Preliminary Technical Information
IXYH40N65C3
XPTTM 650V IGBT
GenX3TM
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 20-60 kHz Switching
650V
40A
2.35V
20ns
TO-247 AD
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
80
40
180
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
20
300
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
ICM = 80
@VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 82, Non Repetitive
5
μs
PC
TC = 25°C
300
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in
6
g
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
Weight
C
E
G = Gate
E = Emitter
Tab
C
= Collector
Tab = Collector
Features
TJ
TJM
Tstg
TL
TSOLD
G
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
International Standard Package
Advantages
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
650
VGE(th)
IC
= 250A, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 40A, VGE = 15V, Note 1
TJ = 150C
© 2014 IXYS CORPORATION, All Rights Reserved
V
6.0
V
10
500
A
A
100
nA
TJ = 150C
IGES
2.0
2.4
2.35
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
High Frequency Power Inverters
V
V
DS100570C(8/14)
IXYH40N65C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
16
IC = 40A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 40A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 10
Note 2
Inductive load, TJ = 150°C
IC = 30A, VGE = 15V
VCE = 400V, RG = 10
Note 2
RthJC
RthCS
Notes:
TO-247 (IXYH) Outline
26
S
1950
118
40
pF
pF
pF
66
13
32
nC
nC
nC
23
40
0.83
110
20
0.36
ns
ns
mJ
ns
ns
mJ
0.65
24
40
1.60
130
30
0.53
ns
ns
mJ
ns
ns
mJ
0.21
0.50 °C/W
°C/W
1
2
P
3
e
Terminals: 1 - Gate
3 - Emitted
Dim.
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYH40N65C3
Fig. 1. Output Characteristics @ TJ = 25ºC
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
80
240
VGE = 15V
13V
12V
70
VGE = 15V
200
11V
14V
60
10V
I C (A)
50
I C (A)
160
40
13V
12V
120
11V
9V
30
80
10V
20
8V
10
8V
7V
0
0
0.5
1
1.5
2
2.5
3
3.5
0
4
0
5
10
15
20
25
VCE (V)
VCE (V)
Fig. 3. Output Characteristics @ TJ = 150ºC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
80
2.0
VGE = 15V
13V
12V
70
30
VGE = 15V
1.8
I C = 80A
11V
VCE(sat) - Normalized
60
50
I C (A)
9V
40
10V
40
30
9V
1.6
1.4
1.2
I C = 40A
1.0
0.8
20
10
0
0
0.5
1
1.5
2
2.5
3
3.5
4
7V
4.5
I C = 20A
0.6
8V
0.4
-50
5
-25
0
25
50
VCE (V)
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
6
75
100
125
150
175
TJ (ºC)
Fig. 6. Input Admittance
70
TJ = 25ºC
60
5
4
I C (A)
V CE (V)
50
I C = 80A
3
40
30
TJ = 150ºC
25ºC
20
40A
- 40ºC
2
10
20A
1
0
8
9
10
11
12
VGE - (V)
© 2014 IXYS CORPORATION, All Rights Reserved
13
14
15
4.5
5.5
6.5
7.5
8.5
VGE (V)
9.5
10.5
11.5
IXYH40N65C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
40
16
TJ = - 40ºC
35
VCE = 325V
14
30
I C = 40A
I G = 10mA
12
25ºC
10
150ºC
VGE (V)
g f s (S)
25
20
8
15
6
10
4
5
2
0
0
0
10
20
30
40
50
60
70
80
0
10
20
30
40
50
60
70
QG (nC)
I C (A)
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
10,000
90
f = 1 MHz
80
1,000
60
I C (A)
Capacitance (pF)
70
Cies
Coes
100
50
40
30
Cres
10
20
TJ = 150ºC
10
RG = 10Ω
dv / dt < 10V / ns
0
0
5
10
15
20
25
30
35
40
100
200
300
400
VCE (V)
500
600
700
VCE (V)
Fig. 12. Maximum Transient Thermal Impedance
Fig. 11. Forward-Bias Safe Operating Area
1
1000
VCE(sat) Limit
100
I D (A)
100µs
1
1ms
0.1
10ms
0.01
TJ = 175ºC
100ms
TC = 25ºC
Single Pulse
DC
Z (th)JC (ºC / W)
25µs
10
0.001
1
10
100
1000
VDS (V)
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width (s)
0.1
1
IXYH40N65C3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
1.8
Eoff
2.0
Eoff
8
---
TJ = 150ºC , VGE = 15V
1.6
I C = 60A
6
1.2
5
1.0
4
0.8
3
I C = 30A
0.6
2
0.4
1
0.2
15
20
25
30
35
40
45
50
1.2
3
TJ = 150ºC
0.8
2
0.4
0.0
0
15
55
20
25
30
35
Eoff
Eon
----
50
55
60
4.5
90
4.0
80
tfi
400
td(off) - - - -
360
TJ = 150ºC, VGE = 15V
3.5
70
3.0
60
VCE = 400V
320
280
I C = 60A
50
240
0.8
2.5
0.6
2.0
40
1.5
30
160
1.0
20
120
0.5
150
10
0.4
200
I C = 30A
t d(off) (ns)
E on (mJ)
I C = 60A
t f i (ns)
VCE = 400V
1.0
Eoff (mJ)
45
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
RG = 10Ω , VGE = 15V
1.2
40
I C (A)
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
1.4
1
TJ = 25ºC
RG (Ω)
1.6
4
VCE = 400V
0
10
----
E on (mJ)
1.4
Eon
5
RG = 10Ω , VGE = 15V
1.6
7
VCE = 400V
E on (mJ)
E off (mJ)
Eon -
9
E off (mJ)
2.0
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
I C = 30A
0.2
0.0
25
50
75
100
125
80
10
15
20
25
30
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
tfi
70
td(off) - - - -
200
80
180
70
RG = 10Ω , VGE = 15V
VCE = 400V
60
160
45
50
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
tfi
td(off) - - - -
55
150
140
RG = 10Ω , VGE = 15V
VCE = 400V
60
130
140
120
30
100
TJ = 25ºC
20
80
10
60
0
40
15
20
25
30
35
40
45
50
I C (A)
© 2014 IXYS CORPORATION, All Rights Reserved
55
60
50
120
40
110
I C = 30A, 60A
30
100
20
90
10
25
50
75
100
TJ (ºC)
125
80
150
t d(off) (ns)
40
t d(off) (ns)
TJ = 150ºC
t f i (ns)
50
t f i (ns)
40
RG (Ω)
TJ (ºC)
80
35
IXYH40N65C3
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
200
tri
180
110
td(on) - - - -
120
100
TJ = 150ºC, VGE = 15V
160
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
tri
100
90
60
I C = 30A
80
50
60
40
40
30
20
20
0
t r i (ns)
t r i (ns)
100
80
10
10
15
20
25
30
35
40
45
50
30
TJ = 25ºC, 150ºC
60
25
40
20
20
15
0
55
10
15
RG (Ω)
t d(on) (ns)
70
t d(on) (ns)
120
35
VCE = 400V
80
I C = 60A
td(on) - - - -
RG = 10Ω , VGE = 15V
VCE = 400V
140
40
20
25
30
35
40
45
50
55
60
I C (A)
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
180
38
tri
160
td(on) - - - -
RG = 10Ω , VGE = 15V
140
VCE = 400V
34
32
I C = 60A
100
30
80
28
60
26
40
24
I C = 30A
20
22
0
25
50
t d(on) (ns)
t r i (ns)
120
36
75
100
125
20
150
TJ (ºC)
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_40N65C3D1(51) 8-12-14
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.