Preliminary Technical Information
IXGK82N120A3
IXGX82N120A3
GenX3TM 1200V
IGBTs
VCES = 1200V
IC110 = 82A
VCE(sat) ≤ 2.05V
Ultra-Low-Vsat PT IGBTs for
up to 3kHz Switching
TO-264 (IXGK)
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
1200
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
1200
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
IC110
ILRMS
ICM
TC
TC
TC
TC
260
82
120
580
A
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 2Ω
Clamped Inductive Load
ICM = 164
@ 0.8 • VCES
A
PC
TC = 25°C
1250
W
-55 ... +150
°C
= 25°C ( Chip Capability )
= 110°C
= 25°C (Lead RMS Limit)
= 25°C, 1ms
TJ
TJM
150
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
1.13/10
20..120/4.5..27
Nm/lb.in.
N/lb.
10
6
g
g
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062 in.) from Case for 10
Md
FC
Mounting Torque ( IXGK )
Mounting Force ( IXGX )
Weight
TO-264
PLUS247
G
G
BVCES
IC
= 250μA, VCE = 0V
1200
VGE(th)
IC
= 1mA, VCE = VGE
ICES
VCE = VCES, VGE = 0V
5.0
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= IC110, VGE = 15V, Note 2
TJ = 125°C
V
50 μA
2.5 mA
Note 1, TJ = 125°C
±100 nA
1.83
1.95
2.05
E
Tab
E
= Emitter
Tab = Collector
Features
z
z
Optimized for Low Conduction Losses
International Standard Packages
Advantages
V
z
z
z
z
z
z
z
z
z
© 2009 IXYS CORPORATION, All Rights Reserved
Tab
High Power Density
Low Gate Drive Requirement
Applications
V
3.0
C
G = Gate
C = Collector
z
Characteristic Values
Min.
Typ.
Max.
E
E
PLUS247TM (IXGX)
z
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
C
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
DS100164A(10/09)
IXGK82N120A3
IXGX82N120A3
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 60A, VCE = 10V, Note 2
40
Cies
Coes
66
TO-264 AA ( IXGK) Outline
S
7700
pF
520
pF
VCE = 25V, VGE = 0V, f = 1 MHz
Cres
190
pF
Qg(on)
340
nC
Qge
IC = IC110, VGE = 15V, VCE = 0.5 • VCES
Qgc
td(on)
tri
Inductive load, TJ = 25°C
54
nC
146
nC
34
ns
75
ns
Eon
IC
= 80A, VGE = 15V
5.5
mJ
td(off)
VCE = 0.5 • VCES, RG = 2Ω
265
ns
tfi
Note 3
780
1300
ns
12.5
20.0
mJ
Eoff
td(on)
32
ns
tri
Inductive load, TJ = 125°C
77
ns
Eon
IC = 80A, VGE = 15V
6.7
mJ
td(off)
VCE = 0.5 • VCES, RG = 2Ω
tfi
Eoff
Note 3
340
ns
1250
ns
22.5
mJ
0.10 °C/W
RthJC
RthCK
0.15
°C/W
Dim.
A
A1
A2
b
b1
b2
c
D
E
e
J
K
L
L1
P
Q
Q1
R
R1
S
T
Millimeter
Min.
Max.
4.82
5.13
2.54
2.89
2.00
2.10
1.12
1.42
2.39
2.69
2.90
3.09
0.53
0.83
25.91 26.16
19.81 19.96
5.46 BSC
0.00
0.25
0.00
0.25
20.32 20.83
2.29
2.59
3.17
3.66
6.07
6.27
8.38
8.69
3.81
4.32
1.78
2.29
6.04
6.30
1.57
1.83
Inches
Min.
Max.
.190
.202
.100
.114
.079
.083
.044
.056
.094
.106
.114
.122
.021
.033
1.020
1.030
.780
.786
.215 BSC
.000
.010
.000
.010
.800
.820
.090
.102
.125
.144
.239
.247
.330
.342
.150
.170
.070
.090
.238
.248
.062
.072
PLUS247TM (IXGX) Outline
Notes:
1. Part must be heatsunk for high-temp ICES measurement.
2. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
3. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
Terminals:
PRELIMINARY TECHNICAL INFORMATION
Dim.
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
Millimeter
Min. Max.
Inches
Min. Max.
A
A1
A2
4.83
2.29
1.91
5.21
2.54
2.16
.190
.090
.075
.205
.100
.085
b
b1
b2
1.14
1.91
2.92
1.40
2.13
3.12
.045
.075
.115
.055
.084
.123
C
D
E
e
L
L1
Q
R
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
6,404,065 B1
6,534,343
6,583,505
1 - Gate
2 - Drain (Collector)
3 - Source (Emitter)
0.61
0.80
20.80 21.34
15.75 16.13
5.45 BSC
19.81 20.32
3.81
4.32
5.59
6.20
4.32
4.83
.024 .031
.819 .840
.620 .635
.215 BSC
.780 .800
.150 .170
.220 0.244
.170 .190
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGK82N120A3
IXGX82N120A3
Fig. 1. Output Characteristics @ T J = 25ºC
Fig. 2. Extended Output Characteristics @ T J = 25ºC
180
320
VGE = 15V
13V
11V
160
11V
140
240
9V
120
IC - Amperes
IC - Amperes
VGE = 15V
13V
280
100
80
60
200
9V
160
120
7V
80
40
7V
40
20
5V
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0
3.5
2
4
6
8
12
14
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 125ºC
180
1.8
VGE = 15V
13V
11V
160
VGE = 15V
1.6
I
120
VCE(sat) - Normalized
140
IC - Amperes
10
VCE - Volts
VCE - Volts
9V
100
80
7V
60
= 164A
C
1.4
1.2
I
C
= 82A
1.0
40
0.8
20
I
5V
= 41A
0.6
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
-50
4.0
-25
0
VCE - Volts
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
180
5.0
160
TJ = 25ºC
4.5
140
4.0
3.5
I
3.0
C
IC - Amperes
VCE - Volts
C
= 164A
2.5
120
100
80
TJ = 125ºC
25ºC
- 40ºC
60
82A
2.0
1.5
40
20
41A
1.0
0
6
7
8
9
10
11
12
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
13
14
15
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
9.0
IXGK82N120A3
IXGX82N120A3
Fig. 8. Gate Charge
Fig. 7. Transconductance
100
16
TJ = - 40ºC
VCE = 600V
14
I C = 82A
80
125ºC
VGE - Volts
g f s - Siemens
60
I G = 10mA
12
25ºC
40
10
8
6
4
20
2
0
0
0
20
40
60
80
100
120
140
160
180
200
0
50
100
Fig. 9. Capacitance
200
250
300
350
Fig. 10. Reverse-Bias Safe Operating Area
180
10,000
160
Cies
140
120
IC - Amperes
Capacitance - PicoFarads
150
QG - NanoCoulombs
IC - Amperes
1,000
Coes
f = 1 MHz
Cres
100
1.000
0
5
10
15
20
25
30
35
40
100
80
60
40
TJ = 125ºC
20
RG = 2Ω
dv / dt < 10V / ns
0
200
300
400
500
600
700
800
900
1000
1100
1200
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
0.200
Z (th)JC - ºC / W
0.100
0.010
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXGK82N120A3
IXGX82N120A3
Fig. 12. Inductive Switching
Energy Loss vs. Collector Current
Fig. 13. Inductive Switching
Energy Loss vs. Junction Temperature
30
12
Eoff
Eon
12
Eoff
RG = 2Ω , VGE = 15V
25
30
---10
10
4
TJ = 25ºC
5
0
40
50
60
70
Eoff - MilliJoules
Eoff - MilliJoules
6
20
8
I C = 80A
15
6
10
2
5
0
0
80
2
25
35
45
Fig. 14. Inductive Turn-off
Switching Times vs. Collector Current
t d(off) - - - -
1.6
1.8
1.4
1.6
t f i - Microseconds
1.2
1.0
1.0
0.8
TJ = 125ºC
0.8
0.6
TJ = 25ºC
0.2
30
40
50
60
70
tf i
t d(off) - - - -
0.6
1.2
1.0
0.5
I C = 40A, 80A
0.4
0.2
0.6
0.2
0.0
0.4
25
35
45
55
65
75
85
95
105
115
110
42
tr i
100
t d(on) - - - -
30
40
28
20
26
40
38
VCE = 600V
80
36
70
34
I C = 80A
60
32
50
30
40
I
C
28
= 40A
30
0
24
40
50
60
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
70
80
t d(on) - Nanoseconds
32
t r i - Nanoseconds
90
TJ = 25ºC, 125ºC
t d(on) - - - -
RG = 2Ω , VGE = 15V
34
60
30
0.1
125
Fig. 17. Inductive Turn-on
Switching Times vs. Junction Temperature
t d(on) - Nanoseconds
t r i - Nanoseconds
0.7
TJ - Degrees Centigrade
RG = 2Ω , VGE = 15V
20
0
125
0.3
36
80
115
VCE = 600V
1.4
80
120
VCE = 600V
105
RG = 2Ω , VGE = 15V
Fig. 16. Inductive Turn-on
Switching Times vs. Collector Current
tr i
95
0.8
IC - Amperes
100
85
0.8
0.4
0.4
20
75
t d(off) - Microseconds
1.2
t d(off) - Microseconds
VCE = 600V
t f i - Microseconds
RG = 2Ω , VGE = 15V
0.6
65
Fig. 15. Inductive Turn-off
Switching Times vs. Junction Temperature
1.8
1.4
55
TJ - Degrees Centigrade
IC - Amperes
tfi
4
I C = 40A
Eon - MilliJoules
15
Eon - MilliJoules
8
TJ = 125ºC
1.6
10
VCE = 600V
20
30
----
RG = 2Ω , VGE = 15V
25
VCE = 600V
20
Eon
26
20
25
35
45
55
65
75
85
95
105
115
24
125
TJ - Degrees Centigrade
IXYS REF: G_82N120A3(8T)6-23-09
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.