Preliminary Technical Information
IXYH40N90C3
900V XPTTM IGBT
GenX3TM
VCES
IC110
VCE(sat)
tfi(typ)
High-Speed IGBT
for 20-50 kHz Switching
=
=
≤
=
900V
40A
2.5V
110ns
TO-247 AD
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1MΩ
900
900
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
105
40
200
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 5Ω
Clamped Inductive Load
ICM = 80
@VCE ≤ VCES
A
PC
TC = 25°C
600
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
6
g
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
Weight
G
C
E
G = Gate
E = Emitter
Tab
C
= Collector
Tab = Collector
Features
z
z
z
z
Optimized for Low Switching Losses
Square RBSOA
Positive Thermal Coefficient of
Vce(sat)
International Standard Package
Advantages
z
z
High Power Density
Low Gate Drive Requirement
Applications
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
950
VGE(th)
IC
= 250μA, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= 40A, VGE = 15V, Note 1
TJ = 150°C
© 2013 IXYS CORPORATION, All Rights Reserved
z
V
TJ = 150°C
IGES
z
2.2
2.9
5.5
V
25
500
μA
μA
±100
nA
2.5
V
V
z
z
z
z
z
z
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100444A(02/13)
IXYH40N90C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
14
IC = 40A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 40A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 40A, VGE = 15V
VCE = 0.5 • VCES, RG = 5Ω
Note 2
Inductive load, TJ = 125°C
IC = 40A, VGE = 15V
VCE = 0.5 • VCES, RG = 5Ω
Note 2
RthJC
RthCS
Notes:
TO-247 (IXYH) Outline
24
S
2170
160
40
pF
pF
pF
74
18
34
nC
nC
nC
27
54
1.9
78
110
1.0
ns
ns
mJ
ns
ns
mJ
1.7
27
54
2.7
87
150
1.2
ns
ns
mJ
ns
ns
mJ
0.21
0.25 °C/W
°C/W
1
2
∅P
3
e
Terminals: 1 - Gate
3 - Emitter
Dim.
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
b1
1.65
2.13
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
∅P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
PRELIMANARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYH40N90C3
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
80
VGE = 15V
13V
12V
70
14V
11V
60
160
50
IC - Amperes
IC - Amperes
VGE = 15V
200
10V
40
30
13V
120
12V
11V
80
9V
20
10V
40
10
9V
8V
7V
0
0
0.5
1
1.5
2
2.5
3
3.5
0
5
10
15
20
25
VCE - Volts
VCE - Volts
Fig. 3. Output Characteristics @ T J = 150ºC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
80
30
2.2
VGE = 15V
13V
12V
70
1.8
50
VCE(sat) - Normalized
11V
10V
40
9V
30
20
8V
10
7V
0.5
1
1.5
2
2.5
3
3.5
4
4.5
I
C
= 80A
1.6
1.4
I
1.2
C
= 40A
1.0
0.8
I
C
= 20A
0.6
6V
0
0
VGE = 15V
2.0
60
IC - Amperes
7V
0
4
0.4
-50
5
-25
0
25
VCE - Volts
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
100
9
90
TJ = 25ºC
8
80
70
6
IC - Amperes
VCE - Volts
7
5
I
C
= 80A
4
50
TJ = 150ºC
25ºC
40
30
40A
3
60
- 40ºC
20
2
10
20A
1
0
8
9
10
11
12
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
13
14
15
4.5
5.5
6.5
7.5
8.5
VGE - Volts
9.5
10.5
11.5
IXYH40N90C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
40
16
TJ = - 40ºC
30
25ºC
12
25
150ºC
10
VGE - Volts
g f s - Siemens
VCE = 450V
14
35
20
15
I G = 10mA
8
6
10
4
5
2
0
I C = 40A
0
0
10
20
30
40
50
60
70
80
90
100
0
110
10
20
Fig. 9. Capacitance
40
50
60
70
Fig. 10. Reverse-Bias Safe Operating Area
90
10,000
f = 1 MHz
80
70
Cies
1,000
60
IC - Amperes
Capacitance - PicoFarads
30
QG - NanoCoulombs
IC - Amperes
Coes
100
50
40
30
Cres
10
0
5
10
15
20
25
30
35
20
TJ = 150ºC
10
RG = 5Ω
dv / dt < 10V / ns
0
200
40
300
400
VCE - Volts
500
600
700
800
900
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
1
0.1
0.01
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXYH40N90C3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
3.0
Eoff
Eon -
--I C = 80A
VCE = 450V
Eon
----
6
4
I
0.6
C
= 40A
0.2
10
15
20
25
Eoff - MilliJoules
1.0
TJ = 125ºC
1.2
TJ = 25ºC
1.0
3
0.6
2
2
0.4
1
0
0.2
0
20
30
30
40
50
1.6
9
1.2
6
I C = 80A
1.1
5
1.0
4
0.9
3
75
100
160
160
140
I
C
140
= 40A
120
120
100
I
60
60
0
125
40
40
5
10
15
30
100
tfi
180
td(off) - - - -
160
TJ = 125ºC
90
100
60
TJ = 25ºC
95
90
VCE = 450V
140
85
I C = 40A
120
100
75
80
70
I C = 80A
60
50
30
0
0
60
IC - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
70
80
80
65
40
60
20
25
50
75
TJ - Degrees Centigrade
100
55
125
t d(off) - Nanoseconds
120
t d(off) - Nanoseconds
200
td(off) - - - -
RG = 5Ω , VGE = 15V
150
VCE = 450V
t f i - Nanoseconds
200
t f i - Nanoseconds
tfi
50
25
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
RG = 5Ω , VGE = 15V
40
20
RG - Ohms
180
30
100
= 80A
1
300
20
C
80
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
150
180
VCE = 450V
TJ - Degrees Centigrade
250
200
80
0.7
50
180
2
I C = 40A
0.6
220
td(off) - - - -
t d(off) - Nanoseconds
7
25
80
TJ = 125ºC, VGE = 15V
t f i - Nanoseconds
VCE = 450V
1.3
tfi
200
8
Eon - MilliJoules
Eoff - MilliJoules
----
RG = 5Ω , VGE = 15V
0.8
70
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
220
10
1.4
60
IC - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
1.5
4
0.8
RG - Ohms
Eon
5
Eon - MilliJoules
6
Eon - MilliJoules
1.4
Eoff
7
VCE = 450V
1.4
8
8
RG = 5Ω , VGE = 15V
10
1.8
5
Eoff
1.6
12
TJ = 125ºC , VGE = 15V
2.2
Eoff - MilliJoules
1.8
14
2.6
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
IXYH40N90C3
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
280
td(on) - - - -
60
160
50
120
40
I
C = 40A
30
40
50
td(on) - - - -
RG = 5Ω , VGE = 15V
160
40
VCE = 450V
25ºC ≤ TJ ≤ 125ºC
120
30
80
20
40
10
t d(on) - Nanoseconds
200
C = 80A
t d(on) - Nanoseconds
I
80
tri
70
t r i - Nanoseconds
tri
TJ = 125ºC, VGE = 15V
VCE = 450V
t r i - Nanoseconds
200
80
240
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
20
0
0
10
5
10
15
20
25
0
20
30
30
40
50
60
70
80
IC - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
240
36
tri
td(on) - - - -
RG = 5Ω , VGE = 15V
200
34
160
I
C
32
= 80A
120
30
80
28
I C = 40A
40
26
0
25
50
75
t d(on) - Nanoseconds
t r i - Nanoseconds
VCE = 450V
100
24
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_40N90C3D1(5D) 02-03-12
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.