IXYP30N120C3
IXYH30N120C3
1200V XPTTM
GenX3TM IGBTs
VCES =
IC110 =
VCE(sat)
tfi(typ) =
High-Speed IGBT
for 20-50 kHz Switching
1200V
30A
3.3V
88ns
TO-220 (IXYP)
Symbol
Test Conditions
Maximum Ratings
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
1200
1200
V
V
G
Continuous
Transient
±20
±30
V
V
TO-247 AD (IXYH)
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
75
30
145
A
A
A
IA
EAS
TC = 25°C
TC = 25°C
20
400
A
mJ
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 10
Clamped Inductive Load
ICM = 60
VCE VCES
A
PC
TC = 25°C
500
W
-55 ... +175
175
-55 ... +175
°C
°C
°C
300
260
°C
°C
1.13/10
Nm/lb.in
3
6
g
g
TJ
TJM
Tstg
G
Maximum Lead Temperature for Soldering
1.6 mm (0.062in.) from Case for 10s
Md
Mounting Torque
Weight
TO-220
TO-247
E
G = Gate
E = Emitter
Tab
Tab
C
= Collector
Tab = Collector
Features
TL
TSOLD
C
CE
High Voltage Package
Optimized for Low Switching Losses
Square RBSOA
Positive Thermal Coefficient of
Vce(sat)
Avalanche Rated
International Standard Packages
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
BVCES
IC
= 250A, VGE = 0V
1200
VGE(th)
IC
= 250A, VCE = VGE
3.0
ICES
VCE = VCES, VGE = 0V
IGES
VCE = 0V, VGE = 20V
VCE(sat)
IC
= 30A, VGE = 15V, Note 1
TJ = 150C
© 2013 IXYS CORPORATION, All Rights Reserved
Applications
V
5.0
V
25
750
A
μA
100
nA
3.3
V
V
TJ = 150C
3.7
High Power Density
Low Gate Drive Requirement
High Frequency Power Inverters
UPS
Motor Drives
SMPS
PFC Circuits
Battery Chargers
Welding Machines
Lamp Ballasts
DS100385D(9/13)
IXYP30N120C3
IXYH30N120C3
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
10
IC = 30A, VCE = 10V, Note 1
Cies
Coes
Cres
VCE = 25V, VGE = 0V, f = 1MHz
Qg(on)
Qge
Qgc
IC = 30A, VGE = 15V, VCE = 0.5 • VCES
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
RthJC
RthCS
RthCS
Inductive load, TJ = 25°C
IC = 30A, VGE = 15V
VCE = 0.5 • VCES, RG = 10
Note 2
Inductive load, TJ = 150°C
IC = 30A, VGE = 15V
VCE = 0.5 • VCES, RG = 10
Note 2
TO-220
TO-247
TO-220 Outline
17
S
1640
110
38
pF
pF
pF
69
9
34
nC
nC
nC
19
40
2.6
130
88
1.1
ns
ns
mJ
ns
ns
mJ
19
52
6.0
156
140
1.6
ns
ns
mJ
ns
ns
mJ
0.50
0.21
0.30 °C/W
°C/W
°C/W
Pins:
1 - Gate
3 - Emitter
TO-247 Outline
1
Notes:
2 - Collector
2
P
3
1. Pulse test, t 300μs, duty cycle, d 2%.
2. Switching times & energy losses may increase for higher VCE(clamp), TJ or RG.
e
Terminals: 1 - Gate
3 - Emitter
Dim.
Millimeter
Min. Max.
A
4.7
5.3
A1
2.2
2.54
A2
2.2
2.6
b
1.0
1.4
1.65
2.13
b1
b2
2.87
3.12
C
.4
.8
D
20.80 21.46
E
15.75 16.26
e
5.20
5.72
L
19.81 20.32
L1
4.50
P 3.55
3.65
Q
5.89
6.40
R
4.32
5.49
S
6.15 BSC
2 - Collector
Inches
Min. Max.
.185 .209
.087 .102
.059 .098
.040 .055
.065 .084
.113 .123
.016 .031
.819 .845
.610 .640
0.205 0.225
.780 .800
.177
.140 .144
0.232 0.252
.170 .216
242 BSC
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or more of the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
IXYP30N120C3
IXYH30N120C3
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
Fig. 1. Output Characteristics @ TJ = 25ºC
160
60
VGE = 15V
13V
12V
11V
10V
50
VGE = 15V
140
14V
120
13V
I C - Amperes
I C - Amperes
40
9V
30
8V
20
100
12V
80
11V
60
10V
9V
40
7V
10
8V
20
6V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
0
5
20
25
Fig. 3. Output Characteristics @ TJ = 150ºC
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
2.4
2.0
I C = 60A
40
9V
30
8V
20
2
3
4
5
6
1.6
1.4
I C = 30A
1.2
1.0
I C = 15A
0.6
6V
5V
0
1.8
0.8
7V
10
1
0.4
-50
7
-25
0
25
VCE - Volts
50
75
125
150
175
Fig. 6. Input Admittance
80
TJ = 25ºC
70
7
TJ = - 40ºC
25ºC
150ºC
60
I C - Amperes
6
I C = 60A
5
100
TJ - Degrees Centigrade
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
8
30
VGE = 15V
2.2
VCE(sat) - Normalized
50
V CE - Volts
15
VCE - Volts
VGE = 15V
13V
12V
11V
10V
0
10
VCE - Volts
60
I C - Amperes
7V
6V
0
4
50
40
30
30A
3
20
2
10
15A
1
0
7
8
9
10
11
12
VGE - Volts
© 2013 IXYS CORPORATION, All Rights Reserved
13
14
15
4
5
6
7
8
VGE - Volts
9
10
11
IXYP30N120C3
IXYH30N120C3
Fig. 7. Transconductance
Fig. 8. Gate Charge
25
16
TJ = - 40ºC
VCE = 600V
14
I C = 30A
20
150ºC
VGE - Volts
g f s - Siemens
25ºC
15
I G = 10mA
12
10
10
8
6
4
5
2
0
0
0
10
20
30
40
50
60
70
80
90
100
0
10
20
I C - Amperes
Fig. 9. Capacitance
40
50
60
70
Fig. 10. Reverse-Bias Safe Operating Area
10,000
70
f = 1 MHz
60
50
1,000
Cies
I C - Amperes
Capacitance - PicoFarads
30
QG - NanoCoulombs
Coes
100
40
30
20
TJ = 150ºC
RG = 10Ω
dv / dt < 10V / ns
10
Cres
10
0
0
5
10
15
20
25
30
35
40
200
300
400
500
600
700
800
900
1000 1100
1200
1300
VCE - Volts
VCE - Volts
Fig. 11. Maximum Transient Thermal Impedance
1
Z (th)JC - ºC / W
0.1
0.01
0.001
0.00001
0.0001
0.001
0.01
Pulse Width - Second
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.1
1
IXYP30N120C3
IXYH30N120C3
Fig. 12. Inductive Switching Energy Loss vs.
Gate Resistance
Eoff
4.5
---
Eoff
24
TJ = 150ºC , VGE = 15V
4.0
21
VCE = 600V
18
3.0
15
2.5
12
2.0
9
1.5
16
VCE = 600V
6
2.0
12
TJ = 150ºC
1.5
8
TJ = 25ºC
1.0
I C = 30A
1.0
----
4
3
0.5
0.5
0
10
15
20
25
30
35
40
45
50
0
15
55
20
25
30
35
Fig. 14. Inductive Switching Energy Loss vs.
Junction Temperature
5.0
4.5
Eoff
4.0
RG = 10Ω , VGE = 15V
Eon
45
50
55
60
Fig. 15. Inductive Turn-off Switching Times vs.
Gate Resistance
220
20
tfi
200
----
180
16
550
td(off) - - - -
500
TJ = 150ºC, VGE = 15V
450
VCE = 600V
VCE = 600V
2.5
2.0
8
1.5
1.0
t f i - Nanoseconds
12
I C = 60A
Eon - MilliJoules
3.0
4
I C = 30A
0.5
0.0
25
50
75
100
140
350
I C = 30A
120
300
100
250
80
60
150
40
100
50
15
20
25
30
Fig. 16. Inductive Turn-off Switching Times vs.
Collector Current
tfi
200
td(off) - - - -
240
100
140
80
120
40
80
20
60
35
40
45
I C - Amperes
© 2013 IXYS CORPORATION, All Rights Reserved
50
55
60
td(off) - - - -
180
170
160
120
150
I C = 30A
100
140
80
130
60
120
I C = 60A
100
TJ = 25ºC
30
t f i - Nanoseconds
160
TJ = 150ºC
25
55
40
110
20
25
50
75
100
TJ - Degrees Centigrade
125
100
150
t d(off) - Nanoseconds
180
t d(off) - Nanoseconds
140
20
50
VCE = 600V
140
200
15
45
RG = 10Ω , VGE = 15V
VCE = 600V
60
tfi
160
220
160
120
40
Fig. 17. Inductive Turn-off Switching Times vs.
Junction Temperature
180
260
RG = 10Ω , VGE = 15V
180
35
RG - Ohms
TJ - Degrees Centigrade
220
200
I C = 60A
20
0
150
125
400
t d(off) - Nanoseconds
160
3.5
Eoff - MilliJoules
40
I C - Amperes
RG - Ohms
t f i - Nanoseconds
Eon - MilliJoules
I C = 60A
3.5
Eon
20
RG = 10Ω , VGE = 15V
2.5
Eon - MilliJoules
Eoff - MilliJoules
Eon -
3.0
27
E off - MilliJoules
5.0
Fig. 13. Inductive Switching Energy Loss vs.
Collector Current
IXYP30N120C3
IXYH30N120C3
Fig. 18. Inductive Turn-on Switching Times vs.
Gate Resistance
320
280
tri
240
VCE = 600V
200
80
td(on) - - - -
40
120
30
I C = 30A
80
20
40
10
0
t r i - Nanoseconds
160
25
30
35
40
45
50
TJ = 25ºC
140
200
120
20
80
18
60
16
40
14
20
12
10
15
20
25
30
35
40
45
Triangular Wave
26
I C = 60A
120
22
80
20
I C - Amperes
t r i - Nanoseconds
24
18
I C = 30A
TJ = 150ºC
VCE = 600V
70
VGE = 15V
60
RG = 10Ω
D = 0.5
Square Wave
50
40
30
20
10
0
100
60
TC = 75ºC
80
t d(on) - Nanoseconds
160
75
55
100
VCE = 600V
50
50
Fig. 21. Maximum Peak Load Current vs. Frequency
28
90
RG = 10Ω , VGE = 15V
25
22
100
55
td(on) - - - -
40
24
TJ = 150ºC
I C - Amperes
Fig. 20. Inductive Turn-on Switching Times vs.
Junction Temperature
tri
26
VCE = 600V
RG - Ohms
240
28
0
0
20
td(on) - - - -
t d(on) - Nanoseconds
I C = 60A
t d(on) - Nanoseconds
t r i - Nanoseconds
160
50
30
RG = 10Ω , VGE = 15V
60
200
15
tri
180
70
TJ = 150ºC, VGE = 15V
10
Fig. 19. Inductive Turn-on Switching Times vs.
Collector Current
125
16
150
TJ - Degrees Centigrade
0
1.0
10.0
100.0
1,000.0
fmax - KiloHertzs
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_30N120C3(4N-C91) 9-04-13
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.