseconds
160
450
160
150
td(off) - - - -
500
160
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
tf
0.0
100
VCE = 480V
TJ - Degrees Centigrade
180
90
td(off) - - - -
ol
4.0
1.0
80
et
----
t f - Nanoseconds
VCE = 480V
70
t d(off) - Nanoseconds
2.5
60
190
5.6
Eon
50
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
3.5
Eoff
40
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
3.0
30
e
2
E off - MilliJoules
4.8
VCE = 480V
2.0
4.5
----
Eon - MilliJoules
3.5
Eon
RG = 2Ω , VGE = 15V
5.0
E on - MilliJoules
E off - MilliJoules
2.8
6.0
IXGH72N60C3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
160
60
C
50
= 100A
100
45
80
40
60
35
I
C
30
= 50A
20
25
3
4
5
6
7
8
9
10
11
12
13
14
80
32
70
30
TJ = 25ºC, 125ºC
60
28
50
26
40
24
30
22
20
20
10
20
15
30
40
50
60
70
80
90
18
100
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
120
et
RG - Ohms
35
110
tr
100
RG = 2Ω , VGE = 15V
td(on) - - - -
34
33
VCE = 480V
80
32
ol
90
31
I C = 100A
70
30
60
29
28
bs
50
40
t d(on) - Nanoseconds
t r - Nanoseconds
34
VCE = 480V
e
2
36
td(on) - - - -
RG = 2Ω , VGE = 15V
t d(on) - Nanoseconds
I
40
tr
90
VCE = 480V
120
38
100
55
t d(on) - Nanoseconds
t r - Nanoseconds
td(on) - - - -
TJ = 125ºC, VGE = 15V
t r - Nanoseconds
tr
140
110
27
30
I
20
25
35
45
C
26
= 50A
55
65
75
85
95
105
115
25
125
O
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_72N60C3(8D)11-25-09-C
e
et
ol
bs
O
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.