Preliminary Technical Information
IXYP10N65C3
XPTTM 650V IGBT
GenX3TM
VCES =
IC110 =
VCE(sat)
tfi(typ) =
Extreme Light Punch Through
IGBT for 20-60kHz Switching
650V
10A
2.50V
23ns
TO-220
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
650
650
V
V
VGES
VGEM
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
30
10
54
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
5
50
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 50
Clamped Inductive Load
ICM = 20
@VCE VCES
A
tsc
(SCSOA)
VGE = 15V, VCE = 360V, TJ = 150°C
RG = 150, Non Repetitive
8
μs
PC
TC = 25°C
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in.
3
g
Weight
BVCES
IC
= 250A, VGE = 0V
650
VGE(th)
IC
= 250A, VCE = VGE
3.5
ICES
VCE = VCES, VGE = 0V
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 10A, VGE = 15V, Note 1
TJ = 150C
© 2015 IXYS CORPORATION, All Rights Reserved
6.0
V
10
100
A
A
100
nA
TJ = 150C
IGES
V
2.27
2.54
2.50
Optimized for 20-60kHz Switching
Square RBSOA
Avalanche Rated
Short Circuit Capability
International Standard Package
High Power Density
Extremely Rugged
Low Gate Drive Requirement
Applications
Characteristic Values
Min.
Typ.
Max.
C = Collector
Tab = Collector
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Tab
Features
160
CE
G = Gate
E = Emitter
TJ
TJM
Tstg
TL
TSOLD
G
Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
High Frequency Power Inverters
V
V
DS100541B(01/15)
IXYP10N65C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
3.8
IC = 10A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 10A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
Inductive load, TJ = 25°C
IC = 10A, VGE = 15V
VCE = 400V, RG = 50
Note 2
Inductive load, TJ = 150°C
IC = 10A, VGE = 15V
VCE = 400V, RG = 50
Note 2
RthJC
RthCS
Notes:
TO-220 (IXYP) Outline
6.2
S
423
27
10
pF
pF
pF
18
4
8
nC
nC
nC
20
26
0.24
77
23
0.11
ns
ns
mJ
ns
ns
mJ
0.17
17
27
0.44
90
38
0.15
ns
ns
mJ
ns
ns
mJ
0.50
0.94 °C/W
°C/W
Pins:
1 - Gate
2 - Collector
3 - Emitter
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
PRELIMANARY TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYP10N65C3
Fig. 1. Output Characteristics @ T J = 25ºC
Fig. 2. Extended Output Characteristics @ T J = 25ºC
20
45
VGE = 15V
13V
12V
18
16
40
35
14V
11V
30
IC - Amperes
14
IC - Amperes
VGE = 15V
12
10
10V
8
6
4
9V
2
8V
0
0
0.5
1
1.5
2
2.5
3
3.5
13V
25
12V
20
15
11V
10
10V
5
9V
8V
0
4
4.5
0
5
10
15
20
2.2
VGE = 15V
14V
13V
12V
VGE = 15V
2.0
VCE(sat) - Normalized
1.8
14
IC - Amperes
30
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ T J = 150ºC
16
25
VCE - Volts
VCE - Volts
18
20
11V
12
10
10V
8
9V
6
1.6
I
= 20A
C
1.4
1.2
I
1.0
C
= 10A
0.8
4
8V
0.6
2
7V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
I
C
= 5A
0.4
-50
4.5
-25
0
25
VCE - Volts
50
75
100
125
150
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
Fig. 6. Input Admittance
20
8
18
TJ = 25ºC
7
16
14
IC - Amperes
VCE - Volts
6
5
I
4
C
= 20A
12
10
TJ = 150ºC
25ºC
- 40ºC
8
6
3
10A
4
2
2
5A
1
9
10
11
12
13
VGE - Volts
© 2015 IXYS CORPORATION, All Rights Reserved
0
14
15
5
6
7
8
VGE - Volts
9
10
11
175
IXYP10N65C3
Fig. 7. Transconductance
9
TJ = - 40ºC
VCE = 10V
8
VCE = 325V
14
7
25ºC
12
150ºC
10
I C = 10A
I G = 1mA
6
VGE - Volts
g f s - Siemens
Fig. 8. Gate Charge
16
5
4
3
8
6
2
4
1
2
0
0
0
2
4
6
1,000
8
10
12
14
16
18
20
0
2
4
6
8
10
12
14
16
I C - Amperes
QG - NanoCoulombs
Fig. 9. Capacitance
Fig. 10. Reverse-Bias Safe Operating Area
18
Cies
16
100
I C - Amperes
Capacitance - PicoFarads
20
Coes
10
Cres
12
8
TJ = 150ºC
4
RG = 50Ω
dv / dt < 10V / ns
f = 1 MHz
1
0
5
10
15
20
25
30
35
0
100
10
40
VCE - Volts
200
300
400
500
600
700
VCE - Volts
Fig. 13. Maximum Transient Thermal Impedance
Fig. 12. Maximum Transient Thermal Impedance (IGBT)
Fig. 11. Forward-Bias Safe Operating Area
100
AAAAA
2
VCE(sat) Limit
ID - Amperes
10
25µs
100µs
Z (th)JC - ºC / W
1
D = 0.5
D = 0.2
0.1
D = tp / T
D = 0.1
tp
D = 0.05
1
TJ = 175ºC
D = 0.02
1ms
TC = 25ºC
Single Pulse
DC
0.1
1
10
100
10ms
1000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
T
D = 0.01
Single Pulse
0.01
1.E-07
1.E-06
1.E-05
1.E-04
1.E-03
Pulse Width - Second
1.E-02
1.E-01
1.E+00
IXYP10N65C3
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
0.6
0.5
2.4
Eon -
Eoff
0.5
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
Eoff
--2.0
TJ = 150ºC , VGE = 15V
1.6
VCE = 400V
I C = 20A
1.2
0.2
0.8
Eoff - MilliJoules
1.6
TJ = 150ºC
0.3
1.2
0.2
0.8
TJ = 25ºC
0.1
0.1
I
C
60
70
80
90
100
110
0.0
0.0
120
0.0
4
6
8
10
0.6
55
1.2
50
tfi
0.2
0.6
I C = 10A
0.0
75
100
td(off) - - - -
125
120
I
40
I
35
30
0.2
150
25
C
50
80
60
70
80
tfi
td(off) - - - -
VCE = 400V
130
50
120
45
90
TJ = 150ºC
30
80
25
70
TJ = 25ºC
15
12
14
16
IC - Amperes
© 2015 IXYS CORPORATION, All Rights Reserved
18
20
t f i - Nanoseconds
35
10
100
40
120
110
110
tfi
td(off) - - - -
100
RG = 50Ω , VGE = 15V
VCE = 400V
40
35
90
80
I C = 10A
I
30
C
= 20A
70
25
60
60
20
50
50
15
25
50
75
100
TJ - Degrees Centigrade
125
40
150
t d(off) - Nanoseconds
100
t d(off) - Nanoseconds
t f i - Nanoseconds
110
40
8
90
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
RG = 50Ω , VGE = 15V
6
100
RG - Ohms
55
4
= 10A
60
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
20
C
= 20A
TJ - Degrees Centigrade
45
140
TJ = 150ºC, VGE = 15V
45
0.4
0.1
50
20
t d(off) - Nanoseconds
0.8
E on - MilliJoules
1.0
0.3
50
18
VCE = 400V
I C = 20A
0.4
25
16
160
----
RG = 50Ω , VGE = 15V
VCE = 400V
E off - MilliJoules
1.4
t f i - Nanoseconds
Eon
14
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
Eoff
12
IC - Amperes
RG - Ohms
0.5
0.4
0.4
= 10A
0.0
50
Eon - MilliJoules
0.4
Eon - MilliJoules
Eoff - MilliJoules
----
RG = 50Ω , VGE = 15V
0.4
VCE = 400V
0.3
Eon
2.0
IXYP10N65C3
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
160
tri
140
td(on) - - - -
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
80
90
70
80
TJ = 150ºC, VGE = 15V
= 20A
80
50
40
60
I
C = 10A
30
40
20
20
10
0
50
60
70
80
90
100
110
t r i - Nanoseconds
C
td(on) - - - -
28
26
VCE = 400V
60
24
TJ = 25ºC
50
22
40
20
TJ = 150ºC
30
18
20
16
10
14
0
0
120
t d(on) - Nanoseconds
I
100
tri
RG = 50Ω , VGE = 15V
70
60
VCE = 400V
t d(on) - Nanoseconds
t r i - Nanoseconds
120
30
12
4
6
8
10
12
14
16
18
20
IC - Amperes
RG - Ohms
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
100
32
tri
90
80
30
28
VCE = 400V
70
I
C
= 20A
26
60
24
50
22
40
20
30
18
I C = 10A
20
10
25
50
75
100
125
t d(on) - Nanoseconds
t r i - Nanoseconds
td(on) - - - -
RG = 50Ω , VGE = 15V
16
14
150
TJ - Degrees Centigrade
Fig. 22. Cauer Thermal Network
i
1
2
3
Ri (°C/W)
0.314390
0.289260
0.090928
Ci (J/°C)
0.00097276
0.00981820
0.07681600
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_10N65C3(1D)5-24-13
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.