IXXH100N60B3
XPTTM 600V IGBT
GenX3TM
VCES
IC110
VCE(sat)
tfi(typ)
Extreme Light Punch Through
IGBT for 10-30 kHz Switching
=
=
≤
=
600V
100A
1.80V
150ns
TO-247 AD
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1MΩ
Maximum Ratings
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC = 25°C (Chip Capability)
Terminal Current Limit
TC = 110°C
TC = 25°C, 1ms
220
160
100
480
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
50
600
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 2Ω
Clamped Inductive Load
ICM = 200
@ ≤ VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 10Ω, Non Repetitive
10
μs
PC
TC = 25°C
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
Weight
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
600
VGE(th)
IC
= 250μA, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = ±20V
VCE(sat)
IC
z
z
z
z
z
z
25 μA
2 mA
= 70A, VGE = 15V, Note 1
TJ = 150°C
© 2013 IXYS CORPORATION, All Rights Reserved
1.50
1.77
±100
nA
1.80
V
V
Optimized for 10-30kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
High Current Handling Capability
International Standard Package
High Power Density
Low Gate Drive Requirement
Applications
z
V
C
= Collector
Tab = Collector
Advantages
z
z
5.5
TJ = 150°C
IGES
z
z
V
Tab
E
Features
z
830
C
G = Gate
E = Emitter
z
TJ
TJM
Tstg
TL
TSOLD
G
z
z
z
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100284B(02/13)
IXXH100N60B3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
gfs
Cies
Coes
Cres
Qg(on)
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Characteristic Values
Min.
Typ.
Max.
IC = 60A, VCE = 10V, Note 1
22
VCE = 25V, VGE = 0V, f = 1MHz
IC = 70A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
IC = 70A, VGE = 15V
VCE = 360V, RG = 2Ω
Note 2
Inductive load, TJ = 150°C
IC = 70A, VGE = 15V
VCE = 360V, RG = 2Ω
Note 2
RthJC
RthCS
Notes:
TO-247 (IXXH) Outline
40
S
4860
285
83
pF
pF
pF
143
nC
37
nC
60
nC
30
70
1.9
120
150
2.0
ns
ns
mJ
ns
ns
mJ
2.8
32
60
2.3
150
200
2.8
ns
ns
mJ
ns
ns
mJ
0.21
0.18 °C/W
°C/W
1
2
∅P
3
e
Terminals: 1 - Gate
3 - Emitted
Dim.
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXXH100N60B3
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
140
350
VGE = 15V
13V
12V
120
VGE = 15V
11V
100
13V
250
80
10V
60
9V
IC - Amperes
IC - Amperes
14V
300
40
12V
200
11V
150
10V
100
8V
9V
20
50
7V
6V
0
0
0.4
0.8
1.2
1.6
2
2.4
8V
7V
0
2.8
0
2
4
6
8
Fig. 3. Output Characteristics @ T J = 150ºC
VGE = 15V
13V
12V
120
IC - Amperes
80
60
9V
40
8V
7V
5V
1
1.5
2
2.5
3
1.2
18
20
150
175
= 140A
C
= 70A
1.0
I
C
= 35A
0.6
-50
3.5
-25
0
25
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
180
TJ = 25ºC
4.5
160
140
4.0
120
3.5
I
3.0
C
IC - Amperes
VCE - Volts
C
I
VCE - Volts
5.0
16
1.4
0.8
20
0
I
1.6
10V
0.5
14
VGE = 15V
11V
100
0
12
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
1.8
VCE(sat) - Normalized
140
10
VCE - Volts
VCE - Volts
= 140A
2.5
80
60
70A
2.0
TJ = 150ºC
25ºC
- 40ºC
100
40
1.5
20
35A
1.0
0
8
9
10
11
12
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXXH100N60B3
Fig. 8. Gate Charge
Fig. 7. Transconductance
80
16
TJ = - 40ºC
70
25ºC
60
g f s - Siemens
VCE = 300V
14
150ºC
VGE - Volts
50
I C = 70A
I G = 10mA
12
40
30
10
8
6
20
4
10
2
0
0
0
20
40
60
80
100
120
140
160
180
0
200
20
40
60
80
100
120
140
QG - NanoCoulombs
IC - Amperes
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
220
10,000
180
160
1,000
IC - Amperes
Capacitance - PicoFarads
200
Cies
Coes
100
140
120
100
80
60
Cres
40
f = 1 MHz
20
5
10
15
20
25
30
35
RG = 2Ω
dv / dt < 10V / ns
0
100
10
0
TJ = 150ºC
40
150
200
250
300
350
400
450
500
550
600
650
VCE - Volts
VCE - Volts
Fig. 12. Maximum Transient Thermal Impedance
Fig. 11. Forward-Bias Safe Operating Area
1000
1
VCE(sat) Limit
25µs
External Lead Limit
100µs
10
1ms
1
TJ = 175ºC
0.1
0.01
10ms
TC = 25ºC
Single Pulse
DC
0.1
1
Z(th)JC - ºC / W
ID - Amperes
100
10
100
1000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Second
0.1
1
IXXH100N60B3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
4.5
5
7
Eoff
4.0
Eon -
Eoff
--6
TJ = 150ºC , VGE = 15V
4
2.5
3
I
C
2.0
3
3
4
5
6
7
1
2
8
9
10
11
12
13
14
2
TJ = 25ºC
1
0
1
2
3
2
= 50A
1.5
4
VCE = 360V
TJ = 150ºC
Eoff - MilliJoules
Eoff - MilliJoules
I C = 100A
20
15
30
40
50
RG - Ohms
5
3
2
2
I C = 50A
1
1
0
75
100
I
260
220
180
I
3
4
5
6
7
120
TJ = 25ºC
100
80
50
60
70
9
10
11
12
13
14
15
80
IC - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
tfi
90
40
100
td(off) - - - -
240
220
RG = 2Ω , VGE = 15V
200
VCE = 360V
I C = 100A
220
180
200
160
180
140
I C = 50A
160
120
140
100
120
80
100
25
50
75
100
TJ - Degrees Centigrade
125
60
150
t d(off) - Nanoseconds
200
150
50
8
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
260
280
160
40
180
= 100A
100
240
200
30
C
140
280
320
240
TJ = 150ºC
20
260
220
2
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off) - - - -
VCE = 360V
250
= 50A
100
t f i - Nanoseconds
tfi
RG = 2Ω , VGE = 15V
300
C
RG - Ohms
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
350
300
140
0
150
125
340
td(off) - - - -
TJ - Degrees Centigrade
400
0
100
VCE = 360V
t f i - Nanoseconds
3
50
90
t d(off) - Nanoseconds
I C = 100A
25
80
TJ = 150ºC, VGE = 15V
300
4
VCE = 360V
Eon - MilliJoules
Eoff - MilliJoules
tfi
----
RG = 2Ω , VGE = 15V
4
70
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
340
5
Eon
60
IC - Amperes
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
5
----
Eon - MilliJoules
5
Eon - MilliJoules
3.5
Eon
RG = 2Ω , VGE = 15V
4
VCE = 360V
3.0
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
IXXH100N60B3
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
180
tri
VCE = 360V
140
76
120
C
= 100A
60
100
52
80
44
I
C
= 50A
60
36
40
28
20
3
4
5
6
7
8
9
10
11
12
13
14
100
34
80
32
TJ = 150ºC, 25ºC
60
30
40
28
20
26
0
20
2
36
20
15
30
40
50
60
70
80
90
t d(on) - Nanoseconds
I
td(on) - - - -
RG = 2Ω , VGE = 15V
VCE = 360V
68
120
38
tri
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
TJ = 150ºC, VGE = 15V
140
t r i - Nanoseconds
160
84
24
100
IC - Amperes
RG - Ohms
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
180
37
tri
160
td(on) - - - -
36
RG = 2Ω , VGE = 15V
35
VCE = 360V
120
34
100
I
C
33
= 100A
80
32
60
31
I C = 50A
40
t d(on) - Nanoseconds
t r i - Nanoseconds
140
30
20
29
0
25
50
75
100
125
28
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXX_100N60B3(7D)12-01-11B
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.