GenX3TM 300V IGBT IXGA42N30C3
VCES
IC110
VCE(sat)
tfi typ
IXGH42N30C3*
IXGP42N30C3
High Speed PT IGBTs for
50-150kHz switching
*Obsolete Part Number
=
=
≤
=
300V
42A
1.85V
65ns
TO-263 (IXGA)
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
300
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
300
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC110
TC = 110°C (chip capability)
42
A
ICM
TC = 25°C, 1ms
250
A
IA
TC = 25°C
42
A
EAS
TC = 25°C
250
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 10Ω
Clamped inductive load @ ≤ 300V
ICM = 84
A
PC
TC = 25°C
223
W
-55 ... +150
°C
TJM
150
°C
Tstg
-55 ... +150
°C
TJ
TL
Maximum lead temperature for soldering
300
°C
TSOLD
1.6mm (0.062 in.) from case for 10s
260
°C
Md
Mounting torque (TO-247)(TO-220)
1.13/10
Nm/lb.in.
Weight
TO-263
TO-247
TO-220
2.5
6.0
3.0
g
g
g
G
E
TO-247 (IXGH)
G
G
BVCES
IC
= 250μA, VGE = 0V
300
VGE(th)
IC
= 250μA, VCE = VGE
2.5
ICES
VCE = VCES
VGE = 0V
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 42A, VGE = 15V, Note1
TJ = 125°C
1.54
1.54
C
C (TAB)
E
C
= Collector
TAB = Collector
Features
z
z
z
z
5.0
V
25
μA
Optimized for low switching losses
Square RBSOA
High current handling capability
International standard packages
500
μA
z
±100
nA
z
1.85
V
V
High power density
Low gate drive requirement
Applications
z
z
z
z
z
z
© 2008 IXYS CORPORATION, All rights reserved
C (TAB)
Advantages
V
TJ = 125°C
E
G = Gate
E = Emitter
z
Characteristic Values
Min.
Typ.
Max.
C
TO-220 (IXGP)
z
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
C (TAB)
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS99885B(07/08)
IXGA42N30C3 IXGH42N30C3
IXGP42N30C3
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
gfs
IC
Min.
= 0.5 • IC110, VCE = 10V, Note 1
Characteristic Values
Typ.
Max.
20
33
S
2140
pF
218
pF
Cres
60
pF
Qg
76
nC
Cies
Coes
VCE = 25V, VGE = 0V, f = 1MHz
15
nC
Qgc
26
nC
td(on)
21
ns
23
ns
mJ
Qge
IC = IC110, VGE = 15V, VCE = 0.5 • VCES
tri
Inductive Load, TJ = 25°°C
Eon
IC = 0.5 • IC110, VGE = 15V
0.12
td(off)
VCE = 200V, RG = 10Ω
113
tfi
Eoff
170
ns
65
120
ns
0.15
0.28
mJ
td(on)
21
ns
tri
22
ns
0.21
mJ
127
ns
102
ns
0.20
mJ
Eon
td(off)
tfi
Inductive Load, TJ = 125°°C
IC = 0.5 • IC110, VGE = 15V
VCE = 200V, RG = 10Ω
Eoff
∅P
e
Dim.
Millimeter
Min. Max.
A
4.7
5.3
2.2
2.54
A1
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
0.56 °C/W
RthJC
RthCK
TO-247 AD Outline
TO-220
TO-247
0.50
0.25
°C/W
°C/W
TO-220 (IXGP) Outline
Note1. Pulse test, t ≤ 300μs; duty cycle, d ≤ 2%.
TO-263 (IXGA) Outline
Pins:
1 - Gate
2 - Drain
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGA42N30C3 IXGH42N30C3
IXGP42N30C3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
325
90
VGE = 15V
13V
11V
80
275
70
250
9V
60
225
IC - Amperes
IC - Amperes
VGE = 15V
13V
11V
300
50
40
30
7V
9V
200
175
150
7V
125
100
75
20
50
10
5V
25
5V
0
0
0.0
0.4
0.8
1.2
1.6
2.0
2.4
0
2
4
6
8
10
12
14
16
125
150
VCE - Volts
VCE - Volts
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
1.4
90
VGE = 15V
13V
11V
80
VGE = 15V
1.3
I
C
= 84A
I
C
= 42A
70
VCE(sat) - Normalized
IC - Amperes
9V
60
50
40
7V
30
1.2
1.1
1.0
0.9
I
20
= 21A
0.8
10
5V
0
0.7
0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
-50
-25
0
VCE - Volts
25
50
75
100
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
120
3.4
3.2
110
TJ = 25ºC
100
I
2.8
2.6
C
= 84A
42A
21A
90
IC - Amperes
3.0
VCE - Volts
C
2.4
2.2
2.0
80
TJ = 125ºC
25ºC
- 40ºC
70
60
50
40
1.8
30
1.6
20
1.4
10
1.2
0
6
7
8
9
10
11
12
VGE - Volts
© 2008 IXYS CORPORATION, All rights reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
VGE - Volts
7.0
7.5
8.0
8.5
9.0
IXGA42N30C3 IXGH42N30C3
IXGP42N30C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
60
VCE = 150V
TJ = - 40ºC
55
14
I C = 42A
50
I G = 10 mA
12
25ºC
40
VGE - Volts
g f s - Siemens
45
125ºC
35
30
25
10
8
6
20
15
4
10
2
5
0
0
0
20
40
60
80
100
120
140
0
10
20
30
40
50
60
70
80
QG - NanoCoulombs
IC - Amperes
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
10,000
90
f = 1 MHz
80
70
1,000
60
IC - Amperes
Capacitance - PicoFarads
Cies
Coes
50
40
30
100
TJ = 125ºC
20
Cres
RG = 10Ω
dV / dt < 10V / ns
10
0
10
0
5
10
15
20
25
30
35
50
40
100
150
VCE - Volts
200
250
300
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.00
0.10
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS reserves the right to change limits, test conditions, and dimensions.
0.1
1
10
IXGA42N30C3 IXGH42N30C3
IXGP42N30C3
Fig. 13. Inductive Swiching
Energy Loss vs. Collector Current
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
3.2
3.4
Eon -
Eoff
3.0
---
2.0
2.8
TJ = 125ºC , VGE = 15V
VCE = 200V
Eoff
1.6
RG = 10Ω , VGE = 15V
1.0
Eoff - MilliJoules
1.2
1.4
1.4
1.2
1.2
TJ = 125ºC
1.0
1.0
0.8
0.8
0.6
0.6
0.8
TJ = 25ºC
0.4
I C = 42A
0.6
0.2
10
15
20
25
30
35
40
45
50
55
60
65
70
0.4
0.2
0.0
0.0
0.0
25
30
35
40
RG - Ohms
50
1.3
200
2.0
1.2
190
tf
180
TJ = 125ºC, VGE = 15V
I C = 84A
1.1
0.8
0.7
0.8
0.6
I C = 42A
0.5
0.4
0.2
0.0
35
45
55
65
t f - Nanoseconds
VCE = 200V
25
75
85
95
105
115
600
450
160
400
I
150
C
= 42A
300
I
130
= 84A
250
150
0.2
125
100
100
10
15
20
25
30
35
40
45
50
55
60
65
70
75
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
170
130
110
125
100
90
120
80
115
TJ = 25ºC
t f - Nanoseconds
TJ = 125ºC
135
td(off) - - - -
160
tf
150
RG = 10Ω , VGE = 15V
130
VCE = 200V
140
130
125
120
I C = 84A
110
120
100
90
115
I
C
= 42A
80
60
50
110
20
30
40
50
60
IC - Amperes
© 2008 IXYS CORPORATION, All rights reserved
70
80
70
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
110
125
t d(off) - Nanoseconds
t f - Nanoseconds
C
0.3
120
70
350
140
200
135
130
500
110
t d(off) - Nanoseconds
VCE = 200V
550
120
td(off) - - - -
140
85
0.4
140
RG = 10Ω , VGE = 15V
80
RG - Ohms
170
tf
75
170
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
150
70
td(off) - - - -
TJ - Degrees Centigrade
160
65
t d(off) - Nanoseconds
RG = 10Ω , VGE = 15V
0.9
- MilliJoules
1.2
Eon
on
Eoff
E
----
1.4
0.6
60
VCE = 200V
1.0
1.0
55
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
2.2
1.6
Eoff - MilliJoules
45
IC - Amperes
Fig. 14. Inductive Swiching
Energy Loss vs. Junction Temperature
1.8
0.4
0.2
20
75
- MilliJoules
1.4
- MilliJoules
1.6
on
1.8
1.6
VCE = 200V
= 84A
2.0
1.8
on
C
Eon
E
I
2.2
----
1.8
2.4
E
Eoff - MilliJoules
2.6
2.0
IXGA42N30C3 IXGH42N30C3
IXGP42N30C3
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
200
100
90
TJ = 125ºC, VGE = 15V
= 84A
C
120
60
100
I
C
50
= 42A
80
40
60
30
40
20
20
10
10
15
20
25
30
35
40
45
50
55
60
65
70
25ºC < TJ < 125ºC
100
t r - Nanoseconds
70
30
RG = 10Ω , VGE = 15V
t d(on) - Nanoseconds
140
td(on) - - - -
tr
120
80
VCE = 200V
I
32
28
VCE = 200V
80
26
60
24
40
22
20
20
0
18
20
75
RG - Ohms
t d(on) - Nanoseconds
160
t r - Nanoseconds
td(on) - - - -
tr
180
140
25
30
35
40
45
50
55
60
65
70
75
80
85
IC - Amperes
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
100
32
I C = 84A
30
80
28
td(on) - - - -
tr
70
26
RG = 10Ω , VGE = 15V
VCE = 200V
60
24
50
I
C
22
= 42A
40
t d(on) - Nanoseconds
t r - Nanoseconds
90
20
30
25
35
45
55
65
75
85
95
105
115
18
125
TJ - Degrees Centigrade
IXYS reserves the right to change limits, test conditions, and dimensions.
IXYS REF: G_42N30C3(55)8-05-08-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.