GenX3TM A3-Class
IGBTS
VCES = 600V
IC110 = 120A
VCE(sat) ≤ 1.35V
IXGK120N60A3*
IXGX120N60A3
*Obsolete Part Number
Ultra-Low Vsat PT IGBTs for
up to 5kHz Switching
TO-264 (IXGK)
Symbol
Test Conditions
Maximum Ratings
VCES
TJ = 25°C to 150°C
600
V
VCGR
TJ = 25°C to 150°C, RGE = 1MΩ
600
V
VGES
Continuous
±20
V
VGEM
Transient
±30
V
IC25
IC110
ILRMS
ICM
TC = 25°C
TC = 110°C
Terminal Current Limit
TC = 25°C, 1ms
200
120
75
600
A
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 125°C, RG = 1.5Ω
Clamped Inductive Load
ICM = 200
@ < 600
A
V
PC
TC = 25°C
780
W
TJ
TJM
-55 ... +150
150
°C
°C
Tstg
-55 ... +150
°C
300
260
°C
°C
1.13/10
20..120/4.5..27
Nm/lb.in.
N/lb.
10
6
g
g
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062 in.) from Case for 10
Md
FC
Mounting Torque ( IXGK )
Mounting Force ( IXGX )
Weight
TO-264
PLUS247
G
C
(TAB)
E
E
PLUS 247TM (IXGX)
G
C
(TAB)
E
G = Gate
C = Collector
E
= Emitter
TAB = Collector
Features
z
z
z
z
Optimized for Low Conduction Losses
Square RBSOA
High Current Handling Capability
International Standard Packages
Advantages
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
VGE(th)
IC
ICES
VCE = VCES, VGE = 0V
Characteristic Values
Min.
Typ.
Max.
= 500μA, VCE = VGE
3.0
5.0
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 100A, VGE = 15V, Note 1
z
±400 nA
1.20
1.35
V
Applications
z
z
z
z
z
z
z
z
z
© 2009 IXYS CORPORATION, All Rights Reserved
High Power Density
Low Gate Drive Requirement
V
50 μA
1.25 mA
TJ = 125°C
IGES
z
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
DS99964A(02/09)
IXGK120N60A3
IXGX120N60A3
Symbol
Test Conditions
(TJ = 25°C, unless otherwise specified)
gfs
IC
Characteristic Values
Min.
Typ.
Max.
= 60A, VCE = 10 V, Note 1
65
Cies
Coes
TO-264 (IXGK) Outline
108
S
14.8
nF
800
pF
140
pF
VCE = 25 V, VGE = 0 V, f = 1 MHz
Cres
450
nC
67
nC
Qgc
130
nC
td(on)
39
ns
Qg(on)
Qge
tri
IC = IC110, VGE = 15 V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
82
ns
IC = 100A, VGE = 15V
2.7
mJ
295
ns
260
ns
6.6
mJ
td(on)
40
ns
tri
83
ns
3.5
mJ
420
ns
Eon
td(off)
tfi
VCE = 480V, RG = 1.5Ω
Eoff
Eon
td(off)
tfi
Inductive load, TJ = 125°C
IC = 100A, VGE = 15V
VCE = 480V, RG = 1.5Ω
Eoff
410
ns
10.4
mJ
0.16 °C/W
RthJC
RthCK
0.15
°C/W
PLUS 247TM (IXGX) Outline
Note: 1. Pulse Test, t ≤ 300μs; Duty Cycle, d ≤ 2%.
Terminals: 1 - Gate
2 - Drain (Collector)
3 - Source (Emitter)
Dim.
A
A1
A2
b
b1
b2
C
D
E
e
L
L1
Q
Millimeter
Min. Max.
4.83
5.21
2.29
2.54
1.91
2.16
1.14
1.40
1.91
2.13
2.92
3.12
0.61
0.80
20.80 21.34
15.75 16.13
5.45 BSC
19.81 20.32
3.81
4.32
5.59
6.20
Inches
Min. Max.
.190 .205
.090 .100
.075 .085
.045 .055
.075 .084
.115 .123
.024 .031
.819 .840
.620 .635
.215 BSC
.780 .800
.150 .170
.220 0.244
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,850,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXGK120N60A3
IXGX120N60A3
Fig. 1. Output Characteristics
@ 25ºC
Fig. 2. Extended Output Characteristics
@ 25ºC
200
350
VGE = 15V
13V
11V
180
160
9V
250
140
7V
120
IC - Amperes
IC - Amperes
VGE = 15V
11V
9V
300
100
80
60
200
7V
150
100
40
50
20
5V
5V
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
0
1
2
3
5
6
7
8
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics
@ 125ºC
200
1.4
VGE = 15V
13V
11V
9V
160
VGE = 15V
1.3
VCE(sat) - Normalized
180
140
IC - Amperes
4
VCE - Volts
VCE - Volts
120
100
7V
80
60
1.2
I
C
= 200A
I
C
= 100A
I
C
= 50A
1.1
1.0
0.9
40
0.8
5V
20
0
0.7
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-50
1.8
-25
VCE - Volts
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage
vs. Gate-to-Emitter Voltage
Fig. 6. Input Admittance
200
3.0
2.8
180
TJ = 25ºC
2.6
160
2.4
I
2.2
2.0
C
TJ = - 40ºC
25ºC
125ºC
140
= 200A
100A
50A
IC - Amperes
VCE - Volts
0
1.8
1.6
120
100
80
60
1.4
40
1.2
20
1.0
0.8
0
5
6
7
8
9
10
11
VGE - Volts
© 2009 IXYS CORPORATION, All Rights Reserved
12
13
14
15
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
7.0
7.5
IXGK120N60A3
IXGX120N60A3
Fig. 8. Gate Charge
Fig. 7. Transconductance
200
16
TJ = - 40ºC
180
VCE = 300V
14
I C = 120A
I G = 10mA
12
140
25ºC
120
VGE - Volts
g f s - Siemens
160
125ºC
100
80
10
8
6
60
4
40
2
20
0
0
0
20
40
60
80
100
120
140
160
180
200
0
220
50
100
150
Fig. 9. Capacitance
250
300
350
400
450
500
Fig. 10. Reverse-Bias Safe Operating Area
220
100,000
200
f = 1 MHz
180
Cies
160
10,000
IC - Amperes
Capacitance - PicoFarads
200
QG - NanoCoulombs
IC - Amperes
Coes
1,000
Cres
5
10
15
20
25
120
100
80
60
TJ = 125ºC
40
RG = 1.5Ω
dV / dt < 10V / ns
20
0
100
100
0
140
30
35
40
150
200
250
300
VCE - Volts
350
400
450
500
550
600
650
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1.000
0.100
0.010
0.001
0.00001
0.0001
0.001
0.01
0.1
1
10
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_120N60A3(86)02-11-09-B
IXGK120N60A3
IXGX120N60A3
Fig. 12. Inductive Switching
Energy Loss vs. Gate Resistance
Fig. 13. Inductive Switching
Energy Loss vs. Collector Current
12
5.0
11
4.5
C
4.0
---
7
2.5
2.0
I C = 50A
5
6
7
8
9
3.0
TJ = 125ºC
6
2.5
5
1.0
1.0
2
0.5
0.5
1
50
10
55
60
65
70
RG - Ohms
12
Eoff
RG = 1.5Ω , VGE = 15V
6
2.5
5
2.0
4
1.5
1.0
I C = 50A
35
45
55
65
75
85
tf
td(off) - - - -
VCE = 480V
425
800
400
700
I
375
I
C
95
105
115
600
= 50A
500
325
400
300
1
2
3
4
475
450
425
400
400
td(off) - - - -
375
350
VCE = 480V
325
300
300
275
TJ = 25ºC
250
225
60
65
70
75
80
8
9
10
85
IC - Amperes
© 2009 IXYS CORPORATION, All Rights Reserved
90
95
275
250
225
100
475
425
tf
td(off) - - - -
400
VCE = 480V
450
RG = 1.5Ω , VGE = 15V
375
I
C
425
400
= 100A, 50A
350
375
325
350
300
325
275
300
250
275
225
25
35
45
55
65
75
85
95
TJ - Degrees Centigrade
105
115
250
125
t d(off) - Nanoseconds
425
t f - Nanoseconds
TJ = 125ºC
55
7
450
t d(off) - Nanoseconds
t f - Nanoseconds
450
50
6
Fig. 17. Inductive Turn-off
Switching Times vs. Junction Temperature
500
325
5
RG - Ohms
475
RG = 1.5Ω , VGE = 15V
= 100A
300
0.0
125
500
tf
C
350
Fig. 16. Inductive Turn-off
Switching Times vs. Collector Current
350
900
TJ = 125ºC, VGE = 15V
TJ - Degrees Centigrade
375
0.0
100
0.5
1
25
t f - Nanoseconds
3.0
Eon - MilliJoules
3.5
I C = 100A
7
2
95
t d(off) - Nanoseconds
4.0
3
90
1000
450
4.5
8
85
475
5.0
----
VCE = 480V
9
Eoff - MilliJoules
Eon
80
Fig. 15. Inductive Turn-off
Switching Times vs. Gate Resistance
5.5
10
75
IC - Amperes
Fig. 14. Inductive Switching
Energy Loss vs. Junction Temperature
11
2.0
TJ = 25ºC
1.5
4
4
3.5
7
3
1.5
3
8
4
5
3
5.0
----
- MilliJoules
VCE = 480V
- MilliJoules
3.0
Eon
on
3.5
TJ = 125ºC , VGE = 15V
2
4.5
VCE = 480V
9
on
Eon -
Eoff
8
1
RG = 1.5Ω , VGE = 15V
E
9
6
Eoff
10
4.0
= 100A
5.5
11
Eoff - MilliJoules
I
E
Eoff - MilliJoules
10
12
IXGK120N60A3
IXGX120N60A3
Fig. 19. Inductive Turn-on
Switching Times vs. Collector Current
Fig. 18. Inductive Turn-on
Switching Times vs. Gate Resistance
160
td(on) - - - -
80
TJ = 125ºC, VGE = 15V
I
70
100
60
80
50
I
60
C
= 50A
40
40
30
20
2
3
4
5
6
7
8
9
tr
100
RG = 1.5Ω , VGE = 15V
41
VCE = 480V
40
90
42
td(on) - - - -
80
39
TJ = 25ºC, 125ºC
70
38
60
37
50
36
40
35
30
34
20
33
10
32
0
20
1
43
110
50
10
55
60
65
70
75
80
85
90
95
t d(on) - Nanoseconds
120
= 100A
C
t d(on) - Nanoseconds
VCE = 480V
t r - Nanoseconds
tr
140
t r - Nanoseconds
120
90
31
100
IC - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on
Switching Times vs. Junction Temperature
110
48
tr
100
90
46
44
VCE = 480V
80
42
I C = 100A
70
40
60
38
50
36
40
34
30
I
C
32
= 50A
20
25
35
45
55
65
75
85
95
105
t d(on) - Nanoseconds
t r - Nanoseconds
td(on) - - - -
RG = 1.5Ω , VGE = 15V
115
30
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: G_120N60A3(86)02-11-09-B
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.