Advance Technical Information
IXGN200N170
High Voltage
IGBT
VCES =
=
IC90
VCE(sat)
tfi(typ) =
1700V
160A
2.6V
535ns
E
SOT-227B, miniBLOC
E153432
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1M
VGES
VGEM
Continuous
Transient
IC25
ILRMS
IC90
ICM
TC = 25°C (Chip Capability)
Terminal Current Limit
TC = 90°C
TC = 25°C, 1ms
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 1
Clamped Inductive Load
PC
TC = 25°C
TJ
TJM
Tstg
VISOL
Md
50/60Hz
IISOL 1mA
E
Maximum Ratings
t = 1min
t = 1s
Mounting Torque
Terminal Connection Torque
Weight
1700
1700
V
V
±20
±30
V
V
280
200
160
1050
A
A
A
A
ICM = 300
1360
A
V
1250
W
-55 ... +150
150
-55 ... +150
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in
Nm/lb.in
30
g
G
E
C
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
Features
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
IC
= 3mA, VGE = 0V
1700
VGE(th)
IC
= 1mA, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 100A, VGE = 15V, Note 1
TJ = 125C
© 2016 IXYS CORPORATION, All Rights Reserved
V
25 A
5 mA
TJ = 125C
IGES
5.5
200
2.1
2.5
2.6
High Power Density
Low Gate Drive Requirement
Applications
Characteristic Values
Min.
Typ.
Max.
BVCES
miniBLOC, with Aluminium Nitride
Isolation
International Standard Package
Isolation Voltage 2500V~
High Current Handling Capability
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Welding Machines
nA
V
V
DS100718(4/16)
IXGN200N170
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
50
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 200A0, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1
Note 2
Notes:
82
S
12.5
580
220
nF
pF
pF
540
nC
78
nC
265
nC
37
133
28
320
535
30
ns
ns
mJ
ns
ns
mJ
40
143
31
430
610
44
ns
ns
mJ
ns
ns
mJ
0.05
0.10 °C/W
°C/W
Inductive load, TJ = 125°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1
Note 2
RthJC
RthCS
SOT-227B miniBLOC (IXGN)
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGN200N170
Fig. 1. Extended Output Characteristics @ TJ = 25ºC
Fig. 2. Output Characteristics @ TJ = 125ºC
300
VGE = 15V
12V
10V
I C - Amperes
250
VGE = 15V
13V
11V
10V
9V
250
I C - Amperes
300
200
8V
150
9V
200
8V
150
7V
100
100
7V
50
50
6V
6V
5V
0
0
0
1
2
3
4
5
6
7
8
9
0
10
1
2
3
Fig. 3. Dependence of VCE(sat) on
Junction Temperature
1.8
4
5
6
VCE - Volts
VCE - Volts
Fig. 4. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
8
VGE = 15V
TJ = 25ºC
7
1.6
6
V CE - Volts
V CE(sat) - Normalized
I C = 300A
1.4
1.2
1.0
I C = 200A
5
I C = 300A
4
200A
0.8
3
I C = 100A
0.6
2
0.4
100A
1
-50
-25
0
25
50
75
100
125
150
7
8
9
10
11
12
13
14
15
VGE - Volts
TJ - Degrees Centigrade
Fig. 6. Transconductance
Fig. 5. Input Admittance
160
200
TJ = - 40ºC
140
120
150
g f s - Siemens
I C - Amperes
25ºC
100
TJ = 125ºC
25ºC
- 40ºC
100
125ºC
80
60
40
50
20
0
0
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
7.5
8.0
8.5
0
20
40
60
80
100
120
I C - Amperes
140
160
180
200
220
IXGN200N170
Fig. 8. Capacitance
Fig. 7. Gate Charge
100,000
16
VCE = 850V
14
Capacitance - PicoFarads
I G = 10mA
12
V GE - Volts
f = 1 MHz
I C = 200A
10
8
6
4
10,000
Cies
Coes
1,000
2
Cres
100
0
0
50
100
150
200
250
300
350
400
450
500
0
550
5
10
15
20
25
30
35
40
VCE - Volts
QG - NanoCoulombs
Fig. 10. Maximum Transient Thermal Impedance
Fig. 9. Reverse-Bias Safe Operating Area
1
350
300
0.1
Z (th)JC - K / W
I C - Amperes
250
200
150
100
0.01
0.001
TJ = 125ºC
RG = 1Ω
dv / dt < 10V / ns
50
0
250
500
750
1000
1250
1500
0.0001
0.00001
VCE - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
1
10
IXGN200N170
Fig. 11. Inductive Switching Energy Loss vs.
Gate Resistance
60
Eoff
55
Eon
45
55
40
50
35
45
Fig. 12. Inductive Switching Energy Loss vs.
Collector Current
Eoff
E off - MilliJoules
40
25
35
20
30
I C = 50A
25
20
1
2
3
4
5
6
7
8
9
VCE = 850V
28
TJ = 125ºC
40
20
30
15
25
12
10
20
8
5
15
50
10
60
70
Eon
RG = 1ΩVGE = 15V
50
VCE = 850V
tfi
36
TJ = 125ºC, VGE = 15V
32
35
24
20
I C = 50A
25
16
20
12
15
8
10
75
100
td(off)
tfi
700
700
I C = 100A
600
4
125
500
500
300
1
2
3
4
800
1000
700
900
6
7
8
tfi
9
10
800
td(off)
RG = 1Ω, VGE = 15V
700
VCE = 850V
TJ = 125ºC
600
500
400
800
600
I C = 50A
700
500
600
400
I C = 100A
500
TJ = 25ºC
400
50
60
70
80
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
90
300
500
200
100
400
300
25
50
75
TJ - Degrees Centigrade
100
200
125
t d(off) - Nanoseconds
600
t d(off) - Nanoseconds
800
t f i - Nanoseconds
VCE = 850V
t f i - Nanoseconds
5
Fig. 16. Inductive Turn-off Switching Times vs.
Junction Temperature
td(off)
RG = 1Ω, VGE = 15V
700
900
RG - Ohms
Fig. 15. Inductive Turn-off Switching Times vs.
Collector Current
900
1100
I C = 50A
800
TJ - Degrees Centigrade
1000
1300
VCE = 850V
28
30
900
E on - MilliJoules
E off - MilliJoules
40
40
50
4
100
90
t d(off) - Nanoseconds
I C = 100A
45
25
80
Fig. 14. Inductive Turn-off Switching Times vs.
Gate Resistance
1000
44
t f i - Nanoseconds
Eoff
16
TJ = 25ºC
I C - Amperes
Fig. 13. Inductive Switching Energy Loss vs.
Junction Temperature
55
24
35
RG - Ohms
60
32
E on - MilliJoules
30
E on - MilliJoules
I C = 100A
45
E off - MilliJoules
VCE = 850V
Eon
RG = 1ΩVGE = 15V
TJ = 125ºC , VGE = 15V
50
36
IXGN200N170
200
tri
180
160
VCE = 850V
I C = 100A
120
90
180
80
160
70
140
60
100
50
80
40
I C = 50A
40
20
10
20
0
0
4
5
6
7
8
9
tri
TJ = 25ºC
36
33
60
70
80
90
30
100
I C - Amperes
Fig. 19. Inductive Turn-on Switching Times vs.
Junction Temperature
175
39
50
10
RG - Ohms
200
TJ = 125ºC
60
20
3
42
VCE = 850V
80
40
2
45
td(on)
100
30
1
tri
RG = 1Ω, VGE = 15V
120
60
0
Fig. 18. Inductive Turn-on Switching Times vs.
Collector Current
t d(on) - Nanoseconds
140
200
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
TJ = 125ºC, VGE = 15V
100
t r i - Nanoseconds
Fig. 17. Inductive Turn-on Switching Times vs.
Gate Resistance
td(on)
46
44
RG = 1Ω, VGE = 15V
VCE = 850V
42
I C = 100A
125
40
100
38
75
36
I C = 50A
50
25
34
t d(on) - Nanoseconds
t r i - Nanoseconds
150
32
0
25
50
75
100
30
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXG_200N170 (9M) 4-21-16
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.