Advance Technical Information
IXYN120N120C3
1200V XPTTM IGBTs
GenX3TM
High-Speed IGBTs
for 20-50 kHz Switching
VCES =
IC110 =
VCE(sat)
tfi(typ) =
1200V
120A
3.20V
96ns
E
SOT-227B, miniBLOC
E153432
Symbol
Test Conditions
E
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
Continuous
Transient
IC25
ILRMS
IC110
ICM
TC= 25°C (Chip Capability)
Terminal Current Limit
TC= 110°C
TC = 25°C, 1ms
IA
EAS
TC = 25°C
TC = 25°C
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 1
Clamped Inductive Load
PC
TC = 25°C
TJ
TJM
Tstg
VISOL
50/60Hz
IISOL 1mA
Md
Mounting Torque
Terminal Connection Torque
t = 1min
t = 1s
Weight
1200
1200
V
V
±20
±30
V
V
240
200
120
700
A
A
A
A
60
2
A
J
ICM = 240
VCE VCES
A
1200
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in
Nm/lb.in
30
g
G
E
C
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
Features
Optimized for Low Switching Losses
Square RBSOA
miniBLOC, with Aluminium Nitride
Isolation
International Standard Package
Isolation Voltage 2500V~
Positive Thermal Coefficient of
Vce(sat)
Avalanche Rated
High Current Handling Capability
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 500A, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
5.0
VCE = 0V, VGE = 20V
VCE(sat)
IC
= IC110, VGE = 15V, Note 1
TJ = 150C
© 2013 IXYS CORPORATION, All Rights Reserved
100
Applications
V
nA
2.55
3.40
3.20
High Power Density
Low Gate Drive Requirement
V
25 A
1.5 mA
TJ = 150C
IGES
V
V
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100560(9/13)
IXYN120N120C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
40
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = IC110, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1
Note 2
Inductive load, TJ = 150°C
IC = 100A, VGE = 15V
VCE = 0.5 • VCES, RG = 1
Note 2
RthJC
RthCS
Notes:
SOT-227B miniBLOC (IXYN)
68
S
9850
580
218
pF
pF
pF
412
nC
73
nC
180
nC
35
77
6.75
176
96
5.10
ns
ns
mJ
ns
ns
mJ
33
72
10.30
226
120
7.20
ns
ns
mJ
ns
ns
mJ
0.05
0.125 °C/W
°C/W
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a
"considered reflection" of the anticipated result. IXYS reserves the right to change limits, test
conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYN120N120C3
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
Fig. 1. Output Characteristics @ TJ = 25ºC
240
VGE = 15V
13V
12V
11V
10V
10V
250
9V
160
120
I C - Amperes
I C - Amperes
200
VGE = 15V
12V
11V
300
8V
80
9V
200
150
8V
100
7V
7V
40
50
6V
6V
0
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
2
4
6
8
240
2.2
VGE = 15V
13V
12V
11V
10V
14
16
18
20
150
175
VGE = 15V
2.0
1.8
9V
VCE(sat) - Normalized
I C - Amperes
12
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150ºC
200
10
VCE - Volts
VCE - Volts
160
8V
120
7V
80
I C = 240A
1.6
1.4
I C = 120A
1.2
1.0
0.8
40
I C = 60A
6V
0.6
5V
0
0
1
2
3
4
5
6
0.4
-50
7
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
75
100
125
Fig. 6. Input Admittance
280
8
TJ = 25ºC
7
240
200
I C - Amperes
6
V CE - Volts
50
TJ - Degrees Centigrade
5
I C = 240A
4
120A
3
160
120
TJ = 150ºC
25ºC
80
- 40ºC
2
40
60A
1
0
6
7
8
9
10
11
12
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
13
14
15
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
7.5
8.0
8.5
9.0
9.5
IXYN120N120C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
16
140
TJ = - 40ºC
120
I C = 120A
I G = 10mA
12
100
25ºC
V GE - Volts
g f s - Siemens
VCE = 600V
14
80
150ºC
60
40
10
8
6
4
20
2
0
0
0
50
100
150
200
250
300
0
50
100
I C - Amperes
200
250
300
350
400
450
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
100,000
280
f = 1 MHz
240
C ies
10,000
200
I C - Amperes
Capacitance - PicoFarads
150
C oes
1,000
160
120
80
TJ = 150ºC
40
C res
100
1
0
5
10
15
20
RG = 1Ω
dv / dt < 10V / ns
0
25
Fig.
11. Maximum
Transient 100
Thermal Impedance
30
35
40
300
500
700
900
1100
1300
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
aaaaa
0.2
Z(th)JC - ºC / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXYN120N120C3
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
10
18
9
---
8
I C = 100A
VCE = 600V
7
10
5
8
4
10
TJ = 150ºC
5
6
3
6
4
TJ = 25ºC
3
2
2
3
4
5
6
7
8
8
4
I C = 50A
1
12
RG = 1ΩVGE = 15V
9
4
2
2
1
10
2
50
55
60
65
70
RG - Ohms
8
----
180
6
10
160
5
8
4
6
RG = 1ΩVGE = 15V
95
0
100
td(off) - - - -
700
TJ = 150ºC, VGE = 15V
600
140
500
I C = 50A
I C = 100A
120
400
4
100
300
2
80
200
0
150
60
I C = 50A
2
1
25
200
50
75
100
125
100
1
4
5
6
7
8
9
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
tfi
td(off) - - - -
160
300
150
tfi
RG = 1Ω, VGE = 15V
120
240
100
220
80
200
TJ = 25ºC
40
20
55
60
65
70
75
80
85
I C - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
90
320
300
95
VCE = 600V
I C = 50A
280
130
260
120
240
110
220
I C = 100A
100
200
180
90
180
160
80
160
140
100
70
25
50
75
100
TJ - Degrees Centigrade
125
140
150
t d(off) - Nanoseconds
260
t d(off) - Nanoseconds
140
60
140
280
VCE = 600V
TJ = 150ºC
td(off) - - - -
10
RG = 1Ω, VGE = 15V
t f i - Nanoseconds
160
t f i - Nanoseconds
3
RG - Ohms
180
50
2
TJ - Degrees Centigrade
320
t d(off) - Nanoseconds
3
t f i - Nanoseconds
VCE = 600V
Eon - MilliJoules
Eoff - MilliJoules
90
800
tfi
I C = 100A
VCE = 600V
85
200
12
7
80
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
14
Eon
75
I C - Amperes
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
E on - MilliJoules
6
----
6
E on - MilliJoules
12
Eon
VCE = 600V
14
7
14
Eoff
16
TJ = 150ºC , VGE = 15V
8
E off - MilliJoules
Eon -
E off - MilliJoules
Eoff
IXYN120N120C3
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
160
90
84
tri
140
td(on) - - - -
76
80
TJ = 150ºC, VGE = 15V
VCE = 600V
60
80
52
I C = 100A
60
44
40
0
1
2
3
4
5
6
7
8
9
VCE = 600V
70
35
TJ = 25ºC
60
28
30
31
20
20
50
10
55
60
65
75
80
85
90
95
30
100
Fig. 21. Maximum Peak Load Current vs. Frequency
120
40
td(on) - - - -
RG = 1Ω, VGE = 15V
38
110
TJ = 150ºC
100
TC = 75ºC
90
VCE = 600V
36
60
34
40
32
I C = 50A
20
Triangular Wave
80
I C - Amperes
I C = 100A
t d(on) - Nanoseconds
t r i - Nanoseconds
70
I C - Amperes
120
80
33
TJ = 150ºC
32
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
100
34
50
RG - Ohms
tri
36
RG = 1Ω, VGE = 15V
40
36
I C = 50A
20
td(on) - - - -
t d(on) - Nanoseconds
100
t r i - Nanoseconds
68
t d(on) - Nanoseconds
t r i - Nanoseconds
120
37
tri
30
VCE = 600V
VGE = 15V
RG = 1Ω
D = 0.5
70
60
Square Wave
50
40
30
20
10
0
25
50
75
100
125
28
150
TJ - Degrees Centigrade
0
10
100
1,000
fmax - KiloHertzs
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_120N120C3(9P-C91) 9-09-13
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.