Preliminary Technical Information
600V XPTTM IGBT
GenX3TM
IXXH150N60C3
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch through
IGBT for 20-60kHz Switching
TO-247 AD
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC = 25°C (Chip Capability)
Terminal Current Limit
TC = 110°C
TC = 25°C, 1ms
300
160
150
700
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
75
750
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 2
Clamped Inductive Load
ICM = 300
VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 82, Non Repetitive
10
μs
PC
TC = 25°C
1360
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in
6
g
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
G
Weight
C
Tab
E
G = Gate
E = Emitter
C
= Collector
Tab = Collector
Features
TJ
TJM
Tstg
600V
150A
2.5V
75ns
International Standard Package
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
High Current Handling Capability
Advantages
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
600
VGE(th)
IC
= 250A, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
5.5
V
25 A
1 mA
IGES
VCE = 0V, VGE = 20V
200
VCE(sat)
IC
2.1
2.6
© 2016 IXYS CORPORATION, All Rights Reserved
V
TJ = 150C
= 100A, VGE = 15V, Note 1
TJ = 150C
2.5
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
nA
V
V
DS100558A(9/16)
IXXH150N60C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
27
Cies
Coes
Cres
Qg(on)
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
IC = 60A, VCE = 10V, Note 1
IC = 150A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
IC = 75A, VGE = 15V
VCE = 400V, RG = 2
Note 2
Inductive load, TJ = 150°C
IC = 75A, VGE = 15V
VCE = 400V, RG = 2
Note 2
RthJC
RthCS
Notes:
45
6460
403
138
VCE = 25V, VGE = 0V, f = 1MHz
TO-247 (IXXH) Outline
S
D
A
A2
Q
pF
pF
pF
200
52
80
nC
nC
nC
34
70
3.4
120
75
1.8
ns
ns
mJ
ns
ns
mJ
32
68
3.9
150
80
2.2
ns
ns
mJ
ns
ns
mJ
0.21
0.11 °C/W
°C/W
B
E
R
S
0P
A
0K M D B M
D2
D1
D
0P1
R1
1
2
3
4
IXYS OPTION
L1
C
L
A1
c
b
b2
b4
e
J MCAM
E1
1 - Gate
2,4 - Collector
3 - Emitter
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXXH150N60C3
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
300
VGE = 15V
14V
13V
12V
250
VGE = 15V
13V
300
12V
250
11V
150
I C - Amperes
I C - Amperes
200
10V
100
50
0
0.5
1
1.5
2
2.5
3
11V
150
10V
9V
100
8V
50
7V
0
200
3.5
9V
8V
7V
0
4
4.5
0
2
4
6
300
2.2
VGE = 15V
14V
13V
VCE(sat) - Normalized
I C - Amperes
200
150
10V
100
9V
50
0
2
2.5
3
3.5
4
4.5
150
175
1.6
1.4
I C = 150A
1.2
1.0
I C = 75A
0.4
5
-50
5.5
-25
0
25
VCE - Volts
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
200
6.0
TJ = 25ºC
5.5
180
160
5.0
140
I C - Amperes
4.5
VCE - Volts
18
I C = 300A
0.6
6V
1.5
16
0.8
8V
1
14
VGE = 15V
2.0
1.8
0.5
12
12V
11V
0
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150ºC
250
8
VCE - Volts
VCE - Volts
I C = 300A
4.0
3.5
3.0
150A
2.5
120
TJ = 150ºC
25ºC
- 40ºC
100
80
60
2.0
40
1.5
20
75A
1.0
0
8
9
10
11
12
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXXH150N60C3
Fig. 7. Transconductance
Fig. 8. Gate Charge
100
16
TJ = - 40ºC
90
VCE = 300V
14
I C = 150A
80
150ºC
V GE - Volts
g f s - Siemens
60
I G = 10mA
12
25ºC
70
50
40
10
8
6
30
4
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
0
200
20
40
60
I C - Amperes
100
120
140
160
180
200
220
600
650
QG - NanoCoulombs
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
350
10,000
300
Cies
250
I C - Amperes
Capacitance - PicoFarads
80
1,000
Coes
200
150
100
TJ = 150ºC
50
f = 1 MHz
Cres
100
RG = 2Ω
dv / dt < 10V / ns
0
0
5
10
15
20
25
30
35
40
1100
150
200
250
300
350
400
450
500
550
VCE - Volts
VCE - Volts
Fig. 12. Maximum Trasient thermal Impedance
Fig. 11. Forward-Bias Safe Operating Area
1000
aaa
0.2
VCE(sat) Limit
0.1
I D - Amperes
100
100µs
10
Z(th)JC - K / W
25µs
0.01
1ms
1
TJ = 175ºC
TC = 25ºC
Single Pulse
10ms
0.1
1
10
100
1000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.001
0.00001
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
1
10
IXXH150N60C3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
6
4.0
12
Eoff
5
Eon
6
2
4
I C = 50A
1
0
2
4
6
8
10
12
E off - MilliJoules
3
Eon
7
VCE = 400V
2.5
6
5
TJ = 150ºC
2.0
4
1.5
2
1.0
0
0.5
2
50
14
55
60
65
70
4.5
Eon
8
140
7
130
6
120
90
1
100
95
tfi
5
I C = 100A
4
2.0
3
1.5
500
td(off)
450
400
VCE = 400V
110
350
I C = 100A
100
300
90
250
2
80
1
70
0
150
60
I C = 50A
200
t d(off) - Nanoseconds
3.0
E on - MilliJoules
E off - MilliJoules
85
TJ = 150ºC, VGE = 15V
t f i - Nanoseconds
VCE = 400V
2.5
80
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
RG = 2Ω , VGE = 15V
3.5
75
I C - Amperes
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
3
TJ = 25ºC
RG - Ohms
4.0
E on - MilliJoules
8
8
RG = 2Ω , VGE = 15V
3.0
I C = 100A
E on - MilliJoules
Eoff - MilliJoules
VCE = 400V
4
Eoff
3.5
10
TJ = 150ºC , VGE = 15V
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
I C = 50A
1.0
0.5
25
50
75
100
125
150
100
2
4
6
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
tfi
120
td(off)
tfi
170
80
130
120
TJ = 25ºC
t f i - Nanoseconds
t f i - Nanoseconds
140
170
I C = 50A
90
150
80
130
I C = 100A
70
60
110
110
50
50
55
60
65
70
75
80
85
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
90
95
100
100
60
25
50
75
100
TJ - Degrees Centigrade
125
90
150
t d(off) - Nanoseconds
TJ = 150ºC
t d(off) - Nanoseconds
150
190
VCE = 400V
160
100
70
14
td(off)
RG = 2Ω , VGE = 15V
100
VCE = 400V
90
12
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
110
180
RG = 2Ω , VGE = 15V
110
10
RG - Ohms
TJ - Degrees Centigrade
130
8
IXXH150N60C3
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
tri
160
tri
90
110
VCE = 400V
70
100
60
I C = 50A
80
50
60
40
40
30
20
20
0
10
2
4
6
8
10
12
38
VCE = 400V
90
36
TJ = 25ºC
TJ = 150ºC
70
34
50
32
30
30
10
14
50
RG - Ohms
55
60
65
70
75
80
85
90
95
t d(on) - Nanoseconds
120
40
td(on)
RG = 2Ω , VGE = 15V
80
I C = 100A
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
TJ = 150ºC, VGE = 15V
140
130
100
t r i - Nanoseconds
180
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
28
100
I C - Amperes
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
140
42
tri
120
td(on)
RG = 2Ω , VGE = 15V
40
100
38
I C = 100A
80
36
60
34
40
32
I C = 50A
20
30
0
25
50
t d(on) - Nanoseconds
t r i - Nanoseconds
VCE = 400V
75
100
125
28
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXX_150N60C3(8D) 8-20-13
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.