Preliminary Technical Information
IXYN82N120C3
1200V XPTTM IGBT
GenX3TM
VCES =
IC110 =
VCE(sat)
tfi(typ) =
High-Speed IGBT
for 20-50 kHz Switching
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
SOT-227B, miniBLOC
E153432
Maximum Ratings
1200
1200
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C (Chip Capability)
TC = 110°C
TC = 25°C, 1ms
120
66
380
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 2
Clamped Inductive Load
ICM = 164
@VCE VCES
A
PC
TC = 25°C
600
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
2500
3000
V~
V~
1.5/13
1.3/11.5
Nm/lb.in.
Nm/lb.in.
30
g
TJ
TJM
Tstg
VISOL
50/60Hz
IISOL 1mA
t = 1min
t = 1s
Md
Mounting Torque
Terminal Connection Torque
Weight
1200V
66A
3.20V
93ns
E
G
E
C
G = Gate, C = Collector, E = Emitter
either emitter terminal can be used as
Main or Kelvin Emitter
Features
Optimized for Low Switching Losses
Square RBSOA
2500V~ Isolation Voltage
Positive Thermal Coefficient of
Vce(sat)
High Current Handling Capability
International Standard Package
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 250A, VCE = VGE
2.5
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 82A, VGE = 15V, Note 1
TJ = 150C
©2019 IXYS CORPORATION, All Rights Reserved
Applications
V
4.5
V
25
500
A
A
100
nA
TJ = 150C
2.75
3.76
3.20
High Power Density
Low Gate Drive Requirement
V
V
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100389B(1/19)
IXYN82N120C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
30
IC = 60A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 82A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 80A, VGE = 15V
VCE = 0.5 • VCES, RG = 2
Note 2
Inductive load, TJ = 125°C
IC = 80A, VGE = 15V
VCE = 0.5 • VCES, RG = 2
Note 2
RthJC
RthCS
Notes:
SOT-227B miniBLOC (IXYN)
50
S
4060
285
110
pF
pF
pF
215
26
84
nC
nC
nC
29
78
4.95
192
93
2.78
ns
ns
mJ
ns
ns
mJ
5.00
29
90
7.45
200
95
3.70
ns
ns
mJ
ns
ns
mJ
0.05
0.25 °C/W
°C/W
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
PRELIMINARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are derived
from data gathered during objective characterizations of preliminary engineering lots; but also may yet
contain some information supplied during a pre-production design evaluation. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYN82N120C3
o
o
Fig. 2. Extended Output Characteristics @ TJ = 25 C
Fig. 1. Output Characteristics @ TJ = 25 C
300
160
VGE = 15V
13V
11V
10V
9V
140
250
100
80
11V
10V
9V
200
8V
I C - Amperes
I C - Amperes
120
VGE = 15V
13V
12V
7V
60
150
8V
100
7V
6V
40
50
20
6V
5V
0
5V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
5
10
15
VCE - Volts
2.2
VGE = 15V
13V
11V
10V
9V
VGE = 15V
2.0
I C = 164A
1.8
VCE(sat) - Normalized
I C - Amperes
120
30
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
o
140
25
VCE - Volts
Fig. 3. Output Characteristics @ TJ = 125 C
160
20
8V
100
80
7V
60
40
1.6
1.4
I C = 82A
1.2
1.0
0.8
6V
I C = 41A
20
0.6
5V
0
0
1
2
3
4
5
0.4
-50
6
-25
0
VCE - Volts
25
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
160
8.5
o
TJ = 25 C
7.5
140
120
5.5
I C - Amperes
VCE - Volts
6.5
I C = 164A
4.5
80
60
o
TJ = 125 C
82A
3.5
100
40
o
25 C
o
- 40 C
2.5
20
41A
1.5
0
5
6
7
8
9
10
11
VGE - Volts
©2019 IXYS CORPORATION, All Rights Reserved
12
13
14
15
3.0
3.5
4.0
4.5
5.0
5.5
6.0
VGE - Volts
6.5
7.0
7.5
8.0
IXYN82N120C3
Fig. 8. Gate Charge
Fig. 7. Transconductance
80
16
o
TJ = - 40 C
70
VCE = 600V
14
60
I C = 82A
I G = 10mA
12
50
V GE - Volts
g f s - Siemens
o
25 C
o
125 C
40
30
10
8
6
20
4
10
2
0
0
0
20
40
60
80
100
120
140
160
0
20
40
60
I C - Amperes
80
100
120
140
160
180
200
220
QG - NanoCoulombs
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
180
10,000
140
120
1,000
I C - Amperes
Capacitance - PicoFarads
160
Cies
Coes
100
80
60
100
Cres
f = 1 MHz
o
40
TJ = 150 C
20
RG = 2Ω
dv / dt < 10V / ns
0
10
0
5
10
15
20
25
30
35
200
40
400
600
800
1000
1200
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
Z (th)JC - K / W
1
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Seconds
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
10
IXYN82N120C3
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
8
Eon
VCE = 600V
6
4.0
4
8
3
6
9
8
VCE = 600V
3.5
7
o
3.0
6
TJ = 125 C
2.5
5
2.0
4
E on - MilliJoules
10
E on - MilliJoules
I C = 80A
Eon
RG = 2ΩVGE = 15V
12
5
10
Eoff
4.5
14
o
TJ = 125 C , VGE = 15V
E off - MilliJoules
7
E off - MilliJoules
5.0
16
Eoff
o
2
TJ = 25 C
4
1.5
3
2
1.0
2
0
0.5
I C = 40A
1
0
2
4
6
8
10
12
14
16
40
18
50
60
VCE = 600V
8
180
7
160
6
I C = 80A
2.5
5
2.0
4
I C = 40A
1.5
0.5
50
75
100
780
tfi
td(off)
700
o
TJ = 125 C, VGE = 15V
3
1.0
25
VCE = 600V
620
140
540
I C = 40A
120
460
100
380
80
2
60
1
125
40
300
I C = 80A
4
6
8
240
230
200
14
16
18
280
td(off)
RG = 2Ω, VGE = 15V
260
VCE = 600V
VCE = 600V
160
210
o
TJ = 125 C
120
200
80
190
160
240
I C = 40A
120
220
I C = 80A
80
200
o
TJ = 25 C
40
180
0
40
50
60
70
80
I C - Amperes
©2019 IXYS CORPORATION, All Rights Reserved
90
170
100
40
180
0
25
50
75
TJ - Degrees Centigrade
100
160
125
t d(off) - Nanoseconds
220
t d(off) - Nanoseconds
t f i - Nanoseconds
240
tfi
td(off)
RG = 2Ω, VGE = 15V
200
12
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
t f i - Nanoseconds
tfi
10
RG - Ohms
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
240
220
140
2
TJ - Degrees Centigrade
280
1
100
t d(off) - Nanoseconds
3.0
200
t f i - Nanoseconds
Eon
RG = 2ΩVGE = 15V
9
E on - MilliJoules
E off - MilliJoules
4.5
3.5
90
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
80
I C - Amperes
RG - Ohms
4.0
70
IXYN82N120C3
tri
140
td(on)
VCE = 600V
120
40
60
35
40
30
I C = 40A
20
25
0
6
8
10
12
14
16
40
o
TJ = 125 C
80
30
o
TJ = 25 C
60
20
40
10
20
20
4
100
40
18
50
60
70
80
90
t d(on) - Nanoseconds
I C = 80A
80
50
VCE = 600V
t d(on) - Nanoseconds
45
td(on)
RG = 2Ω, VGE = 15V
50
100
2
60
tri
55
o
TJ = 125 C, VGE = 15V
120
140
60
t r i - Nanoseconds
160
t r i - Nanoseconds
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
0
100
I C - Amperes
RG - Ohms
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
140
36
tri
120
td(on)
34
RG = 2Ω, VGE = 15V
32
80
I C = 80A
30
60
28
40
26
I C = 40A
20
0
25
50
75
100
t d(on) - Nanoseconds
t r i - Nanoseconds
VCE = 600V
100
24
22
125
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_82N120C3(8M)12-13-12-A
IXYN82N120C3
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.
©2019 IXYS CORPORATION, All Rights Reserved