IXYK140N90C3
IXYX140N90C3
XPTTM 900V IGBTs
GenX3TM
VCES
IC110
VCE(sat)
tfi(typ)
High-Speed IGBTs
for 20-50 kHz Switching
=
=
≤
=
900V
140A
2.7V
105ns
TO-264 (IXYK)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1MΩ
900
900
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
ILRMS
IC110
ICM
TC = 25°C (Chip Capability)
Terminal Current Limit
TC = 110°C
TC = 25°C, 1ms
310
160
140
840
A
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
70
1
A
J
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1Ω
Clamped Inductive Load
ICM = 280
@VCE ≤ VCES
A
PC
TC = 25°C
1630
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
20..120 /4.5..27
N/lb.
10
6
g
g
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque (TO-264)
FC
Mounting Force
Weight
TO-264
PLUS247
(PLUS247)
G
C
E
PLUS247 (IXYX)
G
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250μA, VGE = 0V
950
VGE(th)
IC
= 250μA, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
5.5
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
= IC110, VGE = 15V, Note 1
TJ = 150°C
2.15
2.85
z
z
z
z
z
z
Tab
E
= Emitter
Tab = Collector
Optimized for Low Switching Losses
Square RBSOA
International Standard Packages
Positive Thermal Coefficient of
Vce(sat)
Avalanche Rated
High Current Handling Capability
Advantages
High Power Density
Low Gate Drive Requirement
Applications
z
z
z
±100
nA
z
2.70
V
V
z
z
z
z
© 2013 IXYS CORPORATION, All Rights Reserved
E
V
25 μA
1.25 mA
TJ = 150°C
C
Features
z
V
G
G = Gate
C = Collector
z
Symbol
Test Conditions
(TJ = 25°C, Unless Otherwise Specified)
Tab
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100450B(02/13)
IXYK140N90C3
IXYX140N90C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
30
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = IC110, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1Ω
Note 2
Inductive load, TJ = 150°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1Ω
Note 2
RthJC
RthCS
TO-264 Outline
52
S
9830
570
185
pF
pF
pF
330
nC
82
nC
128
nC
40
86
4.3
145
105
4.0
ns
ns
mJ
ns
ns
mJ
6.5
37
85
6.5
175
125
5.0
ns
ns
mJ
ns
ns
mJ
0.15
0.092 °C/W
°C/W
Terminals:
1 = Gate
2,4 = Collector
3 = Emitter
PLUS247TM Outline
Notes:
1. Pulse test, t ≤ 300μs, duty cycle, d ≤ 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
Terminals:
1 - Gate
2 - Collector
3 - Emitter
Dim.
A
A1
A2
b
b1
b2
C
D
E
e
L
L1
Q
R
Millimeter
Min. Max.
4.83
5.21
2.29
2.54
1.91
2.16
1.14
1.40
1.91
2.13
2.92
3.12
0.61
0.80
20.80 21.34
15.75 16.13
5.45 BSC
19.81 20.32
3.81
4.32
5.59
6.20
4.32
4.83
Inches
Min. Max.
.190 .205
.090 .100
.075 .085
.045 .055
.075 .084
.115 .123
.024 .031
.819 .840
.620 .635
.215 BSC
.780 .800
.150 .170
.220 0.244
.170 .190
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYK140N90C3
IXYX140N90C3
Fig. 2. Extended Output Characteristics @ T J = 25ºC
Fig. 1. Output Characteristics @ T J = 25ºC
280
350
VGE = 15V
12V
240
VGE = 15V
12V
300
11V
250
160
10V
120
9V
80
IC - Amperes
IC - Amperes
200
11V
200
10V
150
9V
100
8V
40
50
8V
6V
0
7V
0
0
0.4
0.8
1.2
1.6
2
2.4
2.8
3.2
3.6
4
0
2
4
6
VGE = 15V
12V
11V
IC - Amperes
10V
160
120
9V
80
40
2.5
3
3.5
1.4
18
150
175
= 280A
I
C
= 140A
1.0
0.8
7V
0.6
4
C
1.2
I
C
= 70A
0.4
4.5
-50
5
-25
0
VCE - Volts
25
50
75
100
125
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
7
200
TJ = 25ºC
180
6
160
140
I
C
IC - Amperes
5
VCE - Volts
16
1.6
8V
6V
0
2
I
1.8
200
1.5
14
VGE = 15V
2.0
VCE(sat) - Normalized
240
1
12
2.2
280
0.5
10
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 150ºC
0
8
VCE - Volts
VCE - Volts
= 280A
4
140A
3
120
TJ = 150ºC
25ºC
100
- 40ºC
80
60
70A
40
2
20
1
0
8
9
10
11
12
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
13
14
15
4
4.5
5
5.5
6
6.5
7
7.5
VGE - Volts
8
8.5
9
9.5
10
IXYK140N90C3
IXYX140N90C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
120
16
VCE = 450V
14
TJ = - 40ºC, 25ºC, 150ºC
100
I C = 140A
I G = 10mA
12
VGE - Volts
g f s - Siemens
80
60
40
10
8
6
4
20
2
0
0
0
20
40
60
80
100
120
140
160
180
0
200
50
100
150
200
250
300
350
QG - NanoCoulombs
IC - Amperes
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
300
100,000
f = 1 MHz
200
10,000
IC - Amperes
Capacitance - PicoFarads
250
Cies
1,000
150
100
Coes
TJ = 150ºC
50
Cres
0
100
100
0
5
10
15
20
25
30
35
40
RG = 1Ω
dv / dt < 10V / ns
200
300
400
500
600
700
800
900
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z(th)JC - ºC / W
0.1
0.01
0.001
0.0001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXYK140N90C3
IXYX140N90C3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
8
6
9
Eon -
Eoff
7
Eoff
8
TJ = 150ºC , VGE = 15V
4
5
3
4
2
3
8
4
6
TJ = 150ºC
3
4
TJ = 25ºC
2
I
C
= 50A
1
2
3
4
5
6
7
8
9
65
70
75
80
85
90
95
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
Eon
----
240
4
4
3
3
2
1
1
0
75
100
320
TJ = 150ºC, VGE = 15V
300
VCE = 450V
200
280
I
180
C
= 50A
260
160
240
140
220
I
120
C
= 100A
200
2
I C = 50A
50
td(off) - - - -
0
150
125
100
180
80
160
60
140
1
2
3
4
5
6
7
8
9
TJ - Degrees Centigrade
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
tfi
225
td(off) - - - -
260
200
240
180
RG = 1Ω , VGE = 15V
VCE = 450V
200
220
200
150
180
125
160
TJ = 25ºC
100
140
75
50
55
60
65
70
75
80
85
IC - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
90
95
td(off) - - - -
260
240
VCE = 450V
160
10
220
I C = 50A
140
200
120
180
100
160
I C = 100A
120
80
100
100
60
140
25
50
75
100
TJ - Degrees Centigrade
125
120
150
t d(off) - Nanoseconds
175
t d(off) - Nanoseconds
TJ = 150ºC
tfi
RG = 1Ω , VGE = 15V
t f i - Nanoseconds
250
t d(off) - Nanoseconds
Eon - MilliJoules
5
t f i - Nanoseconds
6
I C = 100A
25
340
tfi
220
VCE = 450V
0
100
260
7
RG = 1Ω , VGE = 15V
5
t f i - Nanoseconds
60
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
50
55
IC - Amperes
8
6
Eoff - MilliJoules
50
10
RG - Ohms
8
7
2
1
2
1
Eon - MilliJoules
6
Eon - MilliJoules
5
----
VCE = 450V
7
I C = 100A
Eoff - MilliJoules
6
Eon
RG = 1Ω , VGE = 15V
5
VCE = 450V
Eoff - MilliJoules
10
---
IXYK140N90C3
IXYX140N90C3
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
160
tri
td(on) - - - -
120
100
I
C
= 100A
80
48
60
I
C
40
= 50A
40
32
20
24
0
t d(on) - Nanoseconds
56
2
3
4
5
6
7
8
9
80
40
60
38
TJ = 25ºC, 150ºC
40
36
20
34
0
16
1
42
VCE = 450V
64
100
td(on) - - - -
RG = 1Ω , VGE = 15V
50
10
RG - Ohms
55
60
65
70
75
80
85
90
95
t d(on) - Nanoseconds
VCE = 450V
44
tri
72
TJ = 150ºC, VGE = 15V
t r i - Nanoseconds
140
t r i - Nanoseconds
120
80
32
100
IC - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
140
52
tri
120
VCE = 450V
I
C
48
44
= 100A
80
40
60
36
I C = 50A
40
32
20
t d(on) - Nanoseconds
100
t r i - Nanoseconds
td(on) - - - -
RG = 1Ω , VGE = 15V
28
0
25
50
75
100
125
24
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_140N90C3(91)03-26-12-A
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.