IXYA20N65C3D1
IXYP20N65C3D1
XPTTM 650V IGBT
GenX3TM w/Diode
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 20-60kHz Switching
650V
20A
2.50V
28ns
TO-263 AA (IXYA)
G
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
IF110
ICM
TC
TC
TC
TC
50
20
18
105
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
10
200
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 20
Clamped Inductive Load
ICM = 40
VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 82, Non Repetitive
10
μs
PC
TC = 25°C
200
W
= 25°C
= 110°C
= 110°C
= 25°C, 1ms
E
C (Tab)
TO-220AB (IXYP)
G
G = Gate
E = Emitter
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
10..65 / 2.2..14.6
Nm/lb.in
N/lb
2.5
3.0
g
g
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
FC
Mounting Torque (TO-220)
Mounting Force (TO-263)
Weight
TO-263
TO-220
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
650
VGE(th)
IC
= 250A, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
6.0
V
10
400
A
A
100
nA
© 2015 IXYS CORPORATION, All Rights Reserved
2.27
2.44
2.50
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Anti-Parallel Fast Diode
Short Circuit Capability
International Standard Packages
Advantages
= 20A, VGE = 15V, Note 1
TJ = 150C
C = Collector
Tab = Collector
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
V
TJ = 150C
C (Tab)
Features
TJ
TJM
Tstg
CE
V
V
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
High Frequency Power Inverters
DS100576C(3/15)
IXYA20N65C3D1
IXYP20N65C3D1
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
7
IC = 20A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 20A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCS
Inductive load, TJ = 25°C
IC = 20A, VGE = 15V
VCE = 400V, RG = 20
Note 2
Inductive load, TJ = 150°C
IC = 20A, VGE = 15V
VCE = 400V, RG = 20
Note 2
TO-220
TO-263 Outline
12
S
822
67
19
pF
pF
pF
30
6
15
nC
nC
nC
19
34
0.43
80
28
0.35
ns
ns
mJ
ns
ns
mJ
0.65
18
33
0.70
96
36
0.40
ns
ns
mJ
ns
ns
mJ
0.50
0.65 °C/W
°C/W
1.
2.
3.
4.
Gate
Collector
Emitter
Collector
Bottom Side
Dim.
Millimeter
Min.
Max.
Inches
Min. Max.
A
b
b2
4.06
0.51
1.14
4.83
0.99
1.40
.160
.020
.045
.190
.039
.055
c
c2
0.40
1.14
0.74
1.40
.016
.045
.029
.055
D
D1
8.64
8.00
9.65
8.89
.340
.280
.380
.320
E
9.65
10.41
.380
.405
E1
e
L
L1
L2
L3
L4
6.22
2.54
14.61
2.29
1.02
1.27
0
8.13
BSC
15.88
2.79
1.40
1.78
0.13
.270
.100
.575
.090
.040
.050
0
.320
BSC
.625
.110
.055
.070
.005
TO-220 Outline
Reverse Diode (FRED)
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
VF
IF = 20A, VGE = 0V, Note 1
TJ = 150C
1.5
V
V
IRM
IF = 20A, VGE = 0V,
-diF/dt = 300A/μs, VR = 400V, TJ = 150°C
11
A
135
ns
trr
2.5
Pins:
RthJC
Notes:
1.85 °C/W
1 - Gate
2,4 - Collector
3 - Emitter
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
Fig. 1. Output Characteristics @ TJ = 25ºC
40
100
VGE = 15V
13V
12V
35
VGE = 15V
11V
30
14V
25
I C - Amperes
I C - Amperes
80
10V
20
15
10
13V
60
12V
40
11V
9V
10V
20
5
9V
8V
7V
0
8V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0
10
15
20
25
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150ºC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
40
2.0
VGE = 15V
14V
13V
12V
35
30
VGE = 15V
1.8
30
11V
VCE(sat) - Normalized
I C - Amperes
5
VCE - Volts
25
10V
20
15
9V
10
1.6
I C = 40A
1.4
1.2
I C = 20A
1.0
8V
0.8
5
I C = 10A
7V
0.6
0
0
0.5
1
1.5
2
2.5
3
3.5
4
-50
4.5
-25
0
VCE - Volts
50
75
100
125
150
175
12
13
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
8
25
Fig. 6. Input Admittance
60
TJ = 25ºC
7
50
6
I C - Amperes
VCE - Volts
40
5
I C = 40A
4
30
TJ = 150ºC
25ºC
20
3
- 40ºC
20A
10
2
10A
0
1
8
9
10
11
12
VGE - Volts
© 2015 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
9
VGE - Volts
10
11
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
16
TJ = - 40ºC
VCE = 10V
14
25ºC
12
10
I C = 20A
I G = 10mA
12
150ºC
V GE - Volts
g f s - Siemens
VCE = 325V
14
8
6
10
8
6
4
4
2
2
0
0
0
5
10
15
20
25
30
35
40
45
0
50
4
8
I C - Amperes
Fig. 9. Capacitance
10,000
16
20
24
28
32
Fig. 10. Reverse-Bias Safe Operating Area
f = 1 MHz
40
Cies
1,000
30
I C - Amperes
Capacitance - PicoFarads
12
QG - NanoCoulombs
Coes
100
20
10
TJ = 150ºC
RG = 20Ω
dv / dt < 10V / ns
Cres
0
10
0
5
10
15
20
25
30
35
100
40
200
300
400
500
600
700
VCE - Volts
VCE - Volts
Fig. 12. Maximum Transient Thermal Impedance (IGBT)
Fig. 11. Forward-Bias Safe Operating Area
1000
1
VCE(sat) Limit
D = 0.5
25µs
10
100µs
1
TJ = 175ºC
1ms
TC = 25ºC
Single Pulse
DC
0.1
1
Z(th)JC - ºC / W
I D - Amperes
100
10
100
D = 0.2
0.1
D = 0.1
D = tp / T
D = 0.05
tp
D = 0.02
D = 0.01
T
Single Pulse
10ms
1000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.01
1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
Pulse Width - Second
1.E-01
1.E+00
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
1.6
---
6
1.0
2.4
Eoff
Eon
5
0.8
3
TJ = 150ºC
0.8
1.6
0.6
1.2
TJ = 25ºC
0.4
0.8
0.2
0.4
2
I C = 20A
0.4
1
0.2
20
30
40
50
60
70
80
90
0.0
0
100
0.0
10
15
20
RG - Ohms
Eoff
Eon
----
4.0
55
3.5
50
RG = 20Ω , VGE = 15V
VCE = 400V
3.0
0.6
1.5
0.4
1.0
50
75
100
125
td(off) - - - -
VCE = 400V
210
I C = 20A
40
180
35
150
30
120
90
20
0.0
150
20
30
40
50
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
VCE = 400V
130
44
120
40
90
30
80
TJ = 25ºC
70
20
60
10
15
20
25
60
100
30
I C - Amperes
© 2015 IXYS CORPORATION, All Rights Reserved
35
40
td(off) - - - 104
RG = 20Ω , VGE = 15V
I C = 20A
36
32
96
88
I C = 40A
28
80
24
72
20
25
50
75
100
TJ - Degrees Centigrade
125
64
150
t d(off) - Nanoseconds
100
TJ = 150ºC
25
90
VCE = 400V
t d(off) - Nanoseconds
110
40
35
80
112
tfi
t f i - Nanoseconds
td(off) - - - -
RG = 20Ω , VGE = 15V
45
70
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
55
tfi
60
RG - Ohms
TJ - Degrees Centigrade
50
240
25
0.5
0.0
tfi
TJ = 150ºC, VGE = 15V
I C = 40A
I C = 20A
0.2
25
40
t d(off) - Nanoseconds
2.0
- MilliJoules
I C = 40A
on
2.5
E
1.0
0.8
35
270
45
t f i - Nanoseconds
1.2
30
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
1.6
1.4
25
I C - Amperes
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
t f i - Nanoseconds
2.0
Eon - MilliJoules
4
E on - MilliJoules
I C = 40A
1.0
0.6
Eoff - MilliJoules
----
RG = 20Ω , VGE = 15V
VCE = 400V
VCE = 400V
1.2
Eoff - MilliJoules
Eon -
TJ = 150ºC , VGE = 15V
1.2
Eoff - MilliJoules
Eoff
1.4
7
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
280
100
140
tri
240
td(on) - - - -
120
60
80
40
I C = 20A
40
t r i - Nanoseconds
80
I C = 40A
20
0
20
30
40
50
tri
80
RG = 20Ω , VGE = 15V
60
70
80
90
0
100
70
24
TJ = 25ºC
60
tri
22
50
20
40
18
TJ = 150ºC
30
16
20
14
10
12
0
10
10
15
20
25
30
35
40
I C - Amperes
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
100
26
VCE = 400V
RG - Ohms
120
28
td(on) - - - -
t d(on) - Nanoseconds
100
t d(on) - Nanoseconds
t r i - Nanoseconds
TJ = 150ºC, VGE = 15V
160
90
120
VCE = 400V
200
30
34
td(on) - - - 30
RG = 20Ω , VGE = 15V
80
26
I C = 40A
60
22
40
18
I C = 20A
20
0
25
50
75
100
t d(on) - Nanoseconds
t r i - Nanoseconds
VCE = 400V
14
10
150
125
TJ - Degrees Centigrade
Fig. 23. Reverse Recovery Charge vs. -diF/dt
Fig. 22. Diode Forward Characteristics
1.6
40
TJ = 150ºC
35
1.4
IF = 30A
VR = 400V
30
1.2
QRR (µC)
I F (A)
25
TJ = 150ºC
20
TJ = 25ºC
20A
1.0
15
0.8
10
10A
0.6
5
0
0.4
0
0.5
1
1.5
2
2.5
VF (V)
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
200
300
400
500
600
700
800
-diF/ dt (A/µs)
900
1000
1100
1200
IXYA20N65C3D1
IXYP20N65C3D1
Fig. 24 Reverse Recovery Current vs. -diF/dt
Fig. 25. Reverse Recovery Time vs. -diF/dt
180
26
TJ = 150ºC
24
TJ = 150ºC
VR = 400V
22
20A
IF = 40A
160
10A
VR = 400V
140
20
tRR (ns)
I RR (A)
IF = 40A
18
16
14
120
20A
100
12
80
10A
10
8
60
200
300
400
500
600
700
800
900 1000 1100 1200 1300 1400
200
diF/dt (A/µs)
1.0
VR = 400V
0.9
IF = 20A
-diF /dt = 300A/µs
400
500
600
700
800
900
1000
1100
1200
-diF/dt (A/µs)
Fig. 13. Maximum Transient Thermal Impedance
10
Fig. 26. Dynamic Parameters QRR, IRR vs.
Junction Temperature
1.1
300
Fig. 27. Maximum Transient Thermal Impedance (Diode)
AAAAA
4
1
D = 0.5
Z (th)JC - ºC / W
0.8
KF
0.7
0.6
KF IRR
0.5
0.4
D = 0.2
D = 0.1
D = 0.05
0.1
D = tp / T
D = 0.02
D = 0.01
Single Pulse
tp
T
0.3
KF QRR
0.2
0.1
0
20
40
60
80
100
120
140
160
0.01
1.E-06
1.E-05
1.E-04
TJ (ºC)
1.E-03
1.E-02
1.E-01
1.E+00
Pulse Width - Second
Fig. 28. Cauer Thermal Network
IGBT
i
1
2
3
Ri (°C/W)
0.170320
0.136990
0.090011
Ci (J/°C)
0.0017715
0.0166820
0.0391660
DIODE
i
1
2
3
© 2015 IXYS CORPORATION, All Rights Reserved
Ri (°C/W)
0.331730
0.768860
0.285550
Ci (J/°C)
0.0002858
0.0037423
0.0432130
IXYS REF: IXY_20N65C3(3D) 01-21-15-B
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.