IXYA20N120A4HV
IXYP20N120A4
1200V XPTTM
GenX4TM IGBT
Ultra-Low Vsat PT IGBT
for up to 5kHz Switching
VCES =
IC110 =
VCE(sat)
tfi(typ) =
1200V
20A
1.9V
160ns
TO-263HV
(IXYA..HV)
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
G
Maximum Ratings
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
80
20
135
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
ICM = 40
0.8 • VCES
A
PC
TC = 25°C
375
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
10..65 / 22..14.6
Nm/lb.in
N/lb
2.5
3.0
g
g
VCE
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
FC
Mounting Torque (TO-220)
Mounting Force (TO-263HV)
Weight
TO-263HV
TO-220
E
C (Tab)
TO-220
(IXYP)
G
C
G = Gate
E = Emitter
E
C (Tab)
D
= Collector
Tab = Collector
Features
Optimized for Low Conduction Losses
Positive Thermal Coefficient of
Vce(sat)
International Standard Packages
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 250A, VCE = VGE
4.0
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 20A, VGE = 15V, Note 1
TJ = 150C
© 2020 IXYS CORPORATION, All Rights Reserved
V
25 A
5 mA
TJ = 150C
IGES
Applications
V
6.5
100
1.65
1.94
1.90
High Power Density
Low Gate Drive Requirement
nA
V
V
Power Inverters
UPS
Motor Drives
SMPS
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
DS100925B(2/20)
IXYA20N120A4HV
IXYP20N120A4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
gfs
Characteristic Values
Min.
Typ.
Max.
IC = 20A, VCE = 10V, Note 1
7
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 20A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCS
Notes:
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 0.8 • VCES, RG = 10
Note 2
Inductive load, TJ = 125°C
IC = 20A, VGE = 15V
VCE = 0.8 • VCES, RG = 10
Note 2
TO-220
12
S
880
57
30
pF
pF
pF
46
7
21
nC
nC
nC
12
54
3.60
275
160
2.75
ns
ns
mJ
ns
ns
mJ
14
36
4.50
360
286
4.85
ns
ns
mJ
ns
ns
mJ
0.50
0.40 °C/W
°C/W
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYA20N120A4HV
IXYP20N120A4
Fig. 2. Extended Output Characteristics @ TJ = 25oC
Fig. 1. Output Characteristics @ TJ = 25oC
40
VGE = 15V
13V
12V
35
11V
100
10V
80
V GE = 15V
14V
30
I C - Amperes
I C - Amperes
13V
25
9V
20
15
8V
12V
60
11V
40
10V
10
20
5
0
8V
7V
0
0
0.5
1
1.5
2
2.5
3
0
2
4
6
8
10
12
14
16
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
40
2.0
V GE = 15V
14V
13V
12V
30
11V
1.8
10V
1.6
18
20
150
175
VGE = 15V
I C = 40A
VCE(sat) - Normalized
35
I C - Amperes
9V
7V
25
20
9V
15
8V
10
1.4
1.2
I C = 20A
1.0
7V
0.8
5
6V
0
0
0.5
1
1.5
2
2.5
3
3.5
I C = 10A
0.6
4
-50
-25
0
VCE - Volts
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
4.0
25
Fig. 6. Input Admittance
60
o
o
TJ = 25 C
TJ = - 40 C
50
3.5
o
25 C
o
TJ = 150 C
40
I C - Amperes
VCE - Volts
3.0
I C = 40A
2.5
2.0
30
20
20A
1.5
10
10A
1.0
0
7
8
9
10
11
12
VGE - Volts
© 2020 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
9
VGE - Volts
10
11
12
13
IXYA20N120A4HV
IXYP20N120A4
Fig. 7. Transconductance
Fig. 8. Gate Charge
18
16
o
TJ = - 40 C
16
14
I C = 20A
I G = 10mA
12
12
o
25 C
V GE - Volts
g f s - Siemens
VCE = 600V
14
10
o
150 C
8
6
10
8
6
4
4
2
2
0
0
0
10
20
30
40
50
0
5
10
15
I C - Amperes
20
25
30
35
40
45
50
1100
1200
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
1,000
45
Cies
40
Capacitance - PicoFarads
35
I C - Amperes
30
100
Coes
25
20
15
10
Cres
f = 1 MHz
5
10
o
TJ = 150 C
RG = 10Ω
dv / dt < 10V / ns
0
0
5
10
15
20
25
35
40
200
300
400
500
Fig.3011. Maximum
Transient Thermal
Impedance
VCE - Volts
600
700
800
900
1000
VCE - Volts
1
Fig. 11. Maximum Transient Thermal Impedance
aaa
Z (th)JC - K / W
0.6
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYA20N120A4HV
IXYP20N120A4
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
16
12
32
Eoff
14
Eon
Eoff
28
o
10
TJ = 125 C , VGE = 15V
VCE = 960V
8
16
6
12
4
8
30
40
50
60
70
o
TJ = 125 C
6
4
4
o
TJ = 25 C
15
20
25
14
340
12
320
35
40
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
tfi
800
td(off)
o
700
TJ = 125 C, VGE = 15V
VCE = 960V
I C = 20A
8
8
6
6
4
4
300
600
I C = 20A
280
260
500
400
I C = 40A
t d(off) - Nanoseconds
10
t f i - Nanoseconds
VCE = 960V
14
E on - MilliJoules
Eoff - MilliJoules
Eon
RG = 10Ω,VGE = 15V
10
30
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
2
0
10
80
RG - Ohms
12
6
0
0
20
8
4
0
10
8
2
I C = 20A
2
Eoff - MilliJoules
20
10
VCE = 960V
Eon - MilliJoules
I C = 40A
10
Eon
RG = 10Ω,VGE = 15V
24
Eon - MilliJoules
Eoff - MilliJoules
12
12
I C = 40A
2
240
2
0
25
50
75
220
0
125
100
300
200
10
20
30
12
t d(off)
RG = 10Ω,VGE = 15V
tfi
4
4
o
2
TJ = 25 C
0
0
15
20
25
30
I C - Amperes
© 2020 IXYS CORPORATION, All Rights Reserved
35
40
VCE = 960V
280
t f i - Nanoseconds
t f i - Nanoseconds
6
450
400
I C = 20A
240
350
200
300
I C = 40A
160
250
120
200
80
25
50
75
TJ - Degrees Centigrade
100
150
125
t d(off) - Nanoseconds
o
TJ = 125 C
t d(off) - Nanoseconds
8
td(off)
RG = 10Ω, VGE = 15V
VCE = 960V
10
80
500
320
10
8
2
70
360
12
6
60
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
50
RG - Ohms
TJ - Degrees Centigrade
10
40
IXYA20N120A4HV
IXYP20N120A4
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
280
100
tri
60
120
40
I C = 20A
30
40
20
0
30
40
50
60
70
tri
40
12
20
9
6
15
20
25
30
35
40
VCE = 960V
32
28
24
I C = 40A
80
20
60
16
40
15
o
TJ = 125 C
12
I C = 20A
20
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
RG = 10Ω, VGE = 15V
100
60
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
120
18
10
80
RG - Ohms
140
80
0
10
20
21
o
TJ = 25 C
t d(on) - Nanoseconds
50
80
td(on)
RG = 10Ω, VGE = 15V
VCE = 960V
160
10
24
I C = 40A
VCE = 960V
200
70
t d(on) - Nanoseconds
t r i - Nanoseconds
t d(on)
o
TJ = 125 C, VGE = 15V
120
t r i - Nanoseconds
tri
240
80
8
0
25
50
75
100
4
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_20N120A4 (Y14-Ry92) 8-20-18
IXYA20N120A4HV
IXYP20N120A4
TO-263HV Outline
1 = Gate
2 = Emitter
3 = Collector
TO-220 Outline
1 = Gate
2 = Collector
3 = Emitter
© 2020 IXYS CORPORATION, All Rights Reserved
IXYA20N120A4HV
IXYP20N120A4
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.