GenX3TM 600V
IGBTs
IXGA30N60C3
IXGP30N60C3*
IXGH30N60C3
High-Speed PT IGBTs for
40-100kHz Switching
*Obsolete Part Number
VCES =
IC110 =
VCE(sat) ≤
tfi(typ) =
600V
30A
3.0V
47ns
TO-263 AA (IXGA)
G
Symbol
Test Conditions
Maximum Ratings
E
VCES
TC = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
600
V
VGES
Continuous
± 20
V
VGEM
Transient
± 30
V
IC25
TC = 25°C
60
A
IC110
TC = 110°C
30
A
ICM
TC = 25°C, 1ms
150
A
SSOA
VGE = 15V, TVJ = 125°C, RG = 5Ω
ICM = 60
A
(RBSOA)
Clamped Inductive Load
@ ≤ VCES
PC
TC = 25°C
220
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
TJ
TL
1.6mm (0.062 in.) from Case for 10s
300
°C
TSOLD
Plastic Body for 10 seconds
260
°C
Md
Mounting Torque (TO-220 & TO-247)
Weight
TO-220
TO-263
TO-263
1.13/10
Nm/lb.in.
2.5
3.0
3.0
g
g
g
C (Tab)
TO-220AB (IXGP)
G
CE
C (Tab)
TO-247 (IXGH)
G
C
E
G = Gate
S = Emitter
C (Tab)
D
= Collector
Tab = Collector
Features
Optimized for Low Switching Losses
Square RBSOA
International Standard Packages
Advantages
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC = 250μA, VGE = 0V
600
VGE(th)
IC = 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
V
5.5
VCE = 0V, VGE = ± 20V
VCE(sat)
IC = 20A, VGE = 15V, Note 1
V
15 μA
300 μA
TJ = 125°C
IGES
High Power Density
Low Gate Drive Requirement
±100 nA
TJ = 125°C
© 2011 IXYS CORPORATION, All Rights Reserved
2.6
1.8
3.0
V
V
Applications
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100012B(05/11)
IXGA30N60C3 IXGP30N60C3
IXGH30N60C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
9
IC = 20A, VCE = 10V, Note 1
Cies
Coes
VCE = 25V, VGE = 0V, f = 1MHz
Cres
Qg
Qge
IC = 20A, VGE = 15V, VCE = 0.5 • VCES
Qgc
td(on)
tri
Eon
Inductive Load, TJ = 25°C
IC = 20A, VGE = 15V
16
S
915
pF
78
pF
32
pF
38
nC
8
nC
17
nC
16
ns
26
ns
0.27
mJ
td(off)
VCE = 300V, RG = 5Ω
42
tfi
Note 2
47
Eoff
td(on)
tri
Eon
td(off)
tfi
0.09
75
IC = 20A, VGE = 15V
VCE = 300V, RG = 5Ω
Note 2
Eoff
0.18
Notes:
ns
mJ
ns
28
ns
0.44
mJ
70
ns
90
ns
0.33
mJ
RthJC
RthCS
1 = Gate
2 = Collector
3 = Emitter
4 = Collector
ns
17
Inductive Load, TJ = 125°C
TO-263 Outline
0.56 °C/W
TO-220
TO-247
0.50
0.21
°C/W
°C/W
TO-220 Outline
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
Dim.
TO-247 Outline
1
2
∅P
3
e
Terminals: 1 - Gate
3 - Emitter
2 - Collector
Millimeter
Min.
Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
1 = Gate
2 = Collector
Pins: 1 - Gate
3 = Emitter
2 - Drain
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,710,405 B2
6,710,463
6,727,585
7,005,734 B2
6,759,692
7,063,975 B2
6,771,478 B2 7,071,537
7,157,338B2
IXGA30N60C3 IXGP30N60C3
IXGH30N60C3
Fig. 1. Output Characteristics @ T J = 25ºC
Fig. 2. Extended Output Characteristics @ T J = 25ºC
40
180
VGE = 15V
13V
35
140
30
11V
13V
120
25
IC - Amperes
IC - Amperes
VGE = 15V
160
20
9V
15
10
100
11V
80
60
9V
40
7V
5
20
0
7V
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
0
2
4
6
8
12
14
16
18
20
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 125ºC
1.1
40
VGE = 15V
13V
11V
35
VGE = 15V
1.0
I
VCE(sat) - Normalized
30
IC - Amperes
10
VCE - Volts
VCE - Volts
9V
25
20
15
C
= 40A
0.9
0.8
I
C
= 20A
0.7
10
I
0.6
5
C
= 10A
7V
0
0.5
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
25
50
75
VCE - Volts
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
5.5
70
TJ = 25ºC
5.0
60
50
I
C
IC - Amperes
VCE - Volts
4.5
= 40A
4.0
20A
40
TJ = 125ºC
25ºC
- 40ºC
30
3.5
20
10A
3.0
10
0
2.5
7
8
9
10
11
12
13
VGE - Volts
© 2011 IXYS CORPORATION, All Rights Reserved
14
15
5
5.5
6
6.5
7
7.5
8
8.5
VGE - Volts
9
9.5
10
10.5
11
IXGA30N60C3 IXGP30N60C3
IXGH30N60C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
24
16
TJ = - 40ºC
20
VCE = 300V
12
I G = 10mA
I C = 20A
25ºC
16
125ºC
VGE - Volts
g f s - Siemens
14
12
8
10
8
6
4
4
2
0
0
0
10
20
30
40
50
60
70
80
0
5
10
Fig. 9. Capacitance
20
25
30
35
40
Fig. 10. Reverse-Bias Safe Operating Area
70
10,000
f = 1 MHz
Capacitance - PicoFarads
15
QG - NanoCoulombs
IC - Amperes
60
Cies
50
IC - Amperes
1,000
Coes
100
40
30
20
10
TJ = 125ºC
RG = 5Ω
dv / dt < 10V / ns
Cres
0
100
10
0
5
10
15
20
25
30
35
40
150
200
250
300
350
400
450
500
550
600
650
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance for IGBT
Z(th)JC - ºC / W
1
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
0.1
1
10
IXGA30N60C3 IXGP30N60C3
IXGH30N60C3
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
0.8
Eon -
Eoff
0.7
---
TJ = 125ºC , VGE = 15V
1.4
0.6
1.2
0.5
1.2
Eoff
VCE = 300V
= 40A
0.8
0.4
0.6
0.3
I C = 20A
0.2
6
8
10
12
14
16
18
0.4
E off - MilliJoules
C
0.5
0.8
TJ = 125ºC
0.3
0.6
0.2
0.4
0.1
0.2
0
0.4
TJ = 25ºC
15
20
t fi
120
0.8
0.3
0.6
0.2
0.4
t f i - Nanoseconds
0.4
140
100
I
C
= 40A
120
80
I
100
I C = 20A
45
55
65
75
85
95
105
115
40
4
6
8
10
110
100
140
70
80
60
60
50
40
40
TJ = 25ºC
20
30
0
20
25
30
35
IC - Amperes
© 2011 IXYS CORPORATION, All Rights Reserved
40
td(off) - - - -
80
RG = 5Ω , VGE = 15V
VCE = 300V
t f i - Nanoseconds
100
20
20
120
70
100
60
I C = 40A, 20A
80
50
60
40
40
30
20
25
35
45
55
65
75
85
TJ - Degrees Centigrade
95
105
115
20
125
t d(off) - Nanoseconds
80
TJ = 125ºC
15
18
90
t fi
90
VCE = 300V
10
16
160
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off) - - - -
RG = 5Ω , VGE = 15V
120
14
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
180
140
12
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
t fi
60
80
0
125
TJ - Degrees Centigrade
160
= 20A
0.2
0
35
C
t d(off) - Nanoseconds
VCE = 300V
1
I C = 40A
td(off) - - - -
TJ = 125ºC, VGE = 15V
160
VCE = 300V
25
40
140
1.2
E on - MilliJoules
E off - MilliJoules
----
RG = 5Ω , VGE = 15V
0.1
35
180
1.4
0.5
30
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
0.7
Eon
25
IC - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
0.2
0
10
20
RG - Ohms
0.6
1
E on - MilliJoules
1.0
I
E on - MilliJoules
E off - MilliJoules
----
VCE = 300V
0.6
4
Eon
RG = 5Ω , VGE = 15V
IXGA30N60C3 IXGP30N60C3
IXGH30N60C3
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
90
t ri
80
td(on) - - - -
70
28
60
t ri
50
VCE = 300V
t r i - Nanoseconds
26
VCE = 300V
60
I
C
24
= 40A
50
22
40
20
30
I
C
10
6
8
10
12
14
16
18
td(on) - - - -
22
RG = 5Ω , VGE = 15V
20
TJ = 125ºC
40
18
TJ = 25ºC
30
16
20
14
16
10
12
14
0
18
= 20A
20
4
t d(on) - Nanoseconds
70
t r i - Nanoseconds
TJ = 125ºC, VGE = 15V
24
10
10
20
t d(on) - Nanoseconds
30
RG - Ohms
15
20
25
30
35
40
IC - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
75
21
20
I C = 40A
55
19
t ri
td(on) - - - -
RG = 5Ω , VGE = 15V
45
18
VCE = 300V
35
17
I C = 20A
25
t d(on) - Nanoseconds
t r i - Nanoseconds
65
16
15
25
35
45
55
65
75
85
95
105
115
15
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.
IXYS REF: G_30N60C3(4D)05-02-11-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.