High Voltage
IGBT
IXGN100N170
VCES = 1700V
= 95A
IC90
VCE(sat) 3.0V
E
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1M
VGES
VGEM
SOT-227B, miniBLOC
E153432
Maximum Ratings
1700
1700
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC90
ICM
TC = 25°C
TC = 90°C
TC = 25°C, 1ms
160
95
600
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 1
Clamped Inductive Load
ICM = 200
@0.8 • VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 1250V, TJ = 125°C
RG = 10, Non Repetitive
10
μs
PC
TC = 25°C
735
W
-55 ... +150
150
-55 ... +150
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in.
Nm/lb.in.
30
g
TJ
TJM
Tstg
VISOL
50/60Hz
IISOL 1mA
Md
Mounting Torque
Terminal Connection Torque
t = 1min
t = 1s
Weight
E
G
E
C
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
Features
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
BVCES
IC
= 3mA, VGE = 0V
VGE(th)
IC
= 8mA, VCE = VGE
ICES
VCE = VCES, VGE = 0V
5.0
IGES
VCE = 0V, VGE = 20V
200
VCE(sat)
IC
2.5
© 2016 IXYS CORPORATION, All Rights Reserved
V
50 A
3 mA
TJ = 125C
= 100A, VGE = 15V, Note 1
V
3.0
3.0
High Power Density
Low Gate Drive Requirement
Applications
Characteristic Values
Min.
Typ.
Max.
1700
Optimized for Low Conduction and
Switching Losses
Isolation Voltage 2500V~
Short Circuit Capability
International Standard Package
High Current Handling Capability
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Welding Machines
nA
V
DS100091B(10/16)
IXGN100N170
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
36
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg
Qge
Qgc
IC = 100A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tr
td(off)
tf
Resistive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1
td(on)
tr
Resistive load, TJ = 125°C
IC = 100A, VGE = 15V
td(off)
tf
VCE = 0.5 • VCES, RG = 1
RthJC
RthCS
64
S
9200
455
150
pF
pF
pF
425
65
186
nC
nC
nC
35
192
285
395
ns
ns
ns
ns
35
250
ns
ns
285
435
ns
ns
0.05
0.17 °C/W
°C/W
1. Pulse test, t 300μs, duty cycle, d 2%.
Note:
SOT-227B (IXGN) OUTLINE
J
M4-7 NUT
(4 PLACES)
A
B
D
MN
C
S
L
E
F
G
H
O
U
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGN100N170
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
200
350
VGE = 15V
13V
11V
150
250
I C - Amperes
9V
I C - Amperes
VGE = 15V
13V
11V
300
100
7V
9V
200
150
100
50
7V
50
5V
5V
0
0
0
0.5
1
1.5
2
2.5
3
3.5
4
0
2
3
5
6
7
8
Fig. 3. Output Characteristics @ TJ = 125ºC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
2.0
VGE = 15V
13V
11V
V CE(sat) - Normalized
9V
100
7V
50
9
10
VGE = 15V
1.8
150
I C =200A
1.6
1.4
I C = 100A
1.2
1.0
0.8
5V
I C = 50A
0
0.6
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
-50
-25
0
VCE - Volts
25
50
75
100
125
150
7.0
7.5
8.0
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
6.5
Fig. 6. Input Admittance
180
160
TJ = 25ºC
5.5
140
4.5
I C - Amperes
VCE - Volts
4
VCE - Volts
200
I C - Amperes
1
VCE - Volts
I C = 200A
3.5
100A
120
100
80
TJ = - 40ºC
25ºC
125ºC
60
40
2.5
50A
20
1.5
0
5
6
7
8
9
10
11
12
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
IXGN100N170
Fig. 8. Gate Charge
Fig. 7. Transconductance
110
16
100
TJ = - 40ºC
14
VCE = 850V
12
I G = 10mA
I C = 100A
90
25ºC
70
V GE - Volts
g f s - Siemens
80
125ºC
60
50
40
30
10
8
6
4
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
200
0
50
100
150
I C - Amperes
200
250
300
350
400
450
QG - NanoCoulombs
Fig. 9. Reverse-Bias Safe Operating Area
Fig. 10. Capacitance
100,000
f = 1 MHz
Capacitance - PicoFarads
200
I C - Amperes
160
120
80
TJ = 125ºC
40
Cies
10,000
Coes
1,000
RG = 1Ω
dv / dt < 10V / ns
Cres
0
100
200
400
600
800
1000
1200
1400
1600
1800
0
5
10
VCE - Volts
15
20
25
30
35
40
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - K / W
1
0.1
0.01
0.001
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
1
10
IXGN100N170
Fig. 12. Resistive Turn-on Rise Time
vs. Junction Temperature
Fig. 13. Resistive Turn-on Rise Time
vs. Collector Current
320
320
RG = 1Ω, VGE = 15V
RG = 1Ω, VGE = 15V
280
VCE = 850V
VCE = 850V
240
240
t r - Nanoseconds
t r - Nanoseconds
280
I C = 100A
200
160
TJ = 125ºC
200
160
TJ = 25ºC
120
120
I C = 50A
80
80
40
40
25
35
45
55
65
75
85
95
105
115
50
125
55
60
65
70
450
td(on)
900
55
800
50
45
I C = 100A
40
I C = 50A
150
35
t f - Nanoseconds
t r - Nanoseconds
300
200
95
100
td(off)
380
RG = 1Ω, VGE = 15V
VCE = 850V
360
700
340
I C = 50A
600
320
500
300
400
280
t d(off) - Nanoseconds
60
t d(on) - Nanoseconds
VCE = 850V
250
90
400
tf
TJ = 125ºC, VGE = 15V
350
85
1000
65
tr
80
Fig. 15. Resistive Turn-off Switching Times
vs. Junction Temperature
Fig. 14. Resistive Turn-on Switching Times
vs. Gate Resistance
400
75
I C - Amperes
TJ - Degrees Centigrade
I C = 100A
100
50
1
2
3
4
5
6
7
8
9
30
300
25
200
260
25
10
35
45
55
Fig. 16. Resistive Turn-off Switching Times
vs. Collector Current
tf
900
td(off)
420
1100
400
1000
340
TJ = 125ºC
500
320
TJ = 25ºC
300
300
200
60
65
70
75
80
115
240
125
900
tf
85
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
90
td(off)
800
95
VCE = 850V
900
t f - Nanoseconds
600
55
105
700
800
600
700
500
I C = 50A
600
400
I C = 100A
500
280
400
260
100
300
300
t d(off) - Nanoseconds
360
t d(off) - Nanoseconds
t f - Nanoseconds
380
700
50
95
TJ = 125ºC, VGE = 15V
VCE = 850V
400
85
Fig. 17. Resistive Turn-off Switching Times
vs. Gate Resistance
RG = 1Ω, VGE = 15V
800
75
TJ - Degrees Centigrade
RG - Ohms
1000
65
200
100
1
2
3
4
5
6
7
8
9
10
RG - Ohms
IXYS REF: IXG_100N170(9P)01-26-12-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.