Advance Technical Information
IXYH10N170C
High Voltage
XPTTM IGBT
VCES =
IC110 =
VCE(sat)
tfi(typ) =
1700V
10A
4.1V
70ns
TO-247 AD
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
Continuous
Transient
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
PC
TC = 25°C
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
1700
1700
V
V
±20
±30
V
V
36
10
84
A
A
A
ICM = 40
1360
A
V
280
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
Weight
G
BVCES
IC
= 250A, VGE = 0V
1700
VGE(th)
IC
= 250A, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 10A, VGE = 15V, Note 1
TJ = 150C
© 2017 IXYS CORPORATION, All Rights Reserved.
V
10 A
1 mA
TJ = 150C
100
3.6
4.9
4.1
C
= Collector
Tab = Collector
High Voltage Package
High Blocking Voltage
Low Saturation Voltage
Advantages
Low Gate Drive Requirement
High Power Density
Applications
V
5.0
Tab
Features
Characteristic Values
Min.
Typ.
Max.
E
G = Gate
E = Emitter
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
C
nA
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
V
V
DS100783A(5/17)
IXYH10N170C
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
IC = 10A, VCE = 10V, Note 1
5.4
RGi
Gate Input Resistance
Cies
Coes
Cres
Qg(on)
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Notes:
9.0
VCE = 25V, VGE = 0V, f = 1MHz
S
10
930
53
20
pF
pF
pF
46
6
22
nC
nC
nC
14
17
1.4
130
70
0.7
ns
ns
mJ
ns
ns
mJ
15
6
2.3
166
94
0.9
ns
ns
mJ
ns
ns
mJ
0.21
0.53 °C/W
°C/W
IC = 10A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 25°C
IC = 10A, VGE = 15V
VCE = 0.5 • VCES, RG = 10
Note 2
Inductive load, TJ = 150°C
IC = 10A, VGE = 15V
VCE = 0.5 • VCES, RG = 10
Note 2
RthJC
RthCS
TO-247 (IXYH) Outline
D
A
A2
B
E
Q
R
S
0P
A
0K M D B M
D2
D1
D
0P1
R1
1
2
3
4
IXYS OPTION
L1
C
L
A1
c
b
b2
b4
e
J MCAM
E1
1 - Gate
2,4 - Collector
3 - Emitter
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYH10N170C
o
o
Fig. 2. Extended Output Characteristics @ TJ = 25 C
Fig. 1. Output Characteristics @ TJ = 25 C
20
90
VGE = 15V
VGE = 15V
12V
10V
9V
18
16
80
14V
70
8V
12
10
8
13V
12V
60
I C - Amperes
I C - Amperes
14
7V
6
11V
50
40
10V
30
9V
20
4
6V
2
8V
10
0
7V
6V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
6
0
5
10
15
2.2
20
VGE = 15V
12V
10V
9V
1.8
14
I C - Amperes
30
VGE = 15V
2.0
VCE(sat) - Normalized
16
25
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
o
Fig. 3. Output Characteristics @ TJ = 150 C
18
20
VCE - Volts
VCE - Volts
8V
12
10
7V
8
6
1.4
I C = 10A
1.2
1.0
6V
4
I C = 20A
1.6
0.8
2
I C = 5A
5V
0.6
0
0
1
2
3
4
5
6
7
-50
8
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
8
50
75
100
125
150
175
TJ - Degrees Centigrade
Fig. 6. Input Admittance
35
o
TJ = 25 C
30
7
25
I C - Amperes
VCE - Volts
6
I C = 20A
5
20
15
10A
4
10
o
TJ = 150 C
o
25 C
3
o
- 40 C
5
5A
0
2
6
7
8
9
10
11
12
VGE - Volts
© 2017 IXYS CORPORATION, All Rights Reserved.
13
14
15
4
4.5
5
5.5
6
6.5
7
VGE - Volts
7.5
8
8.5
9
9.5
IXYH10N170C
Fig. 7. Transconductance
Fig. 8. Gate Charge
16
16
o
TJ = - 40 C
14
I C = 10A
I G = 10mA
12
12
o
25 C
10
VGE - Volts
g f s - Siemens
VCE = 850V
14
o
150 C
8
6
10
8
6
4
4
2
2
0
0
0
5
10
15
20
25
30
35
40
0
5
10
15
I C - Amperes
Fig. 9. Capacitance
25
30
35
40
45
50
Fig. 10. Reverse-Bias Safe Operating Area
10,000
45
f = 1 MHz
40
35
C ies
1,000
30
I C - Amperes
Capacitance - PicoFarads
20
QG - NanoCoulombs
Coes
100
25
20
15
o
TJ = 150 C
10
RG = 10Ω
dv / dt < 10V / ns
5
C res
10
0
0
5
10
15
20
25
30
35
40
200
400
600
800
1000
1200
1400
1600
1800
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - K / W
1
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYH10N170C
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
4.0
Eoff
3.5
Eon
8
4.0
7
3.5
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Eoff
o
2.5
I C = 20A
5
3.0
E off - MilliJoules
E off - MilliJoules
6
2.0
4
1.5
3
1.5
3
1.0
2
1.0
1
0.5
0
0.0
0.5
0.0
40
50
60
70
o
TJ = 25 C
0
10
80
12
14
16
18
Eoff
6
130
5
120
1.0
2
30
tfi
600
td(off)
500
o
50
75
100
125
110
400
I C = 20A
100
200
1
80
100
0
150
70
0
10
20
30
40
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
60
70
td(off)
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
140
220
tfi
200
120
RG = 10Ω, VGE = 15V
80
80
140
60
120
o
TJ = 25 C
100
100
160
I C = 10A
80
140
60
120
I C = 20A
40
20
100
80
0
60
10
12
14
16
18
20
22
24
I C - Amperes
© 2017 IXYS CORPORATION, All Rights Reserved.
26
28
30
20
25
50
75
100
TJ - Degrees Centigrade
125
80
150
t d(off) - Nanoseconds
160
180
VCE = 850V
t d(off) - Nanoseconds
TJ = 150 C
200
td(off)
RG = 10Ω, VGE = 15V
180
VCE = 850V
o
t f i - Nanoseconds
120
50
RG - Ohms
TJ - Degrees Centigrade
140
300
I C = 10A
90
I C = 10A
0.0
t f i - Nanoseconds
E off - MilliJoules
3
0.5
t f i - Nanoseconds
28
t d(off) - Nanoseconds
I C = 20A
1.5
E on - MilliJoules
4
40
26
VCE = 850V
2.0
100
24
TJ = 150 C, VGE = 15V
VCE = 850V
160
22
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
Eon
RG = 10ΩVGE = 15V
25
20
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
2.5
2
1
RG - Ohms
3.0
6
5
4
I C = 10A
o
TJ = 150 C
VCE = 850V
2.5
2.0
30
7
E on - MilliJoules
VCE = 850V
E on - MilliJoules
3.0
20
Eon
RG = 10ΩVGE = 15V
TJ = 150 C , VGE = 15V
10
8
IXYH10N170C
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
tri
50
tri
td(on)
35
o
TJ = 150 C, VGE = 15V
30
25
20
20
I C = 10A
10
0
50
60
70
tri
12
12
14
16
18
20
22
24
26
28
30
18
17
VCE = 850V
16
20
15
I C = 20A
15
14
10
13
13
I C = 10A
5
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
RG = 10Ω, VGE = 15V
25
14
o
TJ = 25 C
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
30
20
10
80
RG - Ohms
35
15
o
TJ = 150 C
0
10
40
30
10
15
30
16
t d(on) - Nanoseconds
I C = 20A
30
20
td(on)
VCE = 850V
40
10
17
RG = 10Ω, VGE = 15V
40
t d(on) - Nanoseconds
VCE = 850V
t r i - Nanoseconds
50
40
t r i - Nanoseconds
60
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
12
0
25
50
75
100
125
11
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_10N170C(3T-AT653) 1-26-17
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.