Preliminary Technical Information
VCES = 1200V
IC90 = 20A
VCE(sat) ≤ 3.1V
IXGA20N120B3
IXGP20N120B3
GenX3TM 1200V IGBT
High Speed Low Vsat PT
IGBTs 3-20 kHz Switching
TO-263 (IXGA)
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
VGES
VGEM
Continuous
Transient
IC25
IC90
ICM
TC = 25°C
TC = 90°C
TC = 25°C, 1ms
SSOA
(RBSOA)
VGE = 15V, TJ = 125°C, RG = 15Ω
Clamped Inductive load
PC
TC = 25°C
G
Maximum Ratings
1200
1200
V
V
±20
±30
V
V
36
20
80
A
A
A
ICM = 40
@VCE ≤ 1200
A
V
180
W
-55 ... +150
150
-55 ... +150
°C
°C
°C
1.13/10
10..65 / 2.2..14.6
Nm/lb.in.
N/lb.
TJ
TJM
Tstg
Md
FC
Mounting Torque (TO-220)
Mounting Force (TO-263)
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6mm (0.062 in.) from Case for 10s
Weight
TO-263
TO-220
300
260
°C
°C
2.5
3.0
g
g
E
TO-220 (IXGP)
G
IC
IC
ICES
VCE = VCES,VGE = 0V
1200
2.5
TJ = 125°C
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 16A, VGE = 15V, Note 2
TJ = 125°C
© 2009 IXYS CORPORATION, All Rights Reserved
2.7
2.8
C = Collector
TAB = Collector
z
z
z
Optimized for Low Conduction and
Switching Losses
Square RBSOA
International Standard Packages
Advantages
High Power Density
Low Gate Drive Requirement
Applications
Characteristic Values
Min.
Typ.
Max.
= 250μA, VGE = 0V
= 250μA, VCE = VGE
E
Features
z
BVCES
VGE(th)
C (TAB)
C
G = Gate
E = Emitter
z
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
C (TAB)
z
5.0
V
V
25
1
μA
mA
±100
nA
3.1
V
V
z
z
z
z
z
z
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Welding Machines
Inductive Heating
DS100126(03/09)
IXGA20N120B3
IXGP20N120B3
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
IC = 16A, VCE = 10V, Note 2
7.5
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
12.5
S
1070
80
32
pF
pF
pF
51
nC
7.4
nC
23
nC
16
31
0.92
150
155
ns
ns
mJ
ns
ns
Qg
Qge
IC = 16A, VGE = 15V, VCE = 0.5 • VCES
Qgc
td(on)
tri
Eon
td(off)
tfi
Inductive load, TJ = 25°°C
IC = 16A, VGE = 15V
VCE = 600V, RG = 15Ω
Note 1
Eoff
0.56
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 125°°C
IC = 16A, VGE = 15V
VCE = 600V, RG = 15Ω
Note 1
RthJC
RthCK
TO-220
TO-263 (IXGA) Outline
1.00
mJ
16
45
1.60
180
540
1.63
ns
ns
mJ
ns
ns
mJ
0.50
0.69 °C/W
°C/W
TO-220 (IXGP) Outline
Notes:
1.
2.
Switching Times may Increase for VCE (Clamp) > 0.5 • VCES,
Higher TJ or Increased RG.
Pulse Test, t ≤ 300μs; Duty Cycle, d ≤ 2%.
Pins:
1 - Gate
2 - Drain
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGA20N120B3
IXGP20N120B3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
140
32
VGE = 15V
13V
11V
28
VGE = 15V
120
100
20
13V
9V
IC - Amperes
IC - Amperes
24
16
12
7V
80
11V
60
40
8
9V
20
4
5V
7V
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
0
4
8
12
20
24
28
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
32
1.6
VGE = 15V
13V
11V
28
VGE = 15V
1.5
1.4
VCE(sat) - Normalized
24
9V
IC - Amperes
16
VCE - Volts
VCE - Volts
20
16
7V
12
I
C
= 32A
1.3
1.2
1.1
1.0
I
C
= 16A
0.9
8
0.8
4
I
0.7
5V
= 8A
0.6
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
-50
5.0
-25
0
VCE - Volts
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
40
8
TJ = 25ºC
7
35
30
5
I
C
IC - Amperes
6
VCE - Volts
C
= 32A
4
16A
3
25
20
15
TJ = - 40ºC
25ºC
125ºC
10
8A
2
5
1
0
5
6
7
8
9
10
11
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
7.5
8.0
8.5
9.0
IXGA20N120B3
IXGP20N120B3
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
16
14
14
12
12
25ºC
10
125ºC
VGE - Volts
g f s - Siemens
TJ = - 40ºC
8
6
VCE = 600V
I C = 16A
I G = 10 mA
10
8
6
4
4
2
2
0
0
0
5
10
15
20
25
30
35
40
0
45
5
10
15
Fig. 9. Capacitance
25
30
35
40
45
50
Fig. 10. Reverse-Bias Safe Operating Area
45
10,000
40
f = 1MHz
35
Cies
30
1,000
IC - Amperes
Capacitance - PicoFarads
20
QG - NanoCoulombs
IC - Amperes
Coes
100
25
20
15
10
5
Cres
0
200
10
0
5
10
15
20
25
30
35
40
TJ = 125ºC
RG = 15Ω
dV / dt < 10V / ns
300
400
500
600
VCE - Volts
700
800
900 1000 1100 1200 1300
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_20N120B3(4L)03-17-09
IXGA30N120B3
IXGP30N120B3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
3.2
---
TJ = 125ºC , VGE = 15V
3.2
5.0
2.8
Eoff
2.4
VCE = 600V
4.5
VCE = 600V
4.0
= 32A
2.2
3.0
2.0
2.5
1.8
2.0
I C = 16A
1.6
1.0
1.2
30
40
50
60
70
80
2.0
2.5
1.6
2.0
1.2
1.5
TJ = 25ºC
0.8
1.0
0.4
0.5
0.0
10
90
12
14
16
18
RG - Ohms
26
28
30
32
600
4.4
VCE = 600V
3.6
I C = 32A
2.0
3.2
2.8
1.5
2.4
2.0
I C = 16A
1.0
1.6
tfi
700
td(off) - - - 500
TJ = 125ºC, VGE = 15V
VCE = 600V
600
400
I
500
C
= 32A
300
I
400
C
= 16A
200
1.2
0.5
300
0.8
t d(off) - Nanoseconds
4.0
t f - Nanoseconds
----
RG = 15Ω , VGE = 15V
Eon - MilliJoules
Eoff - MilliJoules
24
800
4.8
Eon
22
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
3.0
Eoff
20
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
2.5
3.0
TJ = 125ºC
0.0
0.5
20
3.5
1.5
1.4
10
----
- MilliJoules
3.5
- MilliJoules
2.4
on
E
C
Eon
RG = 15Ω , VGE = 15V
on
I
4.0
E
2.6
Eoff - MilliJoules
2.8
Eoff - MilliJoules
Eon -
Eoff
3.0
5.5
100
0.4
0.0
25
35
45
55
65
75
85
95
105
115
200
0.0
125
0
10
20
30
40
td(off) - - - -
600
VCE = 600V
RG = 15Ω , VGE = 15V
TJ = 125ºC
240
700
220
600
VCE = 600V
200
400
180
300
160
TJ = 25ºC
140
100
0
16
18
20
22
24
26
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
28
30
32
240
tfi
t f i - Nanoseconds
tfi
14
90
td(off) - - - -
220
RG = 15Ω , VGE = 15V
200
500
180
I
C
= 16A
400
160
300
140
I C = 32A
200
120
100
100
0
120
100
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
80
125
t d(off) - Nanoseconds
700
12
80
800
260
t d(off) - Nanoseconds
t f i - Nanoseconds
800
10
70
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
200
60
RG - Ohms
TJ - Degrees Centigrade
500
50
IXGA20N120B3
IXGP20N120B3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
200
90
160
80
60
C
50
= 32A
100
40
I
80
C
= 16A
30
60
20
40
10
20
20
30
40
50
60
70
80
24
VCE = 600V
100
22
80
20
60
18
TJ = 125ºC
40
16
20
0
10
td(on) - - - -
RG = 15Ω , VGE = 15V
14
TJ = 25ºC
0
12
10
90
t d(on) - Nanoseconds
VCE = 600V
I
tri
70
140
120
26
120
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
TJ = 125ºC, VGE = 15V
t r i - Nanoseconds
tri
180
140
12
14
16
18
20
22
24
26
28
30
32
IC - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
160
28
tri
140
td(on) - - - -
26
RG = 15Ω , VGE = 15V
t r i - Nanoseconds
24
100
22
I C = 32A
80
20
60
18
40
I
C
16
= 16A
20
t d(on) - Nanoseconds
VCE = 600V
120
14
0
25
35
45
55
65
75
85
95
105
115
12
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_20N120B3(4L)03-17-09
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.