Advance Technical Information
IXYH50N170C
High Voltage
XPTTM IGBT
VCES =
IC110 =
VCE(sat)
tfi(typ) =
1700V
50A
3.7V
95ns
TO-247
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
Maximum Ratings
VGES
VGEM
1700
1700
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
178
50
460
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1
Clamped Inductive Load
ICM = 200
VCE 1360
A
V
PC
TC = 25°C
1500
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
300
260
°C
°C
1.13/10
Nm/lb.in
6
g
Weight
G
C
E
G = Gate
E = Emitter
Tab
C
= Collector
Tab = Collector
Features
High Voltage Package
High Blocking Voltage
High Peak Current Capability
Low Saturation Voltage
Advantages
Low Gate Drive Requirement
High Power Density
Applications
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1700
VGE(th)
IC
= 250A, VCE = VGE
ICES
VCE = VCES, VGE = 0V
V
3.0
5.0
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 50A, VGE = 15V, Note 1
TJ = 150C
© 2017 IXYS CORPORATION, All Rights Reserved
V
25 A
3.5 mA
TJ = 150C
IGES
100
2.8
3.9
3.7
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
nA
V
V
DS100800(02/17)
IXYH50N170C
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
IC = 50A, VCE = 10V, Note 1
30
RGi
Gate Input Resistance
Cies
Coes
Cres
Qg(on)
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
VCE = 25V, VGE = 0V, f = 1MHz
5500
276
105
pF
pF
pF
260
28
110
nC
nC
nC
20
44
8.7
180
95
5.6
ns
ns
mJ
ns
ns
mJ
22
40
11.9
236
160
8.2
ns
ns
mJ
ns
ns
mJ
0.21
0.10 °C/W
°C/W
VCE = 0.5 • VCES, RG = 1
Note 2
VCE = 0.5 • VCES, RG = 1
Note 2
S
2.0
Inductive load, TJ = 25°C
IC = 50A, VGE = 15V
RthJC
RthCS
Notes:
50
IC = 50A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 150°C
IC = 50A, VGE = 15V
TO-247 (IXYH) Outline
D
A
A2
B
E
Q
R
S
0P
A
0K M D B M
D2
D1
D
0P1
R1
1
2
3
4
IXYS OPTION
L1
C
L
A1
c
b
b2
b4
e
J MCAM
E1
1 - Gate
2,4 - Collector
3 - Emitter
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYH50N170C
o
o
Fig. 2. Extended Output Characteristics @ TJ = 25 C
Fig. 1. Output Characteristics @ TJ = 25 C
100
600
VGE = 15V
12V
10V
9V
90
80
VGE = 15V
8V
70
13V
400
I C - Amperes
I C - Amperes
14V
500
60
50
7V
40
30
12V
300
11V
10V
200
9V
20
100
8V
7V
6V
10
6V
0
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
2
4
6
8
2.2
100
VGE = 15V
12V
10V
9V
1.8
8V
70
I C - Amperes
14
16
18
20
22
VGE = 15V
2.0
V CE(sat) - Normalized
80
12
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
o
Fig. 3. Output Characteristics @ TJ = 150 C
90
10
VCE - Volts
VCE - Volts
60
7V
50
40
30
6V
1.6
1.4
I C = 50A
1.2
1.0
I C = 25A
0.8
20
10
I C = 100A
0.6
5V
0.4
0
0
1
2
3
4
5
6
-50
7
-25
0
VCE - Volts
50
75
100
125
150
175
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
7
25
Fig. 6. Input Admittance
250
225
o
TJ = 150 C
200
6
I C - Amperes
VCE - Volts
175
5
I C = 100A
4
150
125
100
75
o
50A
3
TJ = 150 C
50
25A
o
25 C
25
o
- 40 C
0
2
5
6
7
8
9
10
11
12
VGE - Volts
© 2017 IXYS CORPORATION, All Rights Reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
VGE - Volts
8.0
8.5
9.0
9.5
10.0
IXYH50N170C
Fig. 7. Transconductance
Fig. 8. Gate Charge
90
16
o
TJ = - 40 C
80
70
I C = 50A
I G = 10mA
12
o
25 C
60
50
V GE - Volts
g f s - Siemens
VCE = 850V
14
o
150 C
40
30
10
8
6
4
20
2
10
0
0
0
40
80
120
160
200
240
280
0
40
80
I C - Amperes
Fig. 9. Capacitance
160
200
240
280
Fig. 10. Reverse-Bias Safe Operating Area
240
10,000
Cies
200
160
1,000
I C - Amperes
Capacitance - PicoFarads
120
QG - NanoCoulombs
Coes
100
120
80
Cres
o
TJ = 150 C
40
RG = 1Ω
dv / dt < 10V / ns
f = 1 MHz
0
10
0
5
10
15
20
25
30
35
40
200
400
600
800
1000
1200
1400
1600
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
1
Z(th)JC - K / W
0.1
0.01
0.001
0.0001
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYH50N170C
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
35
Eoff
30
Eon
o
TJ = 150 C , VGE = 15V
40
24
35
20
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Eoff
Eon
25
RG = 1ΩVGE = 15V
VCE = 850V
VCE = 850V
30
25
15
20
10
16
20
12
15
o
TJ = 150 C
8
10
E on - MilliJoules
20
E on - MilliJoules
I C = 100A
E off - MilliJoules
25
E off - MilliJoules
30
15
I C = 50A
5
4
10
5
o
TJ = 25 C
0
0
5
1
2
3
4
5
6
7
8
9
20
10
30
40
50
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eon
0
100
24
12
20
9
16
6
12
td(off)
500
VCE = 850V
180
400
I C = 50A
160
300
I C = 100A
140
I C = 50A
3
50
75
100
200
8
0
25
4
150
125
120
100
1
2
3
4
tfi
VCE = 850V
200
6
7
8
9
10
350
180
300
160
250
o
TJ = 150 C
150
200
100
150
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
tfi
td(off)
280
260
RG = 1Ω, VGE = 15V
VCE = 850V
240
I C = 100A
140
220
120
200
I C = 50A
100
180
80
160
o
TJ = 25 C
50
100
I C = 100A
0
20
30
40
50
60
70
80
I C - Amperes
© 2017 IXYS CORPORATION, All Rights Reserved
90
50
100
60
25
50
75
100
TJ - Degrees Centigrade
125
140
150
t d(off) - Nanoseconds
250
200
t d(off) - Nanoseconds
t f i - Nanoseconds
td(off)
RG = 1Ω, VGE = 15V
400
t f i - Nanoseconds
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
300
5
RG - Ohms
TJ - Degrees Centigrade
350
t d(off) - Nanoseconds
15
600
o
28
E on - MilliJoules
E off - MilliJoules
90
TJ = 150 C, VGE = 15V
200
I C = 100A
VCE = 850V
18
tfi
32
RG = 1ΩVGE = 15V
80
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
220
36
t f i - Nanoseconds
Eoff
21
70
I C - Amperes
RG - Ohms
24
60
IXYH50N170C
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
tri
200
td(on)
120
30
80
20
I C = 50A
40
10
0
3
4
5
6
7
8
9
tri
60
20
o
TJ = 25 C
40
18
20
16
30
40
50
60
70
80
90
14
100
34
30
140
28
120
26
I C = 100A
100
24
80
22
60
20
I C = 50A
40
18
20
16
0
50
22
32
VCE = 850V
25
80
75
100
125
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on)
RG = 1Ω, VGE = 15V
160
24
I C - Amperes
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
180
26
o
TJ = 150 C
100
20
10
RG - Ohms
200
VCE = 850V
0
0
2
28
t d(on) - Nanoseconds
I C = 100A
t d(on) - Nanoseconds
40
td(on)
30
RG = 1Ω, VGE = 15V
120
160
1
tri
140
50
o
TJ = 150 C, VGE = 15V
VCE = 850V
t r i - Nanoseconds
160
60
t r i - Nanoseconds
240
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
14
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_50N170C (9T-AT653) 2-10-17