Advance Technical Information
High Voltage
XPTTM IGBT
IXYT25N250CHV
IXYH25N250CHV
VCES =
IC110 =
VCE(sat)
tfi(typ) =
2500V
25A
4.0V
246ns
TO-268HV (IXYT)
G
E
Symbol
Test Conditions
VCES
VCGR
TJ = 25°C to 175°C
TJ = 25°C to 175°C, RGE = 1M
VGES
VGEM
C (Tab)
Maximum Ratings
2500
2500
V
V
Continuous
Transient
±20
±30
V
V
IC25
IC110
ICM
TC = 25°C
TC = 110°C
TC = 25°C, 1ms
95
25
235
A
A
A
SSOA
(RBSOA)
VGE = 15V, TVJ = 150°C, RG = 5
Clamped Inductive Load
ICM = 100
1500
A
V
PC
TC = 25°C
937
W
G = Gate
E = Source
-55 ... +175
175
-55 ... +175
°C
°C
°C
Features
300
260
°C
°C
1.13/10
Nm/lb.in
4
6
g
g
TJ
TJM
Tstg
TL
TSOLD
Maximum Lead Temperature for Soldering
Plastic Body for 10s
Md
Mounting Torque
Weight
TO-268HV
TO-247HV
TO-247HV (IXYH)
G
E
C
C (Tab)
C
= Drain
Tab = Drain
High Voltage Package
High Blocking Voltage
High Peak Current Capability
Low Saturation Voltage
Advantages
Symbol
Test Conditions
(TJ = 25C, Unless Otherwise Specified)
BVCES
IC
= 250μA, VGE = 0V
VGE(th)
IC
= 250μA, VCE = VGE
ICES
VCE = VCES, VGE = 0V
Characteristic Values
Min.
Typ.
Max.
2500
IGES
VCE = 0V, VGE = ±20V
VCE(sat)
IC
V
3.0
TJ = 100°C
= 25A, VGE = 15V, Note 1
TJ = 150°C
© 2016 IXYS CORPORATION, All Rights Reserved
5.0
V
25
μA
μA
100
3.4
4.7
±100
nA
4.0
V
V
Low Gate Drive Requirement
High Power Density
Applications
Switch-Mode and Resonant-Mode
Power Supplies
Uninterruptible Power Supplies (UPS)
Laser Generators
Capacitor Discharge Circuits
AC Switches
DS100762A(12/16)
IXYT25N250CHV
IXYH25N250CHV
Symbol Test Conditions
(TJ = 25°C Unless Otherwise Specified)
Characteristic Values
Min.
Typ.
Max.
gfs
IC = 25A, VCE = 10V, Note 1
16
RGi
Gate Input Resistance
Cies
Coes
Cres
Qg(on)
Qge
Qgc
td(on)
tri
Eon
td(off)
tfi
Eoff
td(on)
tri
Eon
td(off)
tfi
Eoff
VCE = 25V, VGE = 0V, f = 1MHz
S
2.8
3060
114
43
pF
pF
pF
147
16
68
nC
nC
nC
15
34
8.3
230
246
7.3
ns
ns
mJ
ns
ns
mJ
18
33
11.0
225
350
10.5
ns
ns
mJ
ns
ns
mJ
0.15
0.16 °C/W
°C/W
Inductive load, TJ = 25°C
IC = 25A, VGE = 15V
VCE = 0.5 • VCES, RG = 5
Note 2
VCE = 0.5 • VCES, RG = 5
Note 2
RthJC
RthCS
E
27
IC = 25A, VGE = 15V, VCE = 0.5 • VCES
Inductive load, TJ = 150°C
IC = 25A, VGE = 15V
TO-268HV Outline
L2
3
E1
D
1
H
2
3
2
C
e
D1
D2
A1
L4
e
A
C2
D3
1
b
PINS:
1 - Gate 2 - Emitter
3 - Collector
L3
A2
L
TO-247HV Outline
E
R
0P
A
A2
E1
0P1
Q S
D1
D
4
D2
1 2
3
L1
D3
Note:
1. Pulse test, t 300s, duty cycle, d 2%.
L
e
e1
A3
2X
A1
E2
E3
4X
b
c
3X
PINS:
1 - Gate 2 - Emitter
3, 4 - Collector
3X
ADVANCE TECHNICAL INFORMATION
The product presented herein is under development. The Technical Specifications offered are
derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right
to change limits, test conditions, and dimensions without notice.
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS MOSFETs and IGBTs are covered
4,835,592
by one or moreof the following U.S. patents: 4,860,072
4,881,106
4,931,844
5,017,508
5,034,796
5,049,961
5,063,307
5,187,117
5,237,481
5,381,025
5,486,715
6,162,665
6,259,123 B1
6,306,728 B1
6,404,065 B1
6,534,343
6,583,505
6,683,344
6,727,585
7,005,734 B2
6,710,405 B2 6,759,692
7,063,975 B2
6,710,463
6,771,478 B2 7,071,537
7,157,338B2
b1
IXYT25N250CHV
IXYH25N250CHV
Fig. 2. Extended Output Characteristics @ TJ = 25ºC
Fig. 1. Output Characteristics @ TJ = 25ºC
50
250
VGE = 25V
19V
15V
13V
11V
200
13V
9V
I C - Amperes
I C - Amperes
40
VGE = 25V
19V
15V
30
20
7V
10
150
11V
100
9V
50
7V
5V
0
5V
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5
0
5
10
2.2
50
VGE = 25V
19V
15V
13V
11V
25
30
VGE = 15V
2.0
1.8
9V
VCE(sat) - Normalized
I C - Amperes
20
Fig. 4. Dependence of VCE(sat) on
Junction Temperature
Fig. 3. Output Characteristics @ TJ = 150ºC
40
15
VCE - Volts
VCE - Volts
30
7V
20
I C = 50A
1.6
1.4
I C = 25A
1.2
1.0
0.8
10
I C = 12.5A
0.6
5V
0.4
0
0
1
2
3
4
5
6
7
-50
8
-25
0
25
VCE - Volts
Fig. 5. Collector-to-Emitter Voltage vs.
Gate-to-Emitter Voltage
7
50
75
100
125
150
175
TJ - Degrees Centigrade
Fig. 6. Input Admittance
90
TJ = 25ºC
80
6
70
I C - Amperes
VCE - Volts
60
5
I C = 50A
4
50
40
30
25A
TJ = 150ºC
25ºC
20
3
- 40ºC
10
12.5A
0
2
5
7
9
11
13
15
17
VGE - Volts
© 2016 IXYS CORPORATION, All Rights Reserved
19
21
23
25
4.0
4.5
5.0
5.5
6.0
6.5
7.0
VGE - Volts
7.5
8.0
8.5
9.0
9.5
IXYT25N250CHV
IXYH25N250CHV
Fig. 7. Transconductance
Fig. 8. Gate Charge
44
16
TJ = - 40ºC
40
VCE = 1250V
14
I C = 25A
36
25ºC
28
VGE - Volts
g f s - Siemens
32
150ºC
24
I G = 10mA
12
20
16
10
8
6
12
4
8
2
4
0
0
0
10
20
30
40
50
60
70
80
90
0
20
40
I C - Amperes
60
80
100
120
140
QG - NanoCoulombs
Fig. 10. Reverse-Bias Safe Operating Area
Fig. 9. Capacitance
120
10,000
Cies
80
1,000
I C - Amperes
Capacitance - PicoFarads
100
Coes
100
60
40
TJ = 150ºC
20
RG = 5Ω
dv / dt < 10V / ns
Cres
f = 1 MHz
0
10
0
5
10
15
20
25
30
35
100
40
400
700
1000
1600
1900
2200
2500
Fig. 12. Maximum Transient Thermal Impedance
Fig. 11. Forward-Bias Safe Operating Area
1
1000
VCE(sat) Limit
100
25µs
10
Z(th)JC - K / W
I D - Amperes
1300
VCE - Volts
VCE - Volts
100µs
1ms
1
0.1
0.01
10ms
0.1
TJ = 175ºC
DC
TC = 25ºC
Single Pulse
100ms
0.01
1
10
100
1000
10000
VDS - Volts
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
0.001
0.00001
0.0001
0.001
0.01
0.1
Pulse Width - Seconds
1
10
IXYT25N250CHV
IXYH25N250CHV
Fig. 13. Inductive Switching Energy Loss vs.
Gate Resistance
26
Eoff
24
28
20
Eon
Eoff
TJ = 150ºC , VGE = 15V
22
32
Fig. 14. Inductive Switching Energy Loss vs.
Collector Current
20
14
20
10
16
TJ = 150ºC
16
16
12
12
TJ = 25ºC
8
8
12
4
4
8
0
E on - MilliJoules
24
I C = 50A
E off - MilliJoules
VCE = 1250V
E on - MilliJoules
E off - MilliJoules
Eon
RG = 5ΩVGE = 15V
VCE = 1250V
18
24
I C = 25A
6
2
5
10
15
20
25
30
35
40
45
50
0
10
55
15
20
25
Fig. 15. Inductive Switching Energy Loss vs.
Junction Temperature
Eon
400
20
16
10
12
I C = 25A
6
8
2
75
100
4
150
125
900
VCE = 1250V
350
750
300
600
I C = 25A
250
I C = 50A
200
300
150
150
0
5
10
15
20
tfi
td(off)
500
t f i - Nanoseconds
TJ = 150ºC
300
300
200
200
TJ = 25ºC
100
0
0
25
30
35
40
45
50
55
350
td(off)
300
40
I C - Amperes
© 2016 IXYS CORPORATION, All Rights Reserved
45
50
300
250
I C = 25A
220
200
I C = 50A
140
150
60
25
50
75
100
TJ - Degrees Centigrade
125
100
150
t d(off) - Nanoseconds
400
20
35
RG = 5Ω, VGE = 15V
380
t d(off) - Nanoseconds
400
15
30
VCE = 1250V
VCE = 1250V
10
25
Fig. 18. Inductive Turn-off Switching Times vs.
Junction Temperature
460
600
RG = 5Ω, VGE = 15V
100
450
100
t f i - Nanoseconds
tfi
1050
RG - Ohms
Fig. 17. Inductive Turn-off Switching Times vs.
Collector Current
500
1200
td(off)
TJ - Degrees Centigrade
600
50
t d(off) - Nanoseconds
I C = 50A
14
50
45
TJ = 150ºC, VGE = 15V
E on - MilliJoules
E off - MilliJoules
VCE = 1250V
25
tfi
450
24
RG = 5ΩVGE = 15V
18
40
Fig. 16. Inductive Turn-off Switching Times vs.
Gate Resistance
500
28
t f i - Nanoseconds
Eoff
22
35
I C - Amperes
RG - Ohms
26
30
IXYT25N250CHV
IXYH25N250CHV
Fig. 19. Inductive Turn-on Switching Times vs.
Gate Resistance
tri
td(on)
TJ = 150ºC, VGE = 15V
80
40
I C = 25A
I C = 50A
60
30
40
20
20
10
td(on)
60
22
50
20
TJ = 150ºC
40
18
30
16
10
15
20
25
30
35
40
45
50
tri
10
10
15
20
25
30
35
40
45
50
I C - Amperes
Fig. 21. Inductive Turn-on Switching Times vs.
Junction Temperature
100
12
0
55
RG - Ohms
120
14
TJ = 25ºC
10
0
5
24
VCE = 1250V
20
0
26
t d(on) - Nanoseconds
50
28
RG = 5Ω, VGE = 15V
70
VCE = 1250V
100
tri
80
60
t d(on) - Nanoseconds
t r i - Nanoseconds
120
90
70
t r i - Nanoseconds
140
Fig. 20. Inductive Turn-on Switching Times vs.
Collector Current
24
td(on)
22
RG = 5Ω, VGE = 15V
80
20
I C = 50A
60
18
40
16
t d(on) - Nanoseconds
t r i - Nanoseconds
VCE = 1250V
I C = 25A
20
14
0
25
50
75
100
125
12
150
TJ - Degrees Centigrade
IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.
IXYS REF: IXY_25N250CV1HV(7T-AT628) 6-24-16
Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently
evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for,
and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.