IXYP30N65C3
IXYH30N65C3
XPTTM 650V IGBT
GenX3TM
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 20-60kHz Switching
650V
30A
2.7V
24ns
TO-220
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
60
30
118
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
10
300
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
ICM = 60
VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 82, Non Repetitive
8
μs
PC
TC = 25°C
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
Weight
TO-220
TO-247
270
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in
3
6
g
g
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
650
VGE(th)
IC
= 250A, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
G
VCE(sat)
IC
Tab
C
= Collector
Tab = Collector
6.0
V
15
200
A
A
100
nA
2.35
2.58
2.70
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
International Standard Packages
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
V
V
© 2014 IXYS CORPORATION, All Rights Reserved
E
Advantages
= 30A, VGE = 15V, Note 1
TJ = 150C
C
G = Gate
E = Emitter
V
TJ = 150C
VCE = 0V, VGE = 20V
Tab
TO-247
IGES
CE
Features
TJ
TJM
Tstg
TL
TSOLD
G
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
High Frequency Power Inverters
DS100539C(10/14)
IXYP30N65C3
IXYH30N65C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
11
IC = 30A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 30A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCS
RthCS
Inductive load, TJ = 25°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 10
Note 2
Inductive load, TJ = 150°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 10
Note 2
TO-220
TO-247
TO-220 Outline
19
S
1225
75
28
pF
pF
pF
44
7
24
nC
nC
nC
21
42
1.00
75
24
0.27
ns
ns
mJ
ns
ns
mJ
19
40
1.50
90
30
0.41
ns
ns
mJ
ns
ns
mJ
0.50
0.21
0.55 °C/W
°C/W
°C/W
Pins:
1 - Gate
3 - Emitter
TO-247 Outline
1
Notes:
2 - Collector
2
P
3
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
e
Terminals: 1 - Gate
3 - Emitter
Dim.
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYP30N65C3
IXYH30N65C3
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
60
VGE = 15V
13V
12V
50
140
VGE = 15V
120
14V
11V
100
30
10V
20
9V
I C - Amperes
I C - Amperes
40
13V
80
12V
60
11V
40
10
8V
20
0
0.5
1
1.5
2
2.5
3
3.5
4
9V
8V
7V
0
10V
0
4.5
0
5
10
VCE - Volts
20
25
30
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150ºC
1.8
60
VGE = 15V
13V
12V
50
15
VCE - Volts
VGE = 15V
1.6
VCE(sat) - Normalized
11V
I C - Amperes
40
10V
30
9V
20
1.4
I C =60A
1.2
I C = 30A
1.0
8V
I C = 15A
0.8
10
7V
0.6
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
VCE - Volts
-50
5
-25
0
25
50
75
100
125
150
TJ - Degrees Centigrade
6V
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
60
8
TJ = 25ºC
7
50
6
I C - Amperes
V CE - Volts
40
5
I C = 60A
4
30
TJ = 150ºC
25ºC
- 40ºC
20
3
30A
10
2
15A
1
8
9
10
11
12
VGE - Volts
© 2014 IXYS CORPORATION, All Rights Reserved
0
13
14
15
5
6
7
8
VGE - Volts
9
10
11
175
IXYP30N65C3
IXYH30N65C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
28
TJ = - 40ºC
VCE = 10V
24
VGE - Volts
g f s - Siemens
150ºC
16
I C = 30A
I G = 10mA
12
25ºC
20
VCE = 325V
14
12
8
10
8
6
4
4
2
0
0
0
5
10
15
20
25
30
35
40
45
50
55
0
60
5
10
I C - Amperes
15
20
25
30
35
40
45
QG - NanoCoulombs
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
10,000
70
f = 1 MHz
50
1,000
C ies
I C - Amperes
Capacitance - PicoFarads
60
C oes
100
40
30
20
TJ = 150ºC
RG = 10Ω
dv / dt < 10V / ns
10
C res
10
0
0
5
10
15
20
25
30
35
40
100
200
300
400
500
600
700
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - ºC / W
1
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYP30N65C3
IXYH30N65C3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
2.4
Eoff
2.0
Eon -
12
1.2
10
1.0
6
---
Eoff
TJ = 150ºC , VGE = 15V
VCE = 400V
---5
8
1.2
6
0.8
4
0.4
0.8
4
0.6
3
TJ = 150ºC
0.4
2
0.2
0
0.0
2
0.0
10
20
30
40
50
60
70
80
0
15
25
30
35
40
45
50
55
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
Eoff
Eon
7
80
6
70
tfi
----
RG = 10Ω , VGE = 15V
td(off) - - - 300
TJ = 150ºC, VGE = 15V
VCE = 400V
E
0.6
3
0.4
2
0.2
- MilliJoules
4
on
I C = 60A
t f i - Nanoseconds
5
60
250
50
200
I C = 60A
40
150
I C = 30A
30
1
t d(off) - Nanoseconds
1.0
0.8
60
350
VCE = 400V
Eoff - MilliJoules
20
RG - Ohms
1.4
1.2
1
TJ = 25ºC
I C = 30A
Eon - MilliJoules
I C = 60A
1.6
E off - MilliJoules
VCE = 400V
E on - MilliJoules
Eoff - MilliJoules
Eon
RG = 10Ω , VGE = 15V
100
I C = 30A
0.0
25
50
75
100
20
0
150
125
50
10
20
30
40
TJ - Degrees Centigrade
80
140
70
100
TJ = 150ºC
30
80
TJ = 25ºC
20
60
10
0
15
20
25
30
35
40
45
I C - Amperes
© 2014 IXYS CORPORATION, All Rights Reserved
50
55
60
100
tfi
td(off) - - - -
95
60
90
VCE = 400V
50
85
I C = 60A
40
80
I C = 30A
30
75
20
70
40
10
65
20
0
25
50
75
100
TJ - Degrees Centigrade
125
60
150
t d(off) - Nanoseconds
120
40
80
RG = 10Ω , VGE = 15V
t f i - Nanoseconds
VCE = 400V
160
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off) - - - -
RG = 10Ω , VGE = 15V
50
70
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
70
tfi
60
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
60
50
IXYP30N65C3
IXYH30N65C3
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
280
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
120
140
tri
240
td(on) - - - -
120
80
120
60
I C = 60A
80
40
40
0
20
30
40
50
60
70
26
TJ = 25ºC
60
22
TJ = 150ºC
40
14
10
15
80
20
25
30
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
160
55
60
80
100
24
80
22
60
20
I C = 30A
40
Triangular Wave
70
I C - Amperes
26
I C = 60A
60
50
TJ = 150ºC
40
TC = 75ºC
30
VCE = 400V
20
VGE = 15V
10
RG = 10Ω
D = 0.5
18
20
50
50
90
28
VCE = 400V
25
45
100
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
RG = 10Ω , VGE = 15V
120
40
Fig. 21. Maximum Peak Load Current vs. Frequency
30
tri
35
I C - Amperes
RG - Ohms
140
18
0
0
10
80
20
20
I C = 30A
30
VCE = 400V
t r i - Nanoseconds
t r i - Nanoseconds
160
t d(on) - Nanoseconds
100
td(on) - - - -
RG = 10Ω , VGE = 15V
t d(on) - Nanoseconds
VCE = 400V
tri
100
TJ = 150ºC, VGE = 15V
200
34
75
100
125
16
150
TJ - Degrees Centigrade
Square Wave
0
1
10
100
1,000
fmax - KiloHertzs
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_30N65C3(4D-R47) 8-26-13
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.