Preliminary Technical Information
XPTTM 650V IGBT
GenX4TM
IXXK200N65B4
IXXX200N65B4
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 10-30kHz Switching
650V
200A
1.7V
80ns
TO-264 (IXXK)
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC = 25°C (Chip Capability)
Lead Current Limit
TC = 110°C
TC = 25°C, 1ms
480
160
200
1100
A
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1
Clamped Inductive Load
ICM = 400
@VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 10, Non Repetitive
10
μs
PC
TC = 25°C
1630
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
G
C
E
Maximum Ratings
TJ
TJM
Tstg
PLUS247 (IXXX)
G
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque (TO-264)
FC
Mounting Force
Weight
TO-264
PLUS247
(PLUS247)
1.13/10
Nm/lb.in
20..120 /4.5..27
N/lb
10
6
g
g
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
650
VGE(th)
IC
= 4mA, VCE = VGE
4.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
V
= 160A, VGE = 15V, Note 1
TJ = 150°C
© 2014 IXYS CORPORATION, All Rights Reserved
1.4
1.6
Tab
E
= Emitter
Tab = Collector
Optimized for 10-30kHz Switching
Square RBSOA
Short Circuit Capability
International Standard Packages
High Current Handling Capability
Advantages
25 μA
2 mA
TJ = 150°C
E
High Power Density
Low Gate Drive Requirement
Applications
V
6.5
C
Features
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
G
G = Gate
C = Collector
TL
TSOLD
Tab
±200
nA
1.7
V
V
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100518C(6/14)
IXXK200N65B4
IXXX200N65B4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
IC = 60A, VCE = 10V, Note 1
54
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
IC = 200A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 400V, RG = 1
Note 2
Inductive load, TJ = 150°C
IC = 100A, VGE = 15V
VCE = 400V, RG = 1
Note 2
RthJC
RthCS
TO-264 Outline
90
S
11.25
670
390
nF
pF
pF
553
110
253
nC
nC
nC
62
76
4.40
245
80
2.20
ns
ns
mJ
ns
ns
mJ
3.50
54
65
5.55
236
110
2.54
ns
ns
mJ
ns
ns
mJ
0.15
0.092 °C/W
°C/W
Terminals:
1 = Gate
2,4 = Collector
3 = Emitter
PLUS247TM Outline
Notes:
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Terminals:
1 - Gate
2,4 - Collector
3 - Emitter
PRELIMANARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXXK200N65B4
IXXX200N65B4
Fig. 1. Output Characteristics @ TJ = 25ºC
300
VGE = 15V
13V
12V
11V
250
VGE = 15V
11V
10V
10V
300
9V
250
200
9V
I C - Amperes
I C - Amperes
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
350
150
8V
100
200
150
8V
100
50
50
7V
0
7V
0
0
0.5
1
1.5
2
2.5
0
1
2
3
4
VCE - Volts
1.6
VGE = 15V
13V
12V
11V
1.4
8
9
10
150
175
I C = 300A
10V
200
I C - Amperes
7
VGE = 15V
VCE(sat) - Normalized
250
6
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150ºC
300
5
VCE - Volts
9V
150
100
8V
1.2
1.0
I C = 200A
0.8
50
I C = 100A
7V
0.6
0
0
0.5
1
1.5
2
2.5
-50
3
-25
0
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
4.0
50
75
100
125
Fig. 6. Input Admittance
200
TJ = 25ºC
180
3.5
160
TJ = - 40ºC
25ºC
140
2.5
I C - Amperes
3.0
VCE - Volts
25
TJ - Degrees Centigrade
I C = 300A
2.0
TJ = 150ºC
120
100
80
60
200A
40
1.5
20
100A
1.0
7
8
9
10
0
11
12
VGE - Volts
© 2014 IXYS CORPORATION, All Rights Reserved
13
14
15
5.0
5.5
6.0
6.5
7.0
7.5
VGE - Volts
8.0
8.5
9.0
9.5
IXXK200N65B4
IXXX200N65B4
Fig. 7. Transconductance
Fig. 8. Gate Charge
160
16
TJ = - 40ºC
140
VCE = 325V
14
I C = 200A
I G = 10mA
12
120
100
80
V GE - Volts
g f s - Siemens
25ºC
150ºC
60
10
8
6
40
4
20
2
0
0
0
20
40
60
80
100
120
140
160
180
0
200
50
100
150
I C - Amperes
250
300
350
400
450
500
550
QG - NanoCoulombs
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
450
100,000
f = 1 MHz
400
350
300
10,000
Cies
1,000
I C - Amperes
Capacitance - PicoFarads
200
250
200
150
Coes
100
Cres
50
100
1 0
TJ = 150ºC
RG = 1Ω
dv / dt < 10V / ns
0
5
10
15
20
VCE - Volts
25
30
35
40
100
200
300
Fig. 11. Maximum Transient Thermal Impedance
400
500
600
700
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
aaaa
0.2
Z(th)JC - ºC / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXXK200N65B4
IXXX200N65B4
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
7
Eoff
6
Eon -
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
3.0
13
Eoff
--11
TJ = 150ºC , VGE = 15V
3
5
I C = 50A
2
Eoff - MilliJoules
E off - MilliJoules
7
I C = 100A
2
3
4
5
6
7
8
9
TJ = 25ºC
1.5
50
10
55
60
65
70
3.2
90
95
1
100
2
t f i - Nanoseconds
1.2
800
700
180
600
160
500
I C = 50A
I C = 100A
140
400
120
300
1
100
200
0
150
80
t d(off) - Nanoseconds
3
Eon - MilliJoules
1.6
td(off) - - - -
VCE = 400V
200
5
4
tfi
TJ = 150ºC, VGE = 15V
VCE = 400V
I C = 100A
900
220
6
2.4
E off - MilliJoules
85
240
----
RG = 1Ω , VGE = 15V
2.0
80
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
7
2.8
75
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eon
3
2
RG - Ohms
Eoff
4
0.5
1
1
TJ = 150ºC
2.0
1.0
3
1
5
VCE = 400V
E on - MilliJoules
4
E on - MilliJoules
9
6
----
RG = 1Ω , VGE = 15V
2.5
VCE = 400V
5
Eon
I C = 50A
0.8
0.4
25
50
75
100
125
100
1
2
3
4
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
200
TJ = 150ºC
280
270
120
255
250
TJ = 25ºC
80
245
60
240
40
235
20
65
70
75
80
9
10
85
I C - Amperes
© 2014 IXYS CORPORATION, All Rights Reserved
90
95
230
100
320
td(off) - - - 300
RG = 1Ω , VGE = 15V
VCE = 400V
t f i - Nanoseconds
260
60
8
140
280
I C = 50A
120
260
I C = 100A
100
240
80
220
60
25
50
75
100
TJ - Degrees Centigrade
125
200
150
t d(off) - Nanoseconds
140
55
160
VCE = 400V
265
50
tfi
275
160
100
7
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
180
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off) - - - -
RG = 1Ω , VGE = 15V
180
6
RG - Ohms
TJ - Degrees Centigrade
220
5
IXXK200N65B4
IXXX200N65B4
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
200
tri
180
td(on) - - - -
TJ = 150ºC, VGE = 15V
160
130
100
120
90
70
58
60
56
t r i - Nanoseconds
t r i - Nanoseconds
70
I C = 50A
60
VCE = 400V
TJ = 25ºC
TJ = 150ºC
50
54
40
52
30
50
60
60
40
50
20
48
20
40
10
46
30
0
0
1
2
3
4
5
6
7
8
9
50
10
55
60
65
70
75
80
85
90
95
t d(on) - Nanoseconds
80
80
62
100
90
100
td(on) - - - -
RG = 1Ω , VGE = 15V
80
t d(on) - Nanoseconds
I C = 100A
120
tri
64
110
VCE = 400V
140
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
44
100
I C - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
130
70
tri
110
td(on) - - - -
RG = 1Ω , VGE = 15V
65
90
60
I C = 100A
70
55
50
50
I C = 50A
30
t d(on) - Nanoseconds
t r i - Nanoseconds
VCE = 400V
45
10
25
50
75
100
125
40
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXX_200N65B4(F9)3-04-14-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.