0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IXYH30N120C3D1

IXYH30N120C3D1

  • 厂商:

    IXYS(艾赛斯)

  • 封装:

    TO247

  • 描述:

    IGBT 1200V 66A 416W TO247

  • 数据手册
  • 价格&库存
IXYH30N120C3D1 数据手册
IXYH30N120C3D1 1200V XPTTM IGBT GenX3TM w/ Diode VCES = IC110 = VCE(sat)  tfi(typ) = High-Speed IGBT for 20-50 kHz Switching 1200V 30A 3.3V 88ns TO-247 Symbol Test Conditions Maximum Ratings VCES VCGR TJ = 25°C to 150°C TJ = 25°C to 150°C, RGE = 1M VGES VGEM 1200 1200 V V Continuous Transient ±20 ±30 V V IC25 IC110 IF110 ICM TC TC TC TC 66 30 20 133 A A A A IA EAS TC = 25°C TC = 25°C 20 400 A mJ SSOA (RBSOA) VGE = 15V, TVJ = 150°C, RG = 10 Clamped Inductive Load ICM = 60 @V CE  VCES A PC TC = 25°C 416 W -55 ... +150 150 -55 ... +150 °C °C °C 300 °C 1.13/10 Nm/lb.in 6 g = 25°C = 110°C = 110°C = 25°C, 1ms TJ TJM Tstg TL Maximum Lead Temperature for Soldering 1.6 mm (0.062 in.) from Case for 10s Md Mounting Torque Weight G C E G = Gate E = Emitter Tab C = Collector Tab = Collector Features        Optimized for Low Switching Losses Square RBSOA Positive Thermal Coefficient of Vce(sat) Anti-Parallel Ultra Fast Diode Avalanche Rated High Current Handling Capability International Standard Package Advantages   High Power Density Low Gate Drive Requirement Applications  Symbol Test Conditions (TJ = 25C, Unless Otherwise Specified) Characteristic Values Min. Typ. Max. BVCES IC = 250A, VGE = 0V 1200 VGE(th) IC = 250A, VCE = VGE 3.0 ICES VCE = VCES, VGE = 0V VCE = 0V, VGE = 20V VCE(sat) IC = 30A, VGE = 15V, Note 1 TJ = 150C © 2021 Littelfuse, Inc.  V 5.0 V 25 350 A µA 100 nA 3.3 V V TJ = 125C IGES  3.7      High Frequency Power Inverters UPS Motor Drives SMPS PFC Circuits Battery Chargers Welding Machines Lamp Ballasts DS100386E(01/21) IXYH30N120C3D1 Symbol Test Conditions (TJ = 25°C Unless Otherwise Specified) Characteristic Values Min. Typ. Max. gfs 10 IC = 30A, VCE = 10V, Note 1 Cies Coes Cres VCE = 25V, VGE = 0V, f = 1MHz Qg(on) Qge Qgc IC = 30A, VGE = 15V, VCE = 0.5 • VCES td(on) tri Eon td(off) tfi Eoff td(on) tri Eon td(off) tfi Eoff Inductive load, TJ = 25°C IC = 30A, VGE = 15V VCE = 0.5 • VCES, RG = 10 Note 2 Inductive load, TJ = 150°C IC = 30A, VGE = 15V VCE = 0.5 • VCES, RG = 10 Note 2 RthJC RthCS 17 S 1640 140 38 pF pF pF 69 9 34 nC nC nC 19 40 2.6 130 88 1.1 ns ns mJ ns ns mJ 19 52 6.0 156 140 1.6 ns ns mJ ns ns mJ 0.21 0.30 °C/W °C/W Reverse Diode (FRED) (TJ = 25°C, Unless Otherwise Specified) Symbol Test Conditions VF IRM trr IF = 30A,VGE = 0V, Note 1 Characteristic Value Min. Typ. Max. TJ = 150°C IF = 30A,VGE = 0V, -diF/dt = 100A/µs, TJ = 100°C VR = 600V 195 TJ = 100°C RthJC Notes: 3.00 V V 9 A 1.75 ns 0.90 °C/W 1. Pulse test, t  300µs, duty cycle, d  2%. 2. Switching times & energy losses may increase for higher V CE(clamp), TJ or RG. Littelfuse reserves the right to change limits, test conditions, and dimensions. IXYS MOSFETs and IGBTs are covered 4,835,592 by one or more of the following U.S. patents: 4,860,072 4,881,106 4,931,844 5,017,508 5,034,796 5,049,961 5,063,307 5,187,117 5,237,481 5,381,025 5,486,715 6,162,665 6,259,123 B1 6,306,728 B1 6,404,065 B1 6,534,343 6,583,505 6,683,344 6,727,585 7,005,734 B2 6,710,405 B2 6,759,692 7,063,975 B2 6,710,463 6,771,478 B2 7,071,537 7,157,338B2 IXYH30N120C3D1 Fig. 2. Extended Output Characteristics @ TJ = 25ºC Fig. 1. Output Characteristics @ TJ = 25ºC 160 60 V GE = 15V V GE = 15V 13V 12V 11V 10V 50 140 14V 120 13V IC - Amperes IC - Amperes 40 9V 30 8V 20 100 12V 80 11V 60 10V 9V 40 7V 10 8V 20 7V 6V 6V 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 0 5 0 10 20 25 Fig. 3. Output Characteristics @ TJ = 150ºC Fig. 4. Dependence of VCE(sat) on Junction Temperature 30 2.4 V GE = 15V 13V 12V 11V 10V 2.2 40 9V 30 8V 20 1 2 3 4 5 6 1.6 1.4 I C = 30A 1.2 1.0 I C = 15A 0.6 6V 5V 0 I C = 60A 1.8 0.8 7V 10 0 V GE = 15V 2.0 VCE(sat) - Normalized 50 0.4 -50 7 -25 0 25 VCE - Volts 50 75 100 125 150 175 TJ - Degrees Centigrade Fig. 5. Collector-to-Emitter Voltage vs. Gate-to-Emitter Voltage Fig. 6. Input Admittance 80 8 TJ = 25ºC 70 7 TJ = - 40ºC 25ºC 150ºC 60 IC - Amperes 6 VCE - Volts 15 VCE - Volts 60 IC - Amperes 5 VCE - Volts I C = 60A 5 4 50 40 30 30A 3 20 2 10 15A 1 7 8 9 10 11 VGE - Volts © 2021 Littelfuse, Inc. 12 13 14 15 0 4 5 6 7 8 VGE - Volts 9 10 11 IXYH30N120C3D1 Fig. 7. Transconductance Fig. 8. Gate Charge 25 16 TJ = - 40ºC VCE = 600V I C = 30A I G = 10mA 14 20 12 15 150ºC VGE - Volts g f s - Siemens 25ºC 10 10 8 6 4 5 2 0 0 0 10 20 30 40 50 60 70 80 90 100 0 10 20 I C - Amperes 30 40 50 60 70 QG - NanoCoulombs Fig. 9. Capacitance Fig. 10. Reverse-Bias Safe Operating Area 10,000 70 f = 1 MHz 50 C ies 1,000 I C - Amperes Capacitance - PicoFarads 60 Coes 40 30 100 20 TJ = 150ºC RG = 10Ω dv / dt < 10V / ns 10 Cres 0 10 0 5 10 15 20 25 30 35 40 200 300 400 500 600 700 800 900 1000 1100 1200 1300 VCE - Volts VCE - Volts Fig. 11. Maximum Transient Thermal Impedance 1 Z(th)JC - K / W 0.1 0.01 0.001 0.00001 0.0001 0.001 0.01 Pulse Width - Second Littelfuse reserves the right to change limits, test conditions, and dimensions. 0.1 1 IXYH30N120C3D1 Fig. 13. Inductive Switching Energy Loss vs. Collector Current Fig. 12. Inductive Switching Energy Loss vs. Gate Resistance 5.0 Eoff Eon TJ = 150ºC , VGE = 15V VCE = 600V 4.0 20 Eoff Eon RG = 10Ω , VGE = 15V VCE = 600V 24 2.5 21 Eon - MilliJoules 18 3.0 15 2.5 12 2.0 9 1.5 6 12 TJ = 150ºC 1.5 8 TJ = 25ºC 1.0 I C = 30A 1.0 2.0 16 4 3 0.5 0.5 0 10 15 20 25 30 35 40 45 50 0 15 55 20 25 30 35 Fig. 14. Inductive Switching Energy Loss vs. Junction Temperature Eoff Eon RG = 10Ω , VGE = 15V VCE = 600V 16 55 60 550 200 tfi td(off) 180 TJ = 150ºC, VGE = 15V VCE = 600V 500 450 2.5 2.0 8 1.5 I C = 30A 1.0 t f i - Nanoseconds 12 I C = 60A Eon - MilliJoules 3.0 4 0.5 0.0 50 75 100 125 140 350 I C = 30A 120 300 100 250 80 60 150 40 100 50 15 150 20 25 30 220 td(off) 240 140 180 160 TJ = 150ºC 100 140 80 120 40 80 20 60 30 35 40 I C - Amperes © 2021 Littelfuse, Inc. 45 50 55 60 td(off) 170 160 120 150 I C = 30A 100 140 80 130 60 120 I C = 60A 100 TJ = 25ºC 25 55 40 110 20 25 50 75 100 TJ - Degrees Centigrade 125 100 150 t d(off) - Nanoseconds 140 t d(off) - Nanoseconds 200 20 tfi RG = 10Ω , VGE = 15V VCE = 600V 220 160 15 50 180 160 t f i - Nanoseconds tfi RG = 10Ω , VGE = 15V VCE = 600V 60 45 180 260 120 40 Fig. 17. Inductive Turn-off Switching Times vs. Junction Temperature Fig. 16. Inductive Turn-off Switching Times vs. Collector Current 180 35 RG - Ohms TJ - Degrees Centigrade 200 200 I C = 60A 20 0 25 400 t d(off) - Nanoseconds 160 3.5 Eoff - MilliJoules 50 220 20 4.0 45 Fig. 15. Inductive Turn-off Switching Times vs. Gate Resistance 5.0 4.5 40 I C - Amperes RG - Ohms t f i - Nanoseconds Eon - MilliJoules I C = 60A 3.5 Eoff - MilliJoules 4.5 Eoff - MilliJoules 3.0 27 IXYH30N120C3D1 Fig. 19. Inductive Turn-on Switching Times vs. Collector Current Fig. 18. Inductive Turn-on Switching Times vs. Gate Resistance 320 td(on) 240 160 160 40 120 30 I C = 30A 80 20 40 10 0 0 20 td(on) 28 26 25 30 35 40 45 50 TJ = 25ºC 140 120 20 80 18 60 16 40 14 20 12 0 55 10 15 20 25 30 35 RG = 10Ω , VGE = 15V VCE = 600V 26 24 I C = 60A 120 22 80 20 80 70 I C - Amperes 160 18 I C = 30A 16 100 60 60 Square Wave 50 40 30 20 10 0 75 55 TJ = 150ºC TC = 75ºC VCE = 600V VGE = 15V RG = 10Ω D = 0.5 90 t d(on) - Nanoseconds t r i - Nanoseconds Triangular Wave td(on) 40 50 100 28 50 45 Fig. 21. Maximum Peak Load Current vs. Frequency 240 25 40 I C - Amperes Fig. 20. Inductive Turn-on Switching Times vs. Junction Temperature 200 22 100 RG - Ohms tri 24 TJ = 150ºC t d(on) - Nanoseconds I C = 60A t d(on) - Nanoseconds 50 15 tri RG = 10Ω , VGE = 15V VCE = 600V 60 200 10 30 180 70 TJ = 150ºC, VGE = 15V VCE = 600V t r i - Nanoseconds tri 280 t r i - Nanoseconds 200 80 125 0 1.0 150 10.0 TJ - Degrees Centigrade 100.0 1,000.0 fmax - KiloHertzs Fig. 22. Maximum Transient Thermal Impedance (Diode) Z(th)JC - K / W 1 0.1 0.01 0.0001 0.001 0.01 0.1 1 10 Pulse Width - Seconds Littelfuse reserves the right to change limits, test conditions, and dimensions. IXYS REF: IXY_30N120C3(4N-C91)1-05-21 IXYH30N120C3D1 Fig. 23. Forward Current IF vs VF 70 Fig. 24. Reverse Recovery Charge QRM vs. -diF/dt 5 TVJ = 100ºC 60 VR = 600V 4 50 IF = 60A TVJ = 150ºC IF [A] 100ºC 40 3 25ºC QRM [µC] 30 30A 2 15A 20 1 10 0 0 0 0.5 1 1.5 2 2.5 3 3.5 4 100 1000 500 VF [V] -diF/dt [A/µs] Fig. 26. Dynamic Parameters QRM, IRM vs. TVJ Fig. 25. Peak Reverse Current IRM vs. -diF/dt 60 2 TVJ = 100ºC I RM & QRM [normalized] V R = 600V 50 40 IF = 60A, 30A, 15A I RM 30 [A] 20 1.5 1 IRM 0.5 QRM 10 0 0 0 200 400 600 800 20 1000 40 60 80 Fig. 27. Recovery Time trr vs. -diF/dt 220 100 120 Fig. 28. Peak Forward Voltage VFR, trr vs -diF/dt 120 IF = 30A 100 V R = 600V 1.2 1 trr 80 trr [ns] 160 TVJ = 100ºC TVJ = 100ºC 200 140 TVJ [ºC] -diF/dt [A/µs] 0.8 180 VFR [V] IF = 60A 30A 15A 160 140 120 0.6 trr 60 [µs] VFR 40 0.4 20 0.2 0 0 200 400 600 -diF/dt [A/µs] © 2021 Littelfuse, Inc. 800 1000 0 100 200 300 400 500 600 -diF/dt [A/µs] 700 800 900 0 1000 IXYH30N120C3D1 TO-247 Outline D A A2 A B E Q S R 0P D2 D1 D 0P1 1 2 4 3 L1 C E1 L A1 C b b2 b4 e 1 - Gate 2,4 - Collector 3 - Emitter Littelfuse reserves the right to change limits, test conditions, and dimensions. IXYH30N120C3D1 Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics. © 2021 Littelfuse, Inc.
IXYH30N120C3D1 价格&库存

很抱歉,暂时无法提供与“IXYH30N120C3D1”相匹配的价格&库存,您可以联系我们找货

免费人工找货