Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC
(Commercial & Automotive Grade)
Overview
KEMET U2J dielectric features a maximum operating
temperature of 125°C and is considered stable. The
Electronics Industries Alliance (EIA) characterizes U2J
dielectric as a Class I material. Components of this
classification are temperature compensating and are
suited for resonant circuit applications or those where Q
and stability of capacitance characteristics are required.
U2J is an extremely stable dielectric material that exhibits
a negligible shift in capacitance with respect to voltage
and boasts a predictable and linear change in capacitance
with reference to ambient temperature with no aging
effect. In addition, U2J dielectric extends the available
capacitance range of Class I MLCCs to achieve values
previously only available using Class II dielectric materials
like X7R, X5R, Y5V and Z5U.
U2J is not sensitive to DC Bias as compared to Class
II dielectric materials and retains over 99% of nominal
capacitance at full rated voltage. KEMET automotive grade
capacitors meet the demanding Automotive Electronics
Council's AEC–Q200 qualification requirements.
Capacitance change is limited to −750 ±120 ppm/°C from
−55°C to +125°C. These devices are lead (Pb)-free, RoHS
and REACH compliant without exception and are capable
of withstanding multiple passes through a lead (Pb)-free
solder reflow profile.
Benefits
• AEC–Q200 automotive qualified
• Up to 10x increase in capacitance versus C0G
• Extremely low effective series resistance (ESR)
• Extremely low effective series inductance (ESL)
• High ripple current capability
• Low noise solution similar to C0G
• Retains over 99% of nominal capacitance at full rated voltage
• Small predictable and linear capacitance change with respect
to temperature
• Operating temperature range of −55°C to +125°C
• Capacitance up to 470 nF
• DC voltage ratings up to 100 V
Applications
• Wireless charging
• Resonant LLC converters
• Power conversion
• Pulse circuits
• High ripple current
• Critical timing
• Decoupling
• Transient voltage suppression
Built Into Tomorrow
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
1
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Ordering Information
C
Ceramic
1206
Case Size Specification/
(L" x W")
Series1
0402
0603
0805
1206
1210
1812
1
2
C
C=
Standard
104
Capacitance
Code (pF)
Two significant
digits and
number of
zeros.
J
3
J
A
C
TU
Capacitance Rated Voltage
Failure Rate/
Dielectric
Termination Finish3
Tolerance2
(VDC)
Design
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
8 = 10
4 = 16
3 = 25
5 = 50
1 = 100
J = U2J
A = N/A
C = 100% Matte Sn
Packaging/
Grade (C-Spec)
See
"Packaging
C-Spec
Ordering
Options Table"
Flexible termination option is available. Please see FT-CAP product bulletin C1087_U2J_FT-CAP_SMD.
Additional capacitance tolerance offerings may be available. Contact KEMET for details.
Packaging C-Spec Ordering Options Table
Packaging Type1
Packaging/Grade
Ordering Code (C-Spec)
Commercial Grade1
Bulk Bag/Unmarked
7" Reel/Unmarked
13" Reel/Unmarked
7" Reel/Unmarked/2 mm pitch2
13" Reel/Unmarked/2 mm pitch2
7" Reel
13" Reel/Unmarked
7" Reel/Unmarked/2 mm pitch2
13" Reel/Unmarked/2 mm pitch2
Not required (blank)
TU
7411 (EIA 0603 and smaller case sizes)
7210 (EIA 0805 and larger case sizes)
7081
7082
Automotive Grade3
AUTO
AUTO7411 (EIA 0603 and smaller case sizes)
AUTO7210 (EIA 0805 and larger case sizes)
3190
3191
Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging.
The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors
that have not been laser marked. The option to laser mark is not available on these devices. For more information see "Capacitor Marking."
2
The 2 mm pitch option allows for double the packaging quantity of capacitors on a given reel size. This option is limited to EIA 0603 (1608 metric) case
size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information."
3
Reeling tape options (paper or plastic) are dependent on capacitor case size (l" x w") and thickness dimensions. See "Chip Thickness/Tape & Reel
Packaging Quantities" and "Tape & Reel Packaging Information."
3
For additional information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information."
3
All automotive packaging C-Specs listed exclude the option to laser mark components. The option to laser mark is not available on these devices.
For more information see "Capacitor Marking."
1
1
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
2
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Qualification/Certification
Commercial grade products are subject to internal qualification. Details regarding test methods and conditions are
referenced in Table 4, Performance & Reliability.
Automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details
regarding test methods and conditions are referenced in the document AEC–Q200, Stress Test Qualification for Passive
Components. For additional information regarding the Automotive Electronics Council and AEC–Q200, please visit their
website at www.aecouncil.com.
Environmental Compliance
Lead (Pb)-free, RoHS, and REACH compliant without exemptions.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
3
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Automotive C-Spec Information
KEMET automotive grade products meet or exceed the requirements outlined by the Automotive Electronics Council.
Details regarding test methods and conditions are referenced in document AEC–Q200, Stress Test Qualifi cation for Passive
Components. These products are supported by a Product Change Notifi cation (PCN) and Production Part Approval Process
warrant (PPAP).
Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, “AUTO.”
This C-Spec was developed in order to better serve small and medium-sized companies that prefer an automotive grade
component without the requirement to submit a customer Source Controlled Drawing (SCD) or specifi cation for review by a
KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET OEM automotive customers and are
not granted the same “privileges” as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited
(see details below.)
Product Change Notification (PCN)
The KEMET product change notifi cation system is used to communicate primarily the following types of changes:
• Product/process changes that affect product form, fi t, function, and/or reliability
• Changes in manufacturing site
• Product obsolescence
Process/Product change
Obsolescence*
Days Prior To
Implementation
KEMET assigned
Yes (with approval and sign off)
Yes
180 days minimum
AUTO
Yes (without approval)
Yes
90 days minimum
1
1
Customer Notification Due To:
KEMET Automotive
C-Spec
KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.
Production Part Approval Process (PPAP)
The purpose of the Production Part Approval Process is:
• To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
• To provide the evidence that all customer engineering design records and specifi cation requirements are properly
understood and fulfi lled by the manufacturing organization.
• To demonstrate that the established manufacturing process has the potential to produce the part.
PPAP (Product Part Approval Process) Level
KEMET Automotive
C-Spec
1
2
3
4
5
KEMET assigned1
●
●
●
●
●
AUTO
1
○
KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.
● Part number specifi c PPAP available
○ Product family PPAP only
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
4
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Dimensions – Millimeters (Inches)
L
W
B
T
S
EIA Metric
Size
Size
Code Code
L
Length
W
Width
T
Thickness
B
Bandwidth
S
Mounting
Separation
Technique
Minimum
0402
1005
1.00 (0.040) ± 0.05 (0.002) 0.50 (0.020) ± 0.05 (0.002)
0.30 (0.012) ± 0.10 (0.004)
0.30 (0.012)
0603
1608
1.60 (0.063) ± 0.15 (0.006) 0.80 (0.032) ± 0.15 (0.006)
0.35 (0.014) ± 0.15 (0.006)
0.70 (0.028)
0805
2012
2.00 (0.079) ± 0.20 (0.008) 1.25 (0.049) ± 0.20 (0.008)
0.50 (0.02) ± 0.25 (0.010)
0.75 (0.030)
1206
3216
3.20 (0.126) ± 0.20 (0.008) 1.60 (0.063) ± 0.20 (0.008)
1210
3225
3.20 (0.126) ± 0.20 (0.008) 2.50 (0.098) ± 0.20 (0.008)
0.50 (0.02) ± 0.25 (0.010)
1812
4532
4.50 (0.177) ± 0.30 (0.012) 3.20 (0.126) ± 0.30 (0.012)
0.60 (0.024) ± 0.35 (0.014)
See Table 2
for thickness
0.50 (0.02) ± 0.25 (0.010)
N/A
Solder reflow
only
Solder wave
or
Solder reflow
Solder reflow
only
Electrical Parameters/Characteristics
Item
Parameters/Characteristics
Operating Temperature Range
Capacitance Change with Reference to +25°C and 0 VDC Applied
(TCC)
Aging Rate (Maximum % Capacitance Loss/Decade Hour)
Dielectric Withstanding Voltage (DWV)
Dissipation Factor (DF) Maximum Limit at 25°C
Insulation Resistance (IR) Limit at 25°C
−55°C to +125°C
−750 ±120 ppm/°C
0.1%
250% of rated voltage
(5 ±1 seconds and charge/discharge not exceeding 50 mA)
0.1%
1,000 MΩ µF or 100 GΩ
(Rated voltage applied for 120 ±5 seconds at 25°C)
To obtain IR limit, divide MΩ-µF value by the capacitance and compare to GΩ limit. Select the lower of the two limits.
Capacitance and dissipation factor (DF) measured under the following conditions:
1 MHz ±100 kHz and 1.0 ±0.2 Vrms if capacitance ≤ 1,000 pF
1 kHz ±50 Hz and 1.0 ±0.2 Vrms if capacitance > 1,000 pF
Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known
as Automatic Level Control (ALC). The ALC feature should be switched to "ON."
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
5
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Electrical Characteristics (Typical)
Capacitance vs. Temperature (TCC)
Capacitance Change (%)
15
10
5
0
−5
−10
−15
−60
−40
−20
0
20
40
60
80
100
120
140
Temperature (°C)
Post Environmental Limits
High Temperature Life, Biased Humidity, Moisture Resistance
Dielectric
Rated DC
Voltage
U2J
All
Capacitance Dissipation Factor
Value
(Maximum %)
All
0.5
Capacitance
Shift
0.3% or
±0.25 pF
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
Insulation
Resistance
10% of
Initial limit
C1086_U2J • 05/24/19
6
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Table 1A – Capacitance Range/Selection Waterfall (0402 – 1812 Case Sizes)
25
50
25
50
4
3
5
8
4
3
5
8
4
3
5
1
8
4
3
5
16
8
10
5
50
3
25
4
3
16
8
4
10
5
8
50
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
25
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
16
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
10
16
5
16
3
10
4
10
8
100
1
100
5
50
3
50
4
25
8
25
50
5
16
25
3
10
16
4
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
BB
C0402C
8
50
10
Case Size/
Series
5
25
50
Voltage Code
3
16
25
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
Rated Voltage
(VDC)
4
10
16
Capacitance
Tolerance
8
50
5
25
3
16
4
10
8
50
5
25
3
C1812C
16
4
C1210C
10
Cap
Code
8
C1206C
50
Capacitance
Voltage Code
25
101
111
121
131
151
161
181
201
221
241
271
301
331
361
391
431
471
511
561
621
681
751
821
911
102
112
122
132
152
162
182
202
222
242
272
C0805C
Rated Voltage
(VDC)
16
100 pF
110 pF
120 pF
130 pF
150 pF
160 pF
180 pF
200 pF
220 pF
240 pF
270 pF
300 pF
330 pF
360 pF
390 pF
430 pF
470 pF
510 pF
560 pF
620 pF
680 pF
750 pF
820 pF
910 pF
1,000 pF
1,100 pF
1,200 pF
1,300 pF
1,500 pF
1,600 pF
1,800 pF
2,000 pF
2,200 pF
2,400 pF
2,700 pF
C0603C
10
Cap
Code
C0402C
10
Capacitance
Case Size/
Series
Product Availability and Chip Thickness Codes
See Table 2 for Chip Thickness Dimensions
C0603C
C0805C
C1206C
C1210C
C1812C
XX1 - Commercial Grade Only
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
7
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Table 1A – Capacitance Range/Selection Waterfall (0402 – 1812 Case Sizes) cont.
8
4
3
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EF
EF
EH
EH
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EF
EF
EH
EH
EB
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EC
EF
EF
EH
EH
EB
EB
EB
EB
EB
EB
EB
EB
EB
EC
EC
EE
EF
EH
EH
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FG
FH
FM
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FG
FH
FM
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FG
FH
FM
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FB
FC
FE
FG
FG
FH
FM
FB
FB
FB
FB
FB
FB
FC
FC
FC
FE
FG
FG
FG
FH
FT
FI
5
50
1
25
5
16
3
10
4
100
50
8
50
25
5
25
16
Case Size/
Series
3
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GC
GH
GK
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GC
GH
GK
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GC
GH
GK
GB
GB
GB
GB
GB
GB
GB
GB
GB
GB
GH
GH
GK
GJ
GN1
Product Availability and Chip Thickness Codes
See Table 2 for Chip Thickness Dimensions
25
50
10
16
25
50
100
10
16
25
50
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DG
DG
DG
16
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DG
DG
DG
10
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DG
DG
DG
DG
DG
DG
50
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DN
DP
DP
DG
DG
DG
DG
DG
DG
25
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
16
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
10
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
50
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
CF
25
BB
BB
BB
BB
BB
BB
16
BB
BB
BB
BB
BB
BB
10
Voltage Code
4
50
Cap
Code
8
25
Capacitance
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
F G J K M
Rated Voltage
(VDC)
5
16
302
332
362
392
432
472
512
562
622
682
752
822
912
103
123
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
394
474
3
10
3,000 pF
3,300 pF
3,600 pF
3,900 pF
4,300 pF
4,700 pF
5,100 pF
5,600 pF
6,200 pF
6,800 pF
7,500 pF
8,200 pF
9,100 pF
10,000 pF
12,000 pF
15,000 pF
18,000 pF
22,000 pF
27,000 pF
33,000 pF
39,000 pF
47,000 pF
56,000 pF
68,000 pF
82,000 pF
100,000 pF
120,000 pF
150,000 pF
180,000 pF
220,000 pF
270,000 pF
330,000 pF
390,000 pF
470,000 pF
4
16
10
Capacitance
Tolerance
8
10
5
50
3
25
4
16
8
10
5
50
3
C1812C
25
4
C1210C
16
8
C1206C
10
Voltage Code
Rated Voltage
(VDC)
50
C0805C
25
C0603C
16
Cap
Code
C0402C
10
Capacitance
Case Size/
Series
8
4
3
5
8
4
3
5
8
4
3
5
8
4
3
5
8
4
3
5
1
8
4
3
5
C0402C
C0603C
C0805C
C1206C
C1210C
C1812C
XX1 - Commercial Grade Only
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
8
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Table 2A – Chip Thickness/Tape & Reel Packaging Quantities
Paper Quantity1
Plastic Quantity
Thickness
Code
Case
Size1
Thickness ±
Range (mm)
7" Reel
13" Reel
7" Reel
13" Reel
BB
CF
DN
DP
DG
EB
EC
EE
EF
EH
FB
FC
FE
FG
FH
FM
FT
FI
GB
GC
GH
GK
GJ
GN
0402
0603
0805
0805
0805
1206
1206
1206
1206
1206
1210
1210
1210
1210
1210
1210
1210
1210
1812
1812
1812
1812
1812
1812
0.50 ± 0.05
0.80 ± 0.07
0.78 ± 0.10
0.90 ± 0.10
1.25 ± 0.15
0.78 ± 0.10
0.90 ± 0.10
1.10 ± 0.10
1.20 ± 0.15
1.60 ± 0.20
0.78 ± 0.10
0.90 ± 0.10
1.00 ± 0.10
1.25 ± 0.15
1.55 ± 0.15
1.70 ± 0.20
1.90 ± 0.20
2.10 ± 0.20*
1.00 ± 0.10
1.10 ± 0.10
1.40 ± 0.15
1.60 ± 0.20
1.70 ± 0.15
1.70 ± 0.20
10,000
4,000
4,000
4,000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
50,000
15,000
15,000
15,000
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2,500
4,000
4,000
2,500
2,500
2,000
4,000
4,000
2,500
2,500
2,000
2,000
2,000
1,500
1,000
1,000
1,000
1,000
1,000
1,000
0
0
0
0
10,000
10,000
10,000
10,000
10,000
8,000
10,000
10,000
10,000
10,000
8,000
8,000
8,000
7,000
4,000
4,000
4,000
4,000
4,000
4,000
Thickness
Code
Case
Size1
Thickness ±
Range (mm)
7" Reel
13" Reel
7" Reel
13" Reel
Plastic Quantity
Paper Quantity1
Package quantity based on finished chip thickness specifications.
1
If ordering using the 2 mm tape and reel pitch option, the packaging quantity outlined in the table above will be doubled. This option is limited to EIA 0603
(1608 metric) case size devices. For more information regarding 2 mm pitch option see "Tape & Reel Packaging Information".
Table 2B – Bulk Packaging Quantities
Loose Packaging
Packaging Type
Bulk Bag (default)
Packaging C-Spec1
N/A 2
Case Size
Packaging Quantities (pieces/unit packaging)
EIA (in)
Metric (mm)
Minimum
0402
0603
0805
1206
1210
1812
1005
1608
2012
3216
3225
4532
1
Maximum
50,000
20,000
The "Packaging C-Spec" is a 4 to 8 digit code which identifies the packaging type and/or product grade. When ordering, the proper code must be included
in the 15th through 22nd character positions of the ordering code. See "Ordering Information" section of this document for further details. Commercial grade
product ordered without a packaging C-Spec will default to our standard "Bulk Bag" packaging. Contact KEMET if you require a bulk bag packaging option for
automotive grade products.
2
A packaging C-Spec (see note 1 above) is not required for "Bulk Bag" packaging (excluding Anti-static bulk bag and automotive grade products). The 15th
through 22nd character positions of the ordering code should be left blank. All product ordered without a packaging C-Spec will default to our standard "Bulk
Bag" packaging.
1
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
9
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Table 3 – Chip Capacitor Land Pattern Design Recommendations per IPC–7351
EIA
Size
Code
Metric
Size
Code
0402
Density Level A:
Maximum (Most)
Land Protrusion (mm)
Density Level B:
Median (Nominal)
Land Protrusion (mm)
Density Level C:
Minimum (Least)
Land Protrusion (mm)
C
Y
X
V1
V2
C
Y
X
V1
V2
C
Y
X
V1
V2
1005
0.50
0.72
0.72
2.20
1.20
0.45
0.62
0.62
1.90
1.00
0.40
0.52
0.52
1.60
0.80
0603
1608
0.90
1.15
1.10
4.00
2.10
0.80
0.95
1.00
3.10
1.50
0.60
0.75
0.90
2.40
1.20
0805
2012
1.00
1.35
1.55
4.40
2.60
0.90
1.15
1.45
3.50
2.00
0.75
0.95
1.35
2.80
1.70
1206
3216
1.60
1.35
1.90
5.60
2.90
1.50
1.15
1.80
4.70
2.30
1.40
0.95
1.70
4.00
2.00
1210
3225
1.60
1.35
2.80
5.65
3.80
1.50
1.15
2.70
4.70
3.20
1.40
0.95
2.60
4.00
2.90
12101
3225
1.50
1.60
2.90
5.60
3.90
1.40
1.40
2.80
4.70
3.30
1.30
1.20
2.70
4.00
3.00
1812
4532
2.15
1.60
3.60
6.90
4.60
2.05
1.40
3.50
6.00
4.00
1.95
1.20
3.40
5.30
3.70
Only for capacitance values ≥ 22 µF
Density Level A: For low-density product applications. Recommended for wave solder applications and provides a wider process window for reflow
solder processes. KEMET only recommends wave soldering of EIA 0603, 0805, and 1206 case sizes.
Density Level B: For products with a moderate level of component density. Provides a robust solder attachment condition for reflow solder processes.
Density Level C: For high component density product applications. Before adapting the minimum land pattern variations, the user should perform
qualification testing based on the conditions outlined in IPC Standard 7351 (IPC–7351).
1
Image below based on Density Level B for an EIA 1210 case size.
V1
Y
Y
X
X
C
C
V2
Grid Placement Courtyard
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
10
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Soldering Process
Recommended Soldering Technique:
• Solder wave or solder reflow for EIA case sizes 0603, 0805, and 1206
• All other EIA case sizes are limited to solder reflow only
Recommended Reflow Soldering Profile:
The KEMET families of surface mount multilayer ceramic capacitors (SMD MLCCs) are compatible with wave (single or dual),
convection, IR or vapor phase reflow techniques. Preheating of these components is recommended to avoid extreme thermal
stress. KEMET’s recommended profile conditions for convection and IR reflow reflect the profile conditions of the IPC/JSTD-020 standard for moisture sensitivity testing. These devices can safely withstand a maximum of three reflow passes at
these conditions.
Termination Finish
SnPb
100% Matte Sn
Preheat/Soak
Temperature Minimum (TSmin)
Temperature Maximum (TSmax)
100°C
150°C
150°C
200°C
Time (t S) from TSmin to TSmax
60 – 120 seconds
60 – 120 seconds
Ramp-Up Rate (TL to TP)
3°C/second
maximum
3°C/second
maximum
Liquidous Temperature (TL)
183°C
217°C
Time Above Liquidous (tL)
60 – 150 seconds
60 – 150 seconds
Peak Temperature (TP)
235°C
260°C
Time Within 5°C of Maximum
Peak Temperature (tP)
20 seconds
maximum
30 seconds
maximum
Ramp-Down Rate (TP to TL)
6°C/second
maximum
6°C/second
maximum
Time 25°C to Peak
Temperature
TP
TL
Temperature
Profile Feature
tP
Maximum Ramp-up Rate = 3°C/second
Maximum Ramp-down Rate = 6°C/second
tL
Tsmax
Tsmin
25
ts
25°C to Peak
Time
6 minutes maximum 8 minutes maximum
Note: All temperatures refer to the center of the package, measured on the
capacitor body surface that is facing up during assembly reflow.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
11
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Table 4 – Performance & Reliability: Test Methods and Conditions
Stress
Reference
Terminal Strength
JIS-C-6429
Board Flex
JIS-C-6429
Test or Inspection Method
Package Size (L" x W")
Force
Duration
0402
0603
≥ 0805
5 N (0.51 kg)
10 N (1.02 kg)
18 N (1.83 kg)
60 seconds
Appendix 1, Note:
Appendix 2, Note: 3.0 mm (minimum).
Magnification 50 X Conditions:
Solderability
J-STD-002
a) Method B, 4 hours at 155°C, dry heat at 235°C
b) Method B at 215°C, category 3
c) Method D at 260°C, category 3
Temperature Cycling
JESD22 Method JA-104
Biased Humidity
MIL-STD-202 Method 103
Moisture Resistance
MIL-STD-202 Method 106
Thermal Shock
MIL-STD-202 Method 107
High Temperature Life
MIL-STD-202
Method 108/EIA -198
Storage Life
MIL-STD-202 Method 108
125°C, 0 VDC for 1,000 hours.
Vibration
MIL-STD-202 Method 204
5 G's for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8" X 5" PCB 0.031" thick
7 secure points on one long side and 2 secure points at corners of opposite sides. Parts
mounted within 2" from any secure point. Test from 10 – 2,000 Hz.
Mechanical Shock
MIL-STD-202 Method 213
Figure 1 of Method 213, Condition F.
Resistance to Solvents MIL-STD-202 Method 215
1,000 cycles (−55°C to +125°C). Measurement at 24 hours ±4 hours after test conclusion.
Load humidity: 1,000 hours 85°C/85% RH and rated voltage. Add 100 K ohm resistor.
Measurement at 24 hours ±4 hours after test conclusion.
Low volt humidity: 1,000 hours 85°C/85% RH and 1.5 V. Add 100 K ohm resistor.
Measurement at 24 hours ±4 hours after test conclusion.
t = 24 hours/cycle. Steps 7a and 7b not required. Measurement at 24 hours ±4 hours after
test conclusion.
−55°C/+125°C. Note: Number of cycles required – 300. Maximum transfer time – 20
seconds. Dwell time – 15 minutes. Air – air.
1,000 hours at 125°C with 2 X rated voltage applied.
Add aqueous wash chemical, OKEM clean or equivalent.
Storage and Handling
Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in
other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres,
and long term storage. In addition, packaging materials will be degraded by high temperature – reels may soften or warp
and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum
storage humidity not exceed 70% relative humidity. Temperature fluctuations should be minimized to avoid condensation on
the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock
should be used promptly, preferably within 1.5 years of receipt.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
12
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Construction
Detailed Cross Section
Barrier Layer
(Ni)
Termination Finish
(100% Matte Sn)
Dielectric Material
(CaZrO3)
Dielectric
Material (CaZrO3)
End Termination/
External Electrode
(Cu)
Inner Electrodes
(Ni)
End Termination/
External Electrode
(Cu)
Barrier Layer
(Ni)
Termination Finish
(100% Matte Sn)
Inner Electrodes
(Ni)
Capacitor Marking (Optional)
Laser marking option is not available on:
• C0G, U2J, Ultra Stable X8R, and Y5V dielectric devices
• EIA 0402 case size devices
• EIA 0603 case size devices with flexible termination option
• KPS commercial and automotive grade stacked devices
These capacitors are supplied unmarked only.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
13
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Tape & Reel Packaging Information
KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with
EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for
details on reeling quantities for commercial chips.
Bar code label
Anti-static reel
®
Embossed plastic* or
punched paper carrier.
ET
KEM
Chip and KPS orientation in pocket
(except 1825 commercial, and 1825 and 2225 Military)
Sprocket holes
Embossment or punched cavity
8 mm, 12 mm
or 16 mm carrier tape
180 mm (7.00")
or
330 mm (13.00")
Anti-static cover tape
(0.10 mm (0.004") maximum thickness)
*EIA 01005, 0201, 0402 and 0603 case sizes available on punched paper carrier only.
Table 5 – Carrier Tape Configuration, Embossed Plastic & Punched Paper (mm)
EIA Case Size
Tape
Size
(W)*
Embossed Plastic
7" Reel
13" Reel
Pitch (P1)*
Punched Paper
7" Reel
13" Reel
Pitch (P1)*
01005 – 0402
8
2
2
0603
8
2/4
2/4
0805
8
4
4
4
4
1206 – 1210
8
4
4
4
4
1805 – 1808
12
4
4
≥ 1812
12
8
8
KPS 1210
12
8
8
KPS 1812
and 2220
16
12
12
Array 0612
8
4
4
*Refer to Figures 1 and 2 for W and P1 carrier tape reference locations.
*Refer to Tables 6 and 7 for tolerance specifications.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
New 2 mm Pitch Reel Options*
Packaging
Ordering Code
(C-Spec)
Packaging Type/Options
C-3190
C-3191
C-7081
C-7082
Automotive grade 7" reel unmarked
Automotive grade 13" reel unmarked
Commercial grade 7" reel unmarked
Commercial grade 13" reel unmarked
* 2 mm pitch reel only available for 0603 EIA case size.
2 mm pitch reel for 0805 EIA case size under development.
Benefits of Changing from 4 mm to 2 mm Pitching Spacing
• Lower placement costs.
• Double the parts on each reel results in fewer reel
changes and increased effi ciency.
• Fewer reels result in lower packaging, shipping and
storage costs, reducing waste.
C1086_U2J • 05/24/19
14
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Figure 1 – Embossed (Plastic) Carrier Tape Dimensions
P2
T
T2
ØD0
(10 pitches cumulative
tolerance on tape ±0.2 mm)
P0
A0
E1
F
K0
B1
E2
B0
S1
W
P1
T1
Center Lines of Cavity
ØD1
Cover Tape
B1 is for tape feeder reference only,
including draft concentric about B0.
Embossment
For cavity size,
see Note 1 Table 4
User Direction of Unreeling
Table 6 – Embossed (Plastic) Carrier Tape Dimensions
Metric will govern
Constant Dimensions — Millimeters (Inches)
Tape Size
D0
8 mm
12 mm
1.5 +0.10/−0.0
(0.059 +0.004/−0.0)
16 mm
D1 Minimum
Note 1
1.0
(0.039)
1.5
(0.059)
R Reference S1 Minimum
T
Note 2
Note 3
Maximum
25.0
(0.984)
1.75 ±0.10
4.0 ±0.10
2.0 ±0.05
0.600
0.600
(0.069 ±0.004) (0.157 ±0.004) (0.079 ±0.002)
(0.024)
(0.024)
30
(1.181)
E1
P0
P2
T1
Maximum
0.100
(0.004)
Variable Dimensions — Millimeters (Inches)
Tape Size
8 mm
12 mm
16 mm
B1 Maximum
Note 4
4.35
Single (4 mm)
(0.171)
Single (4 mm)
8.2
and double (8 mm)
(0.323)
12.1
Triple (12 mm)
(0.476)
Pitch
E2
Minimum
6.25
(0.246)
10.25
(0.404)
14.25
(0.561)
T2
Maximum
3.5 ±0.05
4.0 ±0.10
2.5
(0.138 ±0.002) (0.157 ±0.004)
(0.098)
5.5 ±0.05
8.0 ±0.10
4.6
(0.217 ±0.002) (0.315 ±0.004)
(0.181)
7.5 ±0.05
12.0 ±0.10
4.6
(0.138 ±0.002) (0.157 ±0.004)
(0.181)
F
P1
W
Maximum
8.3
(0.327)
12.3
(0.484)
16.3
(0.642)
A0,B0 & K0
Note 5
1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of the embossment
location and the hole location shall be applied independently of each other.
2. The tape with or without components shall pass around R without damage (see Figure 6.)
3. If S1 < 1.0 mm, there may not be enough area for a cover tape to be properly applied (see EIA Standard 481, paragraph 4.3, section b.)
4. B1 dimension is a reference dimension for tape feeder clearance only.
5. The cavity defined by A0, B0 and K0 shall surround the component with sufficient clearance that:
(a) the component does not protrude above the top surface of the carrier tape.
(b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been
removed.
(c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 3.)
(d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape
(see Figure 4.)
(e) for KPS product, A0 and B0 are measured on a plane 0.3 mm above the bottom of the pocket.
(f) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
15
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Figure 2 – Punched (Paper) Carrier Tape Dimensions
T
Po
ØDo
(10 pitches cumulative
tolerance on tape ±0.2 mm)
A0
F
P1
T1
T1
Top Cover Tape
W
E2
B0
Bottom Cover Tape
E1
G
Cavity Size,
See
Note 1, Table 7
Center Lines of Cavity
Bottom Cover Tape
User Direction of Unreeling
Table 7 – Punched (Paper) Carrier Tape Dimensions
Metric will govern
Constant Dimensions — Millimeters (Inches)
Tape Size
D0
E1
P0
P2
T1 Maximum
G Minimum
8 mm
1.5 +0.10 -0.0
(0.059 +0.004 -0.0)
1.75 ±0.10
(0.069 ±0.004)
4.0 ±0.10
(0.157 ±0.004)
2.0 ±0.05
(0.079 ±0.002)
0.10
(0.004)
maximum
R Reference
Note 2
0.75
(0.030)
25
(0.984)
Variable Dimensions — Millimeters (Inches)
Tape Size
Pitch
8 mm
Half (2 mm)
8 mm
Single (4 mm)
E2 Minimum
F
P1
T Maximum
W Maximum
A0 B 0
6.25
(0.246)
3.5 ±0.05
(0.138 ±0.002)
2.0 ±0.05
(0.079 ±0.002)
4.0 ±0.10
(0.157 ±0.004)
1.1
(0.098)
8.3
(0.327)
8.3
(0.327)
Note 1
1. The cavity defined by A0, B0 and T shall surround the component with sufficient clearance that:
a) the component does not protrude beyond either surface of the carrier tape.
b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been
removed.
c) rotation of the component is limited to 20° maximum (see Figure 3.)
d) lateral movement of the component is restricted to 0.5 mm maximum (see Figure 4.)
e) see addendum in EIA Standard 481 for standards relating to more precise taping requirements.
2. The tape with or without components shall pass around R without damage (see Figure 6.)
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
16
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Packaging Information Performance Notes
1. Cover Tape Break Force: 1.0 kg minimum.
2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:
Tape Width
Peel Strength
8 mm
0.1 to 1.0 newton (10 to 100 gf)
12 and 16 mm
0.1 to 1.3 newton (10 to 130 gf)
The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be
165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of
300 ±10 mm/minute.
3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. Refer to EIA
Standards 556 and 624.
Figure 3 – Maximum Component Rotation
°
T
Maximum Component Rotation
Top View
Maximum Component Rotation
Side View
Typical Pocket Centerline
Tape
Maximum
Width (mm) Rotation (
8,12
20
16 – 200
10
Bo
°
T)
°
s
Tape
Width (mm)
8,12
16 – 56
72 – 200
Typical Component Centerline
Ao
Figure 4 – Maximum Lateral Movement
8 mm & 12 mm Tape
0.5 mm maximum
0.5 mm maximum
Maximum
Rotation (
20
10
5
°
S)
Figure 5 – Bending Radius
Embossed
Carrier
16 mm Tape
Punched
Carrier
1.0 mm maximum
1.0 mm maximum
R
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
Bending
Radius
R
C1086_U2J • 05/24/19
17
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Figure 6 – Reel Dimensions
Full Radius,
See Note
W3
(Includes
flange distortion
at outer edge)
Access Hole at
Slot Location
(Ø 40 mm minimum)
W2
D
A
(See Note)
N
C
(Arbor hole
diameter)
B
(see Note)
(Measured at hub)
W1
(Measured at hub)
If present,
tape slot in core
for tape start:
2.5 mm minimum width x
10.0 mm minimum depth
Note: Drive spokes optional; if used, dimensions B and D shall apply.
Table 8 – Reel Dimensions
Metric will govern
Constant Dimensions — Millimeters (Inches)
Tape Size
A
B Minimum
C
D Minimum
8 mm
178 ±0.20
(7.008 ±0.008)
or
330 ±0.20
(13.000 ±0.008)
1.5
(0.059)
13.0 +0.5/−0.2
(0.521 +0.02/−0.008)
20.2
(0.795)
12 mm
16 mm
Variable Dimensions — Millimeters (Inches)
Tape Size
N Minimum
W1
W2 Maximum
W3
50
(1.969)
8.4 +1.5/−0.0
(0.331 +0.059/−0.0)
12.4 +2.0/−0.0
(0.488 +0.078/−0.0)
16.4 +2.0/−0.0
(0.646 +0.078/−0.0)
14.4
(0.567)
18.4
(0.724)
22.4
(0.882)
Shall accommodate tape
width without interference
8 mm
12 mm
16 mm
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
18
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
Figure 7 – Tape Leader & Trailer Dimensions
Embossed Carrier
Punched Carrier
8 mm & 12 mm only
END
Carrier Tape
Round Sprocket Holes
START
Top Cover Tape
Elongated Sprocket Holes
(32 mm tape and wider)
Trailer
160 mm minimum
Components
100 mm
minimum leader
400 mm minimum
Top Cover Tape
Figure 8 – Maximum Camber
Elongated Sprocket Holes
(32 mm & wider tapes)
Carrier Tape
Round Sprocket Holes
1 mm maximum, either direction
Straight Edge
250 mm
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
19
Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)
U2J Dielectric, 10 – 100 VDC (Commercial & Automotive Grade)
KEMET Electronics Corporation Sales Offices
For a complete list of our global sales offi ces, please visit www.kemet.com/sales.
Disclaimer
All product specifi cations, statements, information and data (collectively, the “Information”) in this datasheet are subject to change. The customer is responsible for
checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given
herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.
Statements of suitability for certain applications are based on KEMET Electronics Corporation’s (“KEMET”) knowledge of typical operating conditions for such
applications, but are not intended to constitute – and KEMET specifi cally disclaims – any warranty concerning suitability for a specifi c customer application or use.
The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any
technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET’s products is given gratis, and KEMET assumes
no obligation or liability for the advice given or results obtained.
Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component
failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards
(such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury
or property damage.
Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other
measures may not be required.
KEMET is a registered trademark of KEMET Electronics Corporation.
© KEMET Electronics Corporation • KEMET Tower • One East Broward Boulevard
Fort Lauderdale, FL 33301 USA • 954-766-2800 • www.kemet.com
C1086_U2J • 05/24/19
20