IXYA20N120B4HV
IXYP20N120B4
1200V XPTTM
GenX4TM IGBT
Extreme Light Punch Throungh
IGBT for up to 5 - 30kHz Switching
VCES =
IC110 =
VCE(sat)
tfi(typ) =
1200V
20A
2.1V
90ns
TO-263HV
(IXYA..HV)
G
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
E
Maximum Ratings
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
76
20
130
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
ICM = 40
VCE 0.8 • VCES
A
PC
TC = 25°C
375
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
FC
Mounting Torque (TO-220)
Mounting Force (TO-263HV)
Weight
TO-263HV
TO-220
1.13/10
10..65 / 22..14.6
Nm/lb.in
N/lb
2.5
3.0
g
g
C (Tab)
TO-220
(IXYP)
G
C
G = Gate
E = Emitter
E
C (Tab)
D
= Collector
Tab = Collector
Features
Optimized for 5-30kHz Switching
Positive Thermal Coefficient of
Vce(sat)
International Standard Packages
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 250A, VCE = VGE
4.0
ICES
VCE = VCES, VGE = 0V
V
6.5
25 A
5 mA
TJ = 150C
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 20A, VGE = 15V, Note 1
TJ = 150C
© 2020 IXYS CORPORATION, All Rights Reserved
V
100
1.83
2.18
2.10
nA
V
V
High Power Density
Low Gate Drive Requirement
Applications
Power Inverters
UPS
Motor Drives
SMPS
Battery Chargers
Welding Machines
Lamp Ballasts
DS100926B(2/20)
IXYA20N120B4HV
IXYP20N120B4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
7.5
IC = 20A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 20A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCS
Notes:
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 0.8 • VCES, RG = 10
Note 2
Inductive load, TJ = 125°C
IC = 20A, VGE = 15V
VCE = 0.8 • VCES, RG = 10
Note 2
TO-220
12.5
S
890
58
33
pF
pF
pF
44
8
20
nC
nC
nC
15
47
3.9
200
90
1.6
ns
ns
mJ
ns
ns
mJ
13
35
4.6
270
170
2.7
ns
ns
mJ
ns
ns
mJ
0.50
0.40 °C/W
°C/W
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYA20N120B4HV
IXYP20N120B4
Fig. 1. Output Characteristics @ TJ = 25oC
Fig. 2. Extended Output Characteristics @ TJ = 25oC
40
VGE = 15V
13V
12V
35
11V
14V
10V
30
80
25
I C - Amperes
I C - Amperes
VGE = 15V
100
9V
20
15
8V
13V
12V
60
11V
40
10V
10
20
5
0
8V
7V
0
0
0.5
1
1.5
2
2.5
3
3.5
0
2
4
6
8
10
12
14
16
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
40
2.0
VGE = 15V
13V
12V
35
18
20
150
175
VGE = 15V
1.8
11V
I C = 40A
VCE(sat) - Normalized
30
10V
I C - Amperes
9V
7V
25
20
9V
15
8V
10
7V
1.6
1.4
I C = 20A
1.2
1.0
0.8
5
I C = 10A
6V
0
0.6
0
0.5
1
1.5
2
2.5
3
3.5
4
-50
-25
0
VCE - Volts
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
4.0
25
Fig. 6. Input Admittance
60
o
o
TJ = 25 C
TJ = - 40 C
3.5
50
3.0
40
o
25 C
o
I C - Amperes
VCE - Volts
TJ = 150 C
I C = 40A
2.5
20A
2.0
30
20
10
1.5
10A
0
1.0
7
8
9
10
11
12
VGE - Volts
© 2020 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
9
VGE - Volts
10
11
12
13
IXYA20N120B4HV
IXYP20N120B4
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
18
o
16
TJ = - 40 C
14
I C = 20A
I G = 10mA
12
12
o
25 C
V GE - Volts
g f s - Siemens
VCE = 600V
14
10
8
o
150 C
6
10
8
6
4
4
2
2
0
0
0
10
20
30
40
50
0
5
10
15
I C - Amperes
20
25
30
35
40
45
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
1,000
45
Cies
40
Capacitance - PicoFarads
35
I C - Amperes
30
100
Coes
25
20
15
10
Cres
f = 1 MHz
5
10
0
5
10
15
20
VCE - Volts
25
30
35
0
200
40
o
TJ = 150 C
RG = 10Ω
dv / dt < 10V / ns
300
400
500
Fig. 11. Maximum Transient Thermal Impedance
600
700
800
900
1000
1100
1200
VCE - Volts
1
Fig. 11. Maximum Transient Thermal Impedance
aaa
Z (th)JC - K / W
0.6
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYA20N120B4HV
IXYP20N120B4
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
12
Eoff
10
7
26
Eon
4
10
2
Eoff - MilliJoules
14
10
4
8
o
TJ = 125 C
3
6
2
4
Eon - MilliJoules
I C = 40A
6
E on - MilliJoules
18
12
VCE = 960V
5
8
Eon
RG = 10Ω,VGE = 15V
VCE = 960V
E off - MilliJoules
Eoff
6
22
o
TJ = 125 C , VGE = 15V
14
o
6
TJ = 25 C
1
2
I C = 20A
0
2
10
20
30
40
50
60
70
0
80
0
10
15
20
25
RG - Ohms
Eoff
7
Eon
16
220
14
200
12
180
tfi
4
8
3
6
td(off)
500
o
VCE = 960V
450
160
400
I C = 20A
140
350
I C = 40A
120
300
4
100
250
2
80
200
0
125
60
2
t d(off) - Nanoseconds
10
E on - MilliJoules
5
t f i - Nanoseconds
VCE = 960V
550
TJ = 125 C, VGE = 15V
I C = 40A
Eoff - MilliJoules
40
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
RG = 10Ω,VGE = 15V
6
35
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
8
30
I C = 20A
1
0
25
50
75
100
150
10
20
30
40
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
240
td(off)
tfi
400
250
200
o
TJ = 25 C
t f i - Nanoseconds
t f i - Nanoseconds
120
300
120
250
I C = 20A
80
200
I C = 40A
40
40
150
150
0
100
10
15
20
25
30
I C - Amperes
© 2020 IXYS CORPORATION, All Rights Reserved
35
40
0
25
50
75
TJ - Degrees Centigrade
100
100
125
t d(off) - Nanoseconds
300
350
VCE = 960V
t d(off) - Nanoseconds
350
160
80
80
td(off)
RG = 10Ω, VGE = 15V
160
VCE = 960V
o
TJ = 125 C
70
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
200
450
RG = 10Ω,VGE = 15V
200
60
RG - Ohms
T J - Degrees Centigrade
280
50
IXYA20N120B4HV
IXYP20N120B4
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
320
tri
280
120
80
t d(on)
tri
70
100
o
TJ = 125 C, VGE = 15V
50
160
40
I C = 40A
120
30
80
20
40
0
30
40
50
60
70
20
60
16
o
TJ = 125 C
40
12
20
8
4
15
20
25
30
35
40
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
tri
100
30
td(on)
RG = 10Ω, VGE = 15V
26
VCE = 960V
80
22
60
18
40
14
t d(on) - Nanoseconds
I C = 40A
t r i - Nanoseconds
TJ = 25 C
80
10
80
RG - Ohms
120
o
0
0
20
24
VCE = 960V
10
I C = 20A
10
td(on)
t d(on) - Nanoseconds
200
28
RG = 10Ω, VGE = 15V
60
t r i - Nanoseconds
VCE = 960V
t d(on) - Nanoseconds
t r i - Nanoseconds
240
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
I C = 20A
20
10
0
25
50
75
100
6
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_20N120B4 (Y14-RY92) 8-21-18
IXYA20N120B4HV
IXYP20N120B4
TO-263HV Outline
1 = Gate
2 = Emitter
3 = Collector
TO-220 Outline
1 = Gate
2 = Collector
3 = Emitter
© 2020 IXYS CORPORATION, All Rights Reserved
IXYA20N120B4HV
IXYP20N120B4
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.