XPTTM 600V IGBTs
GenX3TM
IXXK200N60C3
IXXX200N60C3
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 20-60kHz Switching
600V
200A
2.1V
80ns
TO-264 (IXXK)
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
Maximum Ratings
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC = 25°C (Chip Capability)
Terminal Current Limit
TC = 110°C
TC = 25°C, 1ms
340
160
200
900
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
100
1
A
J
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1
Clamped Inductive Load
ICM = 400
@VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 10, Non Repetitive
10
μs
PC
TC = 25°C
1630
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in
20..120 /4.5..27
N/lb
10
6
g
g
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque (TO-264)
FC
Mounting Force
Weight
TO-264
PLUS247
(PLUS247)
G
C
E
PLUS247 (IXXX)
G
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
600
VGE(th)
IC
= 250A, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 100A, VGE = 15V, Note 1
TJ = 150C
© 2013 IXYS CORPORATION, All Rights Reserved
V
50 A
3 mA
TJ = 150C
200
2.10
E
Tab
E
= Emitter
Tab = Collector
Features
International Standard Packages
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
High Current Handling Capability
Advantages
nA
1.60
1.93
C
High Power Density
Low Gate Drive Requirement
Applications
V
6.0
G
G = Gate
C = Collector
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Tab
V
V
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100373B(11/13)
IXXK200N60C3
IXXX200N60C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
27
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 200A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 360V, RG = 1
Note 2
Inductive load, TJ = 150°C
IC = 100A, VGE = 15V
VCE = 360V, RG = 1
Note 2
RthJC
RthCS
TO-264 Outline
45
S
9900
570
185
pF
pF
pF
315
134
98
nC
nC
nC
47
100
3.0
125
80
1.7
ns
ns
mJ
ns
ns
mJ
2.6
47
96
4.0
150
90
2.1
ns
ns
mJ
ns
ns
mJ
0.15
0.092 °C/W
°C/W
Terminals:
1 = Gate
2,4 = Collector
3 = Emitter
PLUS247TM Outline
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Terminals:
1 - Gate
2 - Collector
3 - Emitter
Dim.
A
A1
A2
b
b1
b2
C
D
E
e
L
L1
Q
R
Millimeter
Min. Max.
4.83
5.21
2.29
2.54
1.91
2.16
1.14
1.40
1.91
2.13
2.92
3.12
0.61
0.80
20.80 21.34
15.75 16.13
5.45 BSC
19.81 20.32
3.81
4.32
5.59
6.20
4.32
4.83
Inches
Min. Max.
.190 .205
.090 .100
.075 .085
.045 .055
.075 .084
.115 .123
.024 .031
.819 .840
.620 .635
.215 BSC
.780 .800
.150 .170
.220 0.244
.170 .190
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXXK200N60C3
IXXX200N60C3
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
350
200
VGE = 15V
VGE = 15V
13V
300
12V
150
12V
250
11V
IC - Amperes
IC - Amperes
13V
100
10V
200
11V
150
10V
100
50
9V
9V
50
8V
7V
0
0
0.4
0.8
1.2
1.6
2
8V
7V
0
2.4
0
2
4
6
Fig. 3. Output Characteristics @ T J = 150ºC
VGE = 15V
13V
12V
IC - Amperes
VCE(sat) - Normalized
1.4
11V
10V
100
9V
50
8V
0.8
1.2
1.6
2
2.4
2.8
I
150
175
= 200A
I
1.0
C
= 150A
I
C
= 100A
0.7
-50
-25
0
25
50
75
100
125
TJ - Degrees Centigrade
Fig. 6. Input Admittance
200
TJ = 25ºC
5.5
180
160
4.5
140
IC - Amperes
5.0
= 200A
3.5
150A
3.0
C
1.1
3.2
6.0
C
18
1.2
0.8
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
I
16
1.3
VCE - Volts
4.0
14
0.9
7V
6V
0
0.4
12
VGE = 15V
1.5
150
0
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
1.6
200
VCE - Volts
8
VCE - Volts
VCE - Volts
100A
120
100
2.5
60
2.0
40
1.5
20
1.0
TJ = 150ºC
25ºC
80
- 40ºC
0
9
10
11
12
13
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXXK200N60C3
IXXX200N60C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
110
16
100
80
12
70
10
VGE - Volts
g f s - Siemens
90
VCE = 300V
14
TJ = - 40ºC, 25ºC, 150ºC
60
50
40
30
I C = 200A
I G = 10mA
8
6
4
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
0
200
50
100
150
200
250
300
QG - NanoCoulombs
IC - Amperes
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
100,000
400
Cies
10,000
300
IC - Amperes
Capacitance - PicoFarads
f = 1 MHz
200
Coes
1,000
100
TJ = 150ºC
RG = 1Ω
dv / dt < 10V / ns
Cres
100
0
5
10
15
20
25
30
35
0
100
40
200
300
400
500
600
VCE - Volts
VCE - Volts
Fig. 12. Maximum Transient Thermal Impedance
Fig. 11. Forward-Bias Safe Operating Area
0.1
1000
VCE(sat) Limit
25µs
100µs
10
1ms
Z (th)JC - ºC / W
ID - Amperes
100
10ms
1
TJ = 175ºC
0.001
DC
TC = 25ºC
Single Pulse
0.1
1
0.01
10
100
1000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.0001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
0.1
1
10
IXXK200N60C3
IXXX200N60C3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
3.5
2.5
7
Eon -
Eoff
3.0
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
Eoff
--6
TJ = 150ºC , VGE = 15V
2.0
1.5
3
I
1.0
C
= 50A
Eoff - MilliJoules
Eoff - MilliJoules
4
I C = 100A
2
3
4
5
6
7
8
9
1.5
3
TJ = 25ºC
1.0
1
50
10
55
60
65
70
RG - Ohms
3.0
Eon
1.5
3
1.0
2
0.5
I C = 50A
0.0
75
100
125
t f i - Nanoseconds
Eoff - MilliJoules
4
Eon - MilliJoules
2.0
VCE = 360V
350
90
300
I
C
= 50A
70
250
I
50
30
0
150
10
tfi
VCE = 360V
190
140
180
120
100
2
3
4
5
140
40
130
20
120
0
70
75
80
85
IC - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
90
95
110
100
t f i - Nanoseconds
150
TJ = 25ºC
65
6
7
8
9
10
180
tfi
td(off) - - - -
170
RG = 1Ω , VGE = 15V
VCE = 360V
100
160
80
150
I C = 100A
60
140
40
130
I C = 50A
20
120
0
25
50
75
100
TJ - Degrees Centigrade
125
110
150
t d(off) - Nanoseconds
160
TJ = 150ºC
60
200
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
170
100
55
= 100A
150
1
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off) - - - -
RG = 1Ω , VGE = 15V
50
C
RG - Ohms
160
60
400
TJ = 150ºC, VGE = 15V
110
1
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
80
0
100
td(off) - - - -
TJ - Degrees Centigrade
120
95
t d(off) - Nanoseconds
I C = 100A
140
90
450
tfi
130
5
VCE = 360V
50
85
150
----
RG = 1Ω , VGE = 15V
25
80
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
6
Eoff
75
IC - Amperes
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
2.5
2
0.0
1
1
TJ = 150ºC
0.5
2
0.5
4
VCE = 360V
Eon - MilliJoules
2.0
Eon - MilliJoules
5
----
RG = 1Ω , VGE = 15V
VCE = 360V
2.5
Eon
5
IXXK200N60C3
IXXX200N60C3
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
180
tri
td(on) - - - -
tri
105
TJ = 150ºC, VGE = 15V
85
100
75
80
65
I
C
= 50A
60
55
40
45
t r i - Nanoseconds
= 100A
80
46
TJ = 25ºC
TJ = 150ºC
60
44
40
20
35
1
2
3
4
5
6
7
8
9
42
20
10
50
RG - Ohms
t d(on) - Nanoseconds
C
t d(on) - Nanoseconds
I
120
48
VCE = 360V
95
50
td(on) - - - -
RG = 1Ω , VGE = 15V
100
VCE = 360V
140
t r i - Nanoseconds
120
115
160
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
55
60
65
70
75
80
85
90
95
40
100
IC - Amperes
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
160
54
tri
140
52
RG = 1Ω , VGE = 15V
VCE = 360V
120
50
I
100
C
= 100A
48
80
46
60
44
40
42
I C = 50A
20
0
25
50
75
100
125
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
40
38
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXX_200N60C3(91)8-18-11
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.