Advance Technical Information
IXYH100N65A3
650V XPTTM IGBT
GenX3TM
VCES =
IC110 =
VCE(sat)
tfi(typ) =
650V
100A
1.80V
86ns
Low-Vsat IGBT
for up to 5kHz Switching
TO-247
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C (Chip Capability)
TC = 110°C
TC = 25°C, 1ms
240
100
480
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
50
830
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 2
Clamped Inductive Load
ICM = 200
@VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 82, Non Repetitive
8
μs
PC
TC = 25°C
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
E
Tab
C
= Collector
Tab = Collector
Features
470
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in
6
g
Weight
C
G = Gate
E = Emitter
TJ
TJM
Tstg
TTL
TSOLD
G
Optimized for up to 5kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
High Current Handling Capability
Advantages
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
650
VGE(th)
IC
= 250A, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 70A, VGE = 15V, Note 1
TJ = 150C
© 2017 IXYS CORPORATION, All Rights Reserved
V
6.0
V
25
500
A
A
100
nA
TJ = 125C
IGES
1.50
1.65
1.80
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Low Frequency Power Inverters
AC Switches
V
V
DS100803(02/17)
IXYH100N65A3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
gfs
Cies
Coes
Cres
Qg
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Characteristic Values
Min.
Typ.
Max.
IC = 60A, VCE = 10V, Note 1
32
178
IC = 70A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
IC = 50A, VGE = 15V
VCE = 400V, RG = 2
Note 2
Inductive load, TJ = 150°C
IC = 50A, VGE = 15V
VCE = 400V, RG = 2
Note 2
RthJC
RthCS
Notes:
58
4780
290
103
VCE = 25V, VGE = 0V, f = 1MHz
TO-247 (IXYH) Outline
S
D
A
A2
Q
pF
pF
pF
R
nC
78
nC
24
64
3.15
174
86
2.20
ns
ns
mJ
ns
ns
mJ
23
64
4.00
234
225
3.70
ns
ns
mJ
ns
ns
mJ
0.21
0.18 °C/W
°C/W
S
0P
A
0K M D B M
D2
D1
D
0P1
R1
1
2
3
4
IXYS OPTION
L1
nC
31
B
E
C
L
A1
c
b
b2
b4
e
J MCAM
E1
1 - Gate
2,4 - Collector
3 - Emitter
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYH100N65A3
Fig. 1. Output Characteristics @ TJ = 25oC
Fig. 2. Extended Output Characteristics @ TJ = 25oC
140
800
VGE = 15V
12V
11V
10V
120
9V
I C - Amperes
80
60
14V
600
100
I C - Amperes
VGE = 15V
700
8V
40
13V
500
12V
400
11V
300
10V
200
7V
9V
20
100
6V
0
8V
7V
0
0
0.4
0.8
1.2
1.6
2
2.4
2.8
0
2
4
6
8
VCE - Volts
140
1.8
VGE = 15V
13V
11V
10V
14
16
18
20
22
VGE = 15V
1.6
9V
I C = 140A
VCE(sat) - Normalized
100
I C - Amperes
12
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150oC
120
10
VCE - Volts
80
8V
60
7V
40
1.4
1.2
I C = 70A
1.0
0.8
20
I C = 35A
6V
5V
0
0
0.5
1
1.5
2
2.5
3
0.6
-50
3.5
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
5.0
50
75
100
125
150
175
TJ - Degrees Centigrade
Fig. 6. Input Admittance
350
TJ = 25ºC
4.5
300
4.0
250
I C - Amperes
VCE - Volts
3.5
3.0
I C = 140A
2.5
2.0
200
150
100
70A
o
TJ = 150 C
1.5
o
25 C
50
35A
1.0
o
- 40 C
0.5
0
7
8
9
10
11
12
VGE - Volts
© 2017 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXYH100N65A3
Fig. 8. Gate Charge
Fig. 7. Transconductance
120
16
o
TJ = - 40 C
V GE - Volts
25 C
80
I C = 70A
I G = 10mA
12
o
g f s - Siemens
VCE = 325V
14
100
o
150 C
60
40
10
8
6
4
20
2
0
0
0
50
100
150
200
250
300
0
20
40
60
I C - Amperes
100
120
140
160
180
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
240
10,000
200
Cies
Capacitance - PicoFarads
80
QG - NanoCoulombs
I C - Amperes
1,000
Coes
160
120
80
100
Cres
o
TJ = 150 C
RG = 2Ω
dv / dt < 10V / ns
40
f = 1 MHz
0
10
0
5
10
15
20
25
30
35
100
40
200
300
400
500
600
700
VCE - Volts
VCE - Volts
Fig. 12. Maximum Transient Thermal Impedance (IGBT)
Fig. 11. Forward-Bias Safe Operating Area
1
1000
VCE(sat) Limit
100
100μs
10
1
1ms
Z(th)JC - K / W
I D - Amperes
25μs
0.1
0.01
o
TJ = 175 C
0.1
10ms
o
TC = 25 C
Single Pulse
0.01
1
10
100
1000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.001
0.00001
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
1
10
IXYH100N65A3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
Eoff
12
Eoff
12
VCE = 400V
8
6
6
4
6
7
o
TJ = 25 C
4
2
2
3
2
0
0
0
2
4
6
8
10
12
14
50
16
55
60
65
RG - Ohms
12
Eon
tfi
10
RG = 2Ω , VGE = 15V
VCE = 400V
4
4
I C = 50A
2
100
td(off)
I C = 50A
400
I C = 100A
230
300
200
100
4
6
8
10
12
14
16
RG - Ohms
tfi
td(off)
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
300
260
tfi
240
250
180
160
160
140
o
TJ = 25 C
t f i - Nanoseconds
200
I C = 100A
200
240
150
200
I C = 50A
100
160
I C = 100A
50
80
120
120
40
50
55
60
65
70
75
80
85
I C - Amperes
© 2017 IXYS CORPORATION, All Rights Reserved
90
95
100
100
0
25
50
75
100
TJ - Degrees Centigrade
125
80
150
t d(off) - Nanoseconds
200
280
VCE = 400V
t d(off) - Nanoseconds
o
TJ = 150 C
320
td(off)
RG = 2Ω , VGE = 15V
220
VCE = 400V
120
500
240
2
RG = 2Ω , VGE = 15V
240
600
210
0
150
125
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
280
1
100
o
TJ - Degrees Centigrade
320
95
220
2
0
360
90
t d(off) - Nanoseconds
6
Eon - MilliJoules
6
75
85
VCE = 400V
8
50
80
TJ = 150 C, VGE = 15V
250
I C = 100A
8
25
75
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
260
t f i - Nanoseconds
Eoff
10
70
I C - Amperes
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
12
E off - MilliJoules
5
4
I C = 50A
t f i - Nanoseconds
9
o
TJ = 150 C
E on - MilliJoules
8
Eon
VCE = 400V
10
I C = 100A
11
RG = 2Ω , VGE = 15V
8
E on - MilliJoules
E off - MilliJoules
Eon
o
TJ = 150 C , VGE = 15V
10
10
14
Eoff - MilliJoules
14
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
IXYH100N65A3
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
200
tri
180
160
65
td(on)
tri
60
140
o
TJ = 150 C, VGE = 15V
I C = 100A
120
45
100
40
I C = 50A
80
35
60
30
40
25
20
t r i - Nanoseconds
50
4
6
8
10
12
14
tri
26
o
TJ = 150 C
80
24
60
22
55
60
65
70
75
80
85
90
95
20
100
34
32
VCE = 400V
30
I C = 100A
120
28
100
26
80
24
60
22
I C = 50A
40
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
RG = 2Ω , VGE = 15V
140
100
I C - Amperes
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
160
28
50
16
RG - Ohms
180
o
TJ =25 C
120
40
20
2
30
VCE = 400V
t d(on) - Nanoseconds
140
32
td(on)
RG = 2Ω , VGE = 15V
55
VCE = 400V
t d(on) - Nanoseconds
t r i - Nanoseconds
160
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
20
20
25
50
75
100
125
18
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_100N65A3V1(7D-Y42)02-02-17
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.