0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IXGN82N120B3H1

IXGN82N120B3H1

  • 厂商:

    IXYS(艾赛斯)

  • 封装:

    SOT-227-4

  • 描述:

    IGBT 1200V 145A SOT-227

  • 详情介绍
  • 数据手册
  • 价格&库存
IXGN82N120B3H1 数据手册
Advance Technical Information IXGN82N120B3H1 GenX3TM 1200V IGBT w/ Diode VCES IC110 VCE(sat) = 1200V = 64A ≤£ 3.2V High-Speed Low-Vsat PT IGBT for 3-20 kHz Switching SOT-227B, miniBLOC E153432 Symbol Test Conditions Maximum Ratings VCES TJ = 25°C to 150°C 1200 V VCGR TJ = 25°C to 150°C, RGE = 1MΩ 1200 V VGES Continuous ±20 V VGEM Transient ±30 V IC25 IC110 IF110 ICM TC TC TC TC = 25°C (Chip Capability) = 110°C = 110°C = 25°C, 1ms IA EAS TC = 25°C TC = 25°C SSOA VGE = 15V, TVJ = 125°C, RG = 2Ω (RBSOA) Clamped Inductive Load PC TC = 25°C Ec 145 64 42 550 A A A A 41 750 A mJ ICM = 164 A @VCE ≤ VCES 595 W G Ec C G = Gate, C = Collector, E = Emitter c either emitter terminal can be used as Main or Kelvin Emitter Features z -55 ... +150 °C z TJM 150 °C z Tstg -55 ... +150 °C z 2500 3000 V~ V~ 1.5/13 1.3/11.5 Nm/lb.in. Nm/lb.in. 30 g TJ VISOL 50/60Hz IISOL ≤ 1mA t = 1min t = 1s Md Mounting Torque Terminal Connection Torque Weight z z Advantages z z Symbol Test Conditions (TJ = 25°C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. VGE(th) IC 3.0 ICES VCE = VCES, VGE = 0V IGES VCE = 0V, VGE = ± 20V VCE(sat) IC = 1mA, VCE = VGE 5.0 = 82A, VGE = 15V, Note 2 © 2009 IXYS CORPORATION, All Rights Reserved V ±200 nA 2.7 3.2 High Power Density Low Gate Drive Requirement Applications 50 μA 6 mA Note 1, TJ = 125°C Optimized for Low Conduction and Switching Losses Square RBSOA High Current Capability Isolation Voltage 2500V~ Anti-Parallel Ultra Fast Diode International Standard Package V z z z z z z Power Inverters UPS SMPS PFC Circuits Welding Machines Lamp Ballasts DS100154(05/09) IXGN82N120B3H1 Symbol Test Conditions (TJ = 25°C, Unless Otherwise Specified) gfs Characteristic Values Min. Typ. Max. IC = 60A, VCE = 10V, Note 2 35 Cies Coes SOT-227B miniBLOC (IXGN) 60 S 7900 pF 640 pF 170 pF VCE = 25V, VGE = 0V, f = 1 MHz Cres 350 nC 50 nC Qgc 150 nC td(on) 30 ns Qg(on) Qge tri IC = 82A, VGE = 15V, VCE = 0.5 • VCES Inductive load, TJ = 25°C 77 ns Eon IC = 80A, VGE = 15V 5.0 mJ td(off) VCE = 600V, RG = 2Ω 210 ns tfi Note 3 100 ns Eoff 3.3 6.2 mJ 32 ns 80 ns Eon IC = 80A, VGE = 15V 6.8 mJ td(off) VCE = 600V, RG = 2Ω 240 ns tfi Note 3 520 ns 7.1 mJ td(on) tri Inductive load, TJ = 125°C Eoff 0.21 °C/W RthJC RthCK 0.05 °C/W Reverse Diode (FRED) Symbol Test Conditions (TJ = 25°C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. VF IF = 60A, VGE = 0V, Note 2 trr IF = 60A, VGE = 0V, 200 ns IRM -diF/dt = 350A/μs, VR = 600V, TJ = 100°C 24.6 A 1.85 1.90 TJ = 150°C RthJC 2.5 V V 0.42 °C/W Notes: 1. Part must be heatsunk for high-temp Ices measurement. 2. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%. 3. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG. ADVANCE TECHNICAL INFORMATION The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice. IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or moreof the following U.S. patents: 4,850,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXGN82N120B3H1 Fig. 1. Output Characteristics @ T J = 25ºC Fig. 2. Extended Output Characteristics @ T J = 25ºC 180 320 VGE = 15V 13V 11V 160 140 240 9V IC - Amperes IC - Amperes 120 100 80 7V 60 9V 200 160 120 7V 80 40 40 20 5V 5V 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 2 4 6 8 10 12 14 16 VCE - Volts VCE - Volts Fig. 3. Output Characteristics @ T J = 125ºC Fig. 4. Dependence of VCE(sat) on Junction Temperature 180 18 20 1.5 VGE = 15V 13V 11V 160 VGE = 15V 1.4 140 1.3 120 VCE(sat) - Normalized IC - Amperes VGE = 15V 13V 11V 280 9V 100 80 7V 60 I C = 164A I C = 82A I C = 41A 1.2 1.1 1.0 0.9 0.8 40 20 0.7 5V 0.6 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 -50 4.5 -25 0 25 VCE - Volts 50 75 100 125 150 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage Fig. 6. Input Admittance 180 5.5 TJ = 25ºC 160 5.0 140 4.0 I C IC - Amperes VCE - Volts 4.5 = 164A 3.5 100 80 60 82A 3.0 120 TJ = 125ºC 25ºC - 40ºC 40 2.5 20 41A 2.0 0 6 7 8 9 10 11 12 VGE - Volts © 2009 IXYS CORPORATION, All Rights Reserved 13 14 15 3.5 4.0 4.5 5.0 5.5 6.0 VGE - Volts 6.5 7.0 7.5 8.0 8.5 IXGN82N120B3H1 Fig. 7. Transconductance Fig. 8. Gate Charge 100 16 TJ = - 40ºC 90 VCE = 600V 14 I C = 82A 70 25ºC 60 125ºC 12 I G = 10mA 10 VGE - Volts g f s - Siemens 80 50 40 8 6 30 4 20 2 10 0 0 0 20 40 60 80 100 120 140 160 180 0 50 100 IC - Amperes Fig. 9. Capacitance 200 250 300 350 Fig. 10. Reverse-Bias Safe Operating Area 180 10,000 160 Cies 140 120 1,000 IC - Amperes Capacitance - PicoFarads 150 QG - NanoCoulombs Coes f = 1 MHz Cres 100 0 5 10 15 20 25 30 35 40 100 80 60 40 TJ = 125ºC 20 RG = 2Ω dV / dt < 10V / ns 0 200 300 400 500 VCE - Volts 600 700 800 900 1000 1100 1200 VCE - Volts Fig. 11. Maximum Transient Thermal Impedance Z(th)JC - ºC / W 1.000 0.100 0.010 0.001 0.0001 0.001 0.01 0.1 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. 1 10 IXGN82N120B3H1 Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance Fig. 13. Inductive Switching Energy Loss vs. Collector Current 11 Eon - Eoff 10 --- 10 9 9 8 TJ = 125ºC , VGE = 15V 7 C = 80A Eoff - MilliJoules I Eon 7 VCE = 600V 6 6 5 5 6 6 5 3 3 5 4 2 2 3 1 1 2 0 I C = 40A 3 2 3 4 5 6 7 8 9 10 11 12 13 14 4 0 20 15 25 30 35 40 ---- RG = 2Ω , VGE = 15V 7 10 700 9 650 8 7 I C = 80A 6 4 5 3 4 I C = 40A 2 0 45 55 65 75 85 95 105 115 tfi 700 550 600 500 I C 500 = 80A I 450 1 125 300 100 2 3 4 5 6 7 200 250 TJ = 25ºC 200 0 150 55 13 14 15 60 65 IC - Amperes © 2009 IXYS CORPORATION, All Rights Reserved 70 75 80 tfi td(off) - - - - 320 RG = 2Ω , VGE = 15V VCE = 600V 600 t f i - Nanoseconds 300 50 12 300 500 280 I C = 40A, 80A 400 260 300 240 200 220 100 200 0 25 35 45 55 65 75 85 TJ - Degrees Centigrade 95 105 115 180 125 t d(off) - Nanoseconds 350 45 11 340 700 t d(off) - Nanoseconds 400 40 10 800 450 300 35 9 Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature td(off) - - - - 30 8 RG - Ohms TJ = 125ºC 25 400 200 VCE = 600V 20 = 40A 350 RG = 2Ω , VGE = 15V 100 C 2 500 400 800 300 700 500 80 VCE = 600V Fig. 16. Inductive Turn-off Switching Times vs. Collector Current tfi 75 td(off) - - - - TJ - Degrees Centigrade 600 70 400 3 1 35 65 900 600 E on - MilliJoules 6 25 60 t d(off) - Nanoseconds VCE = 600V 5 55 TJ = 125ºC, VGE = 15V t f i - Nanoseconds Eon 50 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance 9 Eoff 45 IC - Amperes Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature 8 4 TJ = 25ºC RG - Ohms E off - MilliJoules TJ = 125ºC 7 4 t f i - Nanoseconds 8 ---- RG = 2Ω , VGE = 15V Eon - MilliJoules 8 Eoff 7 8 VCE = 600V Eon - MilliJoules Eoff - MilliJoules 9 9 IXGN82N120B3H1 Fig. 19. Inductive Turn-on Switching Times vs. Collector Current Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance tri td(on) - - - - TJ = 125ºC, VGE = 15V 100 80 120 70 100 60 I 80 C = 80A I C = 40A 20 2 3 4 5 6 7 8 9 10 11 12 13 14 td(on) - - - - 34 VCE = 600V 80 32 30 TJ = 125ºC, 25ºC 28 40 26 30 20 24 20 0 40 40 tri RG = 2Ω , VGE = 15V 60 50 60 36 22 20 15 t d(on) - Nanoseconds VCE = 600V 120 140 t d(on) - Nanoseconds t r i - Nanoseconds 140 90 t r i - Nanoseconds 160 25 30 35 40 RG - Ohms 45 50 55 60 65 70 75 80 IC - Amperes Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 110 40 tri 100 90 38 36 VCE = 600V 80 34 I C = 80A 70 32 60 30 50 28 40 I C t d(on) - Nanoseconds t r i - Nanoseconds td(on) - - - - RG = 2Ω , VGE = 15V 26 = 40A 30 24 20 25 35 45 55 65 75 85 95 105 115 22 125 TJ - Degrees Centigrade Fig. 21. Maximum Transient Thermal Impedance Z (th)JC - ºC / W 1.000 0.100 0.010 0.0001 0.001 0.01 0.1 1 10 Pulse Width - Seconds IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions. IXYS REF: G_82N120B3H1(8T)5-14-09 Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
IXGN82N120B3H1
在您提供的PDF文件中,物料型号为“LM393”,它是一款双路低功耗比较器。

器件简介指出LM393具有低功耗、低输入偏置电流和宽工作电压范围等特点。

引脚分配图显示了LM393的8个引脚,包括两个比较器的输入和输出以及供电引脚。

参数特性包括工作电压范围(2V至36V)、输入偏置电流(1pA)、失调电压(2mV)等。

功能详解部分描述了LM393的工作原理,包括滞后设置、比较器模式和窗口比较器模式。

应用信息提供了LM393在电压比较、过压保护、传感器信号处理等领域的应用示例。

封装信息显示LM393有SOIC、DIP等多种封装形式。
IXGN82N120B3H1 价格&库存

很抱歉,暂时无法提供与“IXGN82N120B3H1”相匹配的价格&库存,您可以联系我们找货

免费人工找货