Preliminary Technical Information
XPTTM 600V IGBT
GenX3TM w/Diode
IXXN200N60B3H1
VCES
IC110
VCE(sat)
tfi(typ)
=
=
≤
=
600V
98A
1.7V
110ns
Extreme Light Punch Through
IGBT for 10-30kHz Switching
SOT-227B, miniBLOC
E153432
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 150°C
TJ = 25°C to 150°C, RGE = 1MΩ
Maximum Ratings
600
600
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
IF110
ICM
TC
TC
TC
TC
200
98
30
1000
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
100
1
A
J
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1Ω
Clamped Inductive Load
ICM = 400
@VCE ≤ VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 10Ω, Non Repetitive
10
μs
PC
TC = 25°C
= 25°C (Chip Capability)
= 110°C
= 110°C
= 25°C, 1ms
Md
50/60Hz
IISOL ≤ 1mA
G
Ec
C
G = Gate, C = Collector, E = Emitter
c either emitter terminal can be used as
Main or Kelvin Emitter
Features
z
z
TJ
TJM
Tstg
VISOL
Ec
t = 1min
t = 1s
Mounting Torque
Terminal Connection Torque
Weight
780
W
-55 ... +150
150
-55 ... +150
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in.
Nm/lb.in.
30
g
z
z
z
z
z
z
z
z
z
Silicon Chip on Direct-Copper Bond
(DCB) Substrate
miniBLOC, with Aluminium Nitride
Isolation
Optimized for Low Conduction and
Switching Losses
Isolated Mounting Surface
Anti-Parallel Ultra Fast Diode
2500V~ Electrical Isolation
Optimized for 10-30kHz Switching
Avalanche Rated
Short Circuit Capability
Very High Current Capability
Square RBSOA
Advantages
z
z
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
600
VGE(th)
IC
= 250μA, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 100A, VGE = 15V, Note 1
TJ = 150°C
© 2013 IXYS CORPORATION, All Rights Reserved
V
50 μA
3 mA
Note 2, TJ = 150°C
IGES
Applications
V
6.0
1.40
1.58
High Power Density
Low Gate Drive Requirement
±200
nA
1.70
V
V
z
z
z
z
z
z
z
z
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100471A(02/13)
IXXN200N60B3H1
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
27
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 200A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 360V, RG = 1Ω
Note 3
Inductive load, TJ = 150°C
IC = 100A, VGE = 15V
VCE = 360V, RG = 1Ω
Note 3
RthJC
RthCS
SOT-227B miniBLOC (IXXN)
45
S
9970
570
183
pF
pF
pF
315
98
130
nC
nC
nC
48
100
2.85
160
110
2.90
ns
ns
mJ
ns
ns
mJ
4.40
46
94
4.40
180
215
3.45
ns
ns
mJ
ns
ns
mJ
0.05
0.16 °C/W
°C/W
Reverse Diode (FRED)
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
VF
IF = 100A, VGE = 0V, Note 1
IRM
IF = 100A, VGE = 0V,
-diF/dt = 1500A/μs, VR = 300V
trr
Characteristic Values
Min.
Typ.
Max.
2.5
TJ = 150°C
2.3
V
V
TJ = 150°C
95
A
100
ns
0.70 °C/W
RthJC
Notes:
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Part must be heatsunk for high-temp Ices measurement.
3. Switching times & energy losses may increase for higher VCE(Clamp), TJ or RG.
PRELIMANARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXXN200N60B3H1
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
350
200
VGE = 15V
13V
12V
300
150
11V
100
10V
11V
200
10V
150
100
9V
50
12V
250
IC - Amperes
IC - Amperes
VGE = 15V
13V
9V
50
8V
8V
7V
6V
0
0
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
0
2
4
6
Fig. 3. Output Characteristics @ T J = 150ºC
200
VGE = 15V
13V
12V
10
12
14
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
1.5
VGE = 15V
1.4
11V
VCE(sat) - Normalized
150
IC - Amperes
8
VCE - Volts
VCE - Volts
10V
100
9V
I
1.3
C
= 200A
1.2
1.1
I
1.0
C
= 150A
I
C
0.9
50
8V
= 100A
0.8
7V
5V
0
0
0.4
0.8
1.2
1.6
2
2.4
0.7
-50
2.8
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
6.0
4.5
140
IC - Amperes
VCE - Volts
125
150
175
180
160
4.0
3.5
C
100
Fig. 6. Input Admittance
5.0
I
75
200
TJ = 25ºC
5.5
3.0
50
TJ - Degrees Centigrade
= 200A
120
100
TJ = 150ºC
25ºC
80
- 40ºC
60
2.5
150A
2.0
40
100A
1.5
20
1.0
0
8
9
10
11
12
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXXN200N60B3H1
Fig. 7. Transconductance
Fig. 8. Gate Charge
110
16
100
TJ = - 40ºC, 25ºC, 150ºC
80
12
70
10
VGE - Volts
g f s - Siemens
VCE = 300V
14
90
60
50
40
I C = 200A
I G = 10mA
8
6
30
4
20
2
10
0
0
0
20
40
60
80
100
120
140
160
180
0
200
40
80
120
160
200
240
280
320
QG - NanoCoulombs
IC - Amperes
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
450
100,000
f = 1 MHz
400
Capacitance - PicoFarads
350
Cies
300
IC - Amperes
10,000
Coes
1,000
250
200
150
100
50
Cres
100
0
5
10
15
20
25
30
35
0
100
40
TJ = 150ºC
RG = 1Ω
dv / dt < 10V / ns
150
200
250
300
VCE - Volts
400
450
500
550
600
650
Fig. 12. Maximum Transient Thermal Impedance
Fig. 11. Forward-Bias Safe Operating Area
1000
350
VCE - Volts
1
VCE(sat) Limit
25µs
100
ID - Amperes
100µs
10
1ms
Z(th)JC - ºC / W
0.1
External Lead Limit
10ms
1
TJ = 175ºC
0.001
100ms
TC = 25ºC
Single Pulse
DC
0.1
1
0.01
10
100
1000
0.0001
0.00001
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.0001
0.001
0.01
Pulse Width - Seconds
0.1
1
10
IXXN200N60B3H1
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
5.0
Eoff
---
6
TJ = 150ºC , VGE = 15V
VCE = 360V
3.0
3
2.5
2
I
C
3
4
5
6
7
3.0
3
TJ = 25ºC
2.5
1
8
9
1.5
50
10
55
60
65
70
RG - Ohms
4.0
2
2.0
I C = 50A
1.5
75
100
125
t f i - Nanoseconds
Eoff - MilliJoules
2.5
td(off) - - - 500
VCE = 360V
I
1
200
0
150
160
I
C
VCE = 360V
450
260
400
240
350
100
2
3
4
5
220
220
200
180
TJ = 25ºC
10
IC - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
95
VCE = 360V
260
240
I C = 50A
I C = 100A
150
50
90
td(off) - - - -
180
120
100
85
tfi
RG = 1Ω , VGE = 15V
200
100
60
280
200
140
80
9
250
100
75
8
220
160
70
7
300
140
65
6
160
140
25
50
75
100
TJ - Degrees Centigrade
125
120
150
t d(off) - Nanoseconds
260
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off) - - - -
280
TJ = 150ºC
60
200
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
t f i - Nanoseconds
tfi
RG = 1Ω , VGE = 15V
55
= 100A
RG - Ohms
380
50
400
300
1
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
180
= 50A
240
TJ - Degrees Centigrade
300
C
280
t d(off) - Nanoseconds
3
Eon - MilliJoules
I C = 100A
340
0
100
95
TJ = 150ºC, VGE = 15V
320
4
3.0
50
90
600
tfi
VCE = 360V
25
85
360
----
RG = 1Ω , VGE = 15V
3.5
80
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
5
Eon
75
IC - Amperes
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
2
1
0
2
TJ = 150ºC
2.0
= 50A
1.5
1
4
VCE = 360V
Eon - MilliJoules
4
Eon - MilliJoules
3.5
5
----
5
I C = 100A
2.0
Eon
RG = 1Ω , VGE = 15V
3.5
Eoff - MilliJoules
Eon -
Eoff
4.0
Eoff - MilliJoules
4.0
7
4.5
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
IXXN200N60B3H1
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
180
tri
td(on) - - - -
105
VCE = 360V
I
C
85
= 100A
100
75
I
80
C
= 50A
65
60
55
40
45
20
35
1
2
3
4
5
6
7
8
9
52
tri
VCE = 360V
50
48
= 100A
90
46
70
44
50
42
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
RG = 1Ω , VGE = 15V
C
I C = 50A
30
40
10
25
50
75
44
TJ = 150ºC
40
42
20
40
55
60
65
70
75
80
IC - Amperes
150
I
60
50
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
110
46
TJ = 25ºC
0
10
RG - Ohms
130
80
100
125
38
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
85
90
95
38
100
t d(on) - Nanoseconds
120
48
VCE = 360V
t d(on) - Nanoseconds
95
50
td(on) - - - -
RG = 1Ω , VGE = 15V
100
t r i - Nanoseconds
tri
TJ = 150ºC, VGE = 15V
140
t r i - Nanoseconds
120
115
160
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
IXXN200N60B3H1
Fig. 22. Typ. Forward characteristics
Fig. 23. Typ. Reverse Recovery Charge Qrr vs. -diF/dt
200
20
180
18
TVJ = 150ºC
160
IF
16
TVJ = 25ºC
140
200A
14
TVJ = 150ºC
120
Qrr
100
[A]
VR = 300V
12
[µC]
80
100A
10
60
8
40
6
20
4
1000
0
0
0.5
1
1.5
2
2.5
3
3.5
4
50A
1100
1200
1300
VF - [V]
1400
1500
1600
1700
Fig. 24. Typ. Peak Reverse Current IRM vs. -diF/dt
1900
Fig. 25. Typ. Recovery Time trr vs. -diF/dt
140
350
TVJ = 150ºC
200A
VR = 300V
TVJ = 150ºC
300
120
100A
VR = 300V
250
100
trr
IRM
200
50A
[ns]
[A] 80
200A
150
100A
60
40
1000
1800
-diF/ dt [A/µs]
100
1100
1200
1300
1400
1500
1600
1700
1800
1900
diF/dt [A/µs]
50
1000
50A
1100
1200
1300
1400
1500
1600
1700
1800
1900
-diF/dt [A/µs]
Fig. 26. Typ. Recovery Energy Erec vs. -diF/dt
5
TVJ = 150ºC
VR = 300V
200A
4
Erec 3
100A
[mJ]
2
50A
1
0
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
-diF/dt [A/µs]
© 2013 IXYS CORPORATION, All Rights Reserved
IXYS REF: IXX_200N60B3(91) 6-13-12
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.