IXYH40N120A4
1200V XPTTM
GenX4TM IGBT
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Ultra Low-Vsat PT IGBT for
up to 5kHz Switching
1200V
40A
1.80V
220ns
TO-247
(IXYH)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
140
40
275
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 5
Clamped Inductive Load
ICM = 80
0.8 • VCES
A
PC
TC = 25°C
600
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
°C
1.13 / 10
Nm/lb.in
VCE
TJ
TJM
Tstg
TL
Maximum Lead Temperature for Soldering
1.6 mm (0.062 in.) from Case for 10s
Md
Mounting Torque
Weight
G
C
E
G = Gate
E = Emitter
C (Tab)
C
= Collector
Tab = Collector
Features
6
g
Optimized for Low Conduction
Positive Thermal Coefficient of
Vce(sat)
International Standard Package
Advantages
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 250A, VCE = VGE
4.0
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 32A, VGE = 15V, Note 1
TJ = 150C
©2020 Littelfuse, Inc.
V
6.5
V
10 A
1 mA
TJ = 150C
IGES
100
1.56
1.80
1.80
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
Inrush Current Protection Circuits
nA
V
V
DS100931D(5/20)
IXYH40N120A4
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
12
IC = 32A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 32A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 32A, VGE = 15V
VCE = 600V, RG = 5
Note 2
Inductive load, TJ = 150°C
IC = 32A, VGE = 15V
VCE = 600V, RG = 5
Note 2
22
S
1650
105
60
pF
pF
pF
90
15
40
nC
nC
nC
22
50
2.30
204
346
3.75
ns
ns
mJ
ns
ns
mJ
17
50
3.55
280
760
6.46
ns
ns
mJ
ns
ns
mJ
0.21
0.25 °C/W
C/W
RthJC
RthCS
Notes:
1. Pulse test, t 300µs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Littelfuse Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYH40N120A4
Fig. 2. Extended Output Characteristics @ TJ = 25oC
Fig. 1. Output Characteristics @ TJ = 25oC
220
64
VGE = 15V
13V
12V
11V
56
180
10V
40
I C - Amperes
I C - Amperes
48
V GE = 15V
200
9V
32
24
8V
160
14V
140
13V
120
12V
100
11V
80
60
16
10V
40
8
7V
8V
7V
0
0
0
0.4
0.8
1.2
1.6
2
2.4
0
2.8
2
4
6
8
10
12
14
16
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 150oC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
64
1.8
V GE = 15V
13V
12V
56
11V
18
20
150
175
VGE = 15V
1.6
I C = 64A
V CE(sat) - Normalized
10V
48
I C - Amperes
9V
20
40
9V
32
8V
24
1.4
1.2
I C = 32A
1.0
16
7V
8
0.8
I C = 16A
6V
0
0.6
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
-50
-25
0
25
VCE - Volts
50
75
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
125
Fig. 6. Input Admittance
4.0
90
o
TJ = 25 C
80
3.5
o
TJ = - 40 C
70
3.0
o
25 C
60
2.5
I C - Amperes
VCE - Volts
100
TJ - Degrees Centigrade
I C = 64A
2.0
o
150 C
50
40
30
32A
20
1.5
10
16A
1.0
0
7
8
9
10
11
VGE - Volts
©2020 Littelfuse, Inc.
12
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXYH40N120A4
Fig. 7. Transconductance
Fig. 8. Gate Charge
30
16
o
TJ = - 40 C
VCE = 600V
14
25
I C = 32A
I G = 10mA
o
20
25 C
V GE - Volts
g f s - Siemens
12
o
15
150 C
10
10
8
6
4
5
2
0
0
0
10
20
30
40
50
60
70
80
0
10
20
30
I C - Amperes
50
60
70
80
90
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
90
10,000
f = 1 MHz
80
70
1,000
60
Cies
I C - Amperes
Capacitance - PicoFarads
40
QG - NanoCoulombs
C oes
100
50
40
30
C res
10
o
20
TJ = 150 C
10
RG = 5Ω
dv / dt < 10V / ns
0
0
1
5
10
15
20
25
35
40
200
300
400
500
Fig.3011. Maximum
Transient Thermal
Impedance
VCE - Volts
600
700
800
900
1000
1100
1200
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
aaa
0.4
Z(th)JC - K / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Second
Littelfuse Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYH40N120A4
Fig. 12. Inductive Switching Energy Loss vs.
Collector Current
Eoff
8
10
Eoff
o
TJ = 150 C
VCE = 600V
Eon
6
o
TJ = 150 C
5
RG = 5Ω,VGE = 15V
I C = 32A
6
6
4
8
4
o
TJ = 25 C
6
3
o
Eon - MilliJoules
8
E on - MilliJoules
E off - MilliJoules
12
Eon
RG = 5Ω,VGE = 15V
10
10
E off - MilliJoules
12
Fig. 13. Inductive Switching Energy Loss vs.
Collector-Emitter Voltage
TJ = 25 C
4
2
16
24
32
40
48
56
0
2
400
500
14
14
12
12
Eoff
Eon
900
6
I C = 32A
4
20
25
30
35
40
45
50
E off - MilliJoules
8
15
10
I C = 64A
8
4
2
2
4
25
50
o
TJ = 150 C, VGE = 15V
800
1000
700
900
400
I C = 64A
300
600
200
560
100
20
25
30
35
RG - Ohms
©2020 Littelfuse, Inc.
40
45
50
55
t f i - Nanoseconds
680
tfi
td(off)
400
VCE = 600V
350
o
TJ = 150 C
700
300
600
250
500
200
o
TJ = 25 C
400
150
300
100
200
50
16
24
32
40
I C - Amperes
48
56
64
t d(off) - Nanoseconds
500
t d(off) - Nanoseconds
I C = 32A
15
0
150
125
450
800
600
10
100
RG = 5Ω,VGE = 15V
VCE = 600V
760
640
75
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
td(off)
720
2
I C = 32A
TJ - Degrees Centigrade
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
800
6
6
4
55
8
RG - Ohms
tfi
10
E on - MilliJoules
10
Eon - MilliJoules
10
10
12
VCE = 600V
12
8
1
1000
Eon
RG = 5Ω,VGE = 15V
I C = 64A
6
t f i - Nanoseconds
800
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
VCE = 600V
5
700
Fig. 14. Inductive Switching Energy Loss vs.
Gate Resistance
o
840
600
VCE - Volts
TJ = 150 C , VGE = 15V
5
2
I C - Amperes
Eoff
E off - MilliJoules
4
64
16
14
2
IXYH40N120A4
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
900
tfi
800
td(off)
RG = 5Ω, VGE = 15V
360
350
320
300
I C = 32A
I C = 64A
500
200
400
t r i - Nanoseconds
t f i - Nanoseconds
240
160
300
25
50
75
100
125
td(on)
VCE = 600V
250
60
I C = 64A
150
45
I C = 32A
100
30
50
15
120
150
0
0
5
10
15
36
td(on)
32
RG = 5Ω, VGE = 15V
80
24
60
20
o
TJ = 150 C
40
16
20
12
0
8
32
40
45
50
55
td(on)
31
29
40
48
56
VCE = 600V
140
120
27
25
I C = 64A
100
23
80
21
60
19
I C = 32A
40
17
20
64
I C - Amperes
t d(on) - Nanoseconds
TJ = 25 C
24
35
tri
160
t r i - Nanoseconds
28
o
16
30
RG = 5Ω, VGE = 15V
VCE = 600V
100
25
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
180
t d(on) - Nanoseconds
t r i - Nanoseconds
120
20
RG - Ohms
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
tri
75
200
TJ - Degrees Centigrade
140
90
o
t d(on) - Nanoseconds
600
t d(off) - Nanoseconds
280
tri
105
TJ = 150 C, VGE = 15V
VCE = 600V
700
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
25
50
75
100
125
15
150
TJ - Degrees Centigrade
Littelfuse Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_40N120A4 (N6-RY92) 4-30-20-A
IXYH40N120A4
TO-247 Outline
1 - Gate
2,4 - Collector
3 - Emitter
©2020 Littelfuse, Inc.
IXYH40N120A4
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
Littelfuse Reserves the Right to Change Limits, Test Conditions, and Dimensions.