XPTTM 650V IGBTs
GenX4TM
IXXK160N65B4
IXXX160N65B4
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 10-30kHz Switching
650V
160A
1.80V
90ns
TO-264
(IXXK)
G
C
E
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
Maximum Ratings
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC= 25°C (Chip Capability)
Leads Current Limit
TC = 110°C
TC = 25°C, 1ms
310
160
160
860
A
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1
Clamped Inductive Load
ICM = 320
@V CE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 10, Non Repetitive
10
µs
PC
TC = 25°C
940
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
°C
TJ
TJM
Tstg
TL
Maximum Lead Temperature for Soldering
1.6 mm (0.062 in.) from Case for 10s
Md
Mounting Torque (TO-264)
FC
Mounting Force
Weight
TO-264
PLUS247
(PLUS247)
1.13/10
Nm/lb.in.
N/lb.
10
6
g
g
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
650
VGE(th)
IC
= 250A, VCE = VGE
4.0
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
6.5
V
1.54
1.85
1.80
C
E
Tab
E
= Emitter
Tab = Collector
Features
Optimized for 10-30kHz Switching
Square RBSOA
Short Circuit Capability
International Standard Packages
High Current Handling Capability
Advantages
25 A
1.5 mA
200
G
G = Gate
C = Collector
= 160A, VGE = 15V, Note 1
TJ = 150C
© 2021 Littelfuse, Inc.
G
High Power Density
Low Gate Drive Requirement
Applications
V
TJ = 150C
IGES
PLUS247
(IXXX)
20..120 /4.5..27
Tab
nA
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
V
V
DS100517B(1/21)
IXXK160N65B4
IXXX160N65B4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
40
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 160A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 80A, VGE = 15V
VCE = 400V, RG = 1
Note 2
Inductive load, TJ = 150°C
IC = 80A, VGE = 15V
VCE = 400V, RG = 1
Note 2
RthJC
RthCS
Notes:
70
S
8220
500
295
pF
pF
pF
425
82
193
nC
nC
nC
52
64
3.30
220
90
1.88
ns
ns
mJ
ns
ns
mJ
3.00
43
50
4.30
220
160
2.36
ns
ns
mJ
ns
ns
mJ
0.15
0.16 °C/W
°C/W
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher V CE(clamp), TJ or RG.
Littelfuse reserves the right to change limits, test conditions, and dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXXK160N65B4
IXXX160N65B4
Fig. 1. Output Characteristics @ TJ = 25oC
Fig. 2. Extended Output Characteristics @ TJ = 25oC
320
350
VGE = 15V
13V
12V
11V
280
10V
10V
240
250
200
IC - Amperes
IC - Amperes
VGE = 15V
12V
11V
300
9V
160
120
9V
150
100
8V
80
200
8V
50
40
7V
0
0
0.5
1
1.5
2
2.5
7V
0
3
0
1
2
3
4
6
7
8
9
10
150
175
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150oC
2.2
320
VGE = 15V
13V
12V
280
V GE = 15V
2.0
11V
200
1.8
VCE(sat) - Normalized
240
I C - Amperes
5
VCE - Volts
VCE - Volts
10V
160
9V
120
I C = 320A
1.6
1.4
1.2
I C = 160A
1.0
80
8V
0.8
40
7V
6V
0
0
0.5
1
1.5
2
2.5
3
3.5
I C = 80A
0.6
-50
4
-25
0
VCE - Volts
25
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
200
4.5
180
TJ = 25oC
4.0
160
3.5
TJ = - 40oC
25oC
3.0
I C - Amperes
VCE - Volts
140
I C = 320A
2.5
2.0
160A
TJ = 150oC
120
100
80
60
1.5
40
80A
1.0
20
0.5
0
7
8
9
10
11
VGE - Volts
© 2021 Littelfuse, Inc.
12
13
14
15
4
5
6
7
VGE - Volts
8
9
10
IXXK160N65B4
IXXX160N65B4
Fig. 7. Transconductance
Fig. 8. Gate Charge
120
16
TJ = - 40oC
VCE = 325V
I C = 160A
I G = 10mA
14
100
80
60
VGE - Volts
g f s - Siemens
12
25oC
150oC
40
10
8
6
4
20
2
0
0
0
20
40
60
80
100
120
140
160
180
0
200
50
100
200
250
300
350
400
450
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
10,000
350
Cies
300
250
1,000
C oes
I C - Amperes
Capacitance - PicoFarads
150
QG - NanoCoulombs
I C - Amperes
200
150
100
50
Cres
f = 1 MHz
TJ = 150oC
RG = 1Ω
dv / dt < 10V / ns
0
100
0
5
10
15
20
25
100
200
3011. Maximum
35
40
Fig.
Transient Thermal
Impedance
VCE - Volts
1
300
400
500
600
700
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
aaaa
0.3
Z(th)JC - K / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
Littelfuse reserves the right to change limits, test conditions, and dimensions.
0.1
1
10
IXXK160N65B4
IXXX160N65B4
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
5.0
3.4
9
Eoff
Eon
TJ = 150ºC , VGE = 15V
VCE = 400V
4.5
4.0
8
7
Eoff
Eon
RG = 1Ω , VGE = 15V
VCE = 400V
3.0
7
6
5
2.5
4
2.0
3
I C = 40A
1.5
1
0.5
3
4
5
6
7
8
4
1.8
3
TJ = 25oC
1.4
2
1.0
1
0.6
0
2
2.2
2
1.0
1
5
TJ = 150oC
9
0
40
10
50
60
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
Eon
RG = 1Ω ,V GE = 15V
VCE = 400V
1.6
2.5
1.4
2.0
1.2
t f i - Nanoseconds
3.0
600
200
500
I C = 40A
180
400
I C = 80A
160
300
140
200
t d(off) - Nanoseconds
3.5
I C = 80A
700
220
4.0
2.0
td(off)
TJ = 150oC, VGE = 15V
VCE = 400V
240
4.5
Eon - MilliJoules
1.5
I C = 40A
1.0
1.0
0.8
120
0.5
25
50
75
100
125
100
1
150
2
3
4
5
6
7
8
9
T J - Degrees Centigrade
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
300
td(off)
RG = 1Ω , VGE = 15V
VCE = 400V
280
220
160
220
120
TJ =
25oC
300
180
280
I C = 40A
160
260
140
240
120
220
I C = 80A
100
200
320
200
80
80
180
40
50
60
70
I C - Amperes
© 2021 Littelfuse, Inc.
80
90
40
100
180
60
160
25
50
75
100
TJ - Degrees Centigrade
125
150
t d(off) - Nanoseconds
240
td(off)
RG = 1Ω , VGE = 15V
VCE = 400V
200
200
TJ = 150oC
340
tfi
240
t d(off) - Nanoseconds
260
10
240
280
tfi
t f i - Nanoseconds
Eoff - MilliJoules
100
800
tf i
5.0
2.2
t f i - Nanoseconds
90
260
5.5
1.8
80
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
2.8
2.4
70
I C - Amperes
RG - Ohms
2.6
Eon - MilliJoules
3.0
Eoff - MilliJoules
6
I C = 80A
Eon - MilliJoules
Eoff - MilliJoules
2.6
3.5
IXXK160N65B4
IXXX160N65B4
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
140
100
I C = 80A
80
70
I C = 40A
60
40
50
20
40
0
30
2
3
4
5
6
7
8
9
td(on)
65
70
60
55
TJ = 25oC
60
50
50
45
TJ = 150oC
40
40
30
35
20
30
10
10
40
RG - Ohms
50
60
70
80
90
t d(on) - Nanoseconds
80
1
tri
RG = 1Ω , VGE = 15V
VCE = 400V
80
100
60
70
90
90
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
TJ = 150oC, V GE = 15V
V CE = 400V
t r i - Nanoseconds
tri
120
100
25
100
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
90
57
tri
80
70
54
51
60
48
I C = 80A
50
45
40
42
30
39
I C = 40A
20
36
10
t d(on) - Nanoseconds
t r i - Nanoseconds
t d(on)
RG = 1Ω , VGE = 15V
VCE = 400V
33
0
30
25
50
75
100
125
150
TJ - Degrees Centigrade
Littelfuse reserves the right to change limits, test conditions, and dimensions.
IXYS REF: IXX_160N65B4(E9) 1-7-21
IXXK160N65B4
IXXX160N65B4
TO-264 Outline
D
B
E
A
Q S
0R
Q1
D
0R1
1
2
3
L1
C
L
A1
b1
J M C A M
b
b2
c
e
0P1
BACK SIDE
A
4
0P
= Gate
2,4 = Collector
3 = Emitter
1
PLUS247 Outline
1 - Gate
2,4 - Collector
3 - Emitter
© 2021 Littelfuse, Inc.
KM D BM
IXXK160N65B4
IXXX160N65B4
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
Littelfuse reserves the right to change limits, test conditions, and dimensions.