SN431/SNF431
Programmable Voltage Reference
◈ Description
The SN431 series are 3-terminal precision shunt regulators that are programmable over a wide voltage range of 2.495V to 36V with ±0.5%, ±1.0% tolerance. The SN431 series have a low dynamic impedance of 0.15Ω. These features make the SN431 series an excellent replacement for zener diodes in numerous applications circuits that require a precision reference voltage.
◈ Features
• Programmable output voltage from 2.495V to 36V • Voltage reference tolerance : ±0.5%, ±1.0% • Cathode current capability of 1mA to 100mA
◈ Pin Assignment
(Top View)
A A R RAK PKG : SOT-89 Apply Device : SN431xF PKG : SOT-23 Apply Device : SN431xS PKG : SOT-23 Apply Device : SNF431xS
(Top View)
(Top View)
K
R K
A
(Top View)
(Marking Side View)
(Marking Side View)
A R NC NC K RA K PKG : SOT-25 Apply Device : SN431xN PKG : TO-92 Apply Device : SN431x RAK PKG : TO-92M Apply Device : SN431xM
[ K : Cathode,
A: Anode,
R : Reference ]
KSD-I0A013-006
1
SN431/SNF431
◈ Symbol
Cathode(K)
◈ Functional block diagram
Cathode(K)
Reference(R) + – VREF=2.495V
Reference(R)
Anode(A)
Anode(A)
◈ Ordering Information
Vref Tolerance PKG Type TO-92 TO-92M ±1% SOT-23 SOT-23 SOT-25 SOT-89 TO-92 TO-92M ±0.5% SOT-23 SOT-23 SOT-25 SOT-89 1) SN431x Pin Connection : 3) □ : Year & Week Code 1. Cathode, Device Name SN431A SN431AM SN431AS1) SNF431AS2) SN431AN SN431AF SN431B SN431BM SN431BS1) SNF431BS2) SN431BN SN431BF 2. Reference, 3. Anode Marking SN431A SN431A 4GA□3) 4KA□3) N4A□3) SN431A SN431B SN431B 4GB□3) 4KB□3) N4B□3) SN431B
2) SNF431x Pin Connection : 1. Reference, 2. Cathode, 3. Anode
KSD-I0A013-006
2
SN431/SNF431
◈ Absolute maximum ratings
Characteristic
Cathode to Anode voltage Cathode current Reference input current SOT-23 SOT-25 Power Dissipation SOT-89 TO-92 TO-92M Junction Temperature Operating temperature range Storage temperature range
[Ta=25℃]
Symbol
VKA IK Iref PD(Note1) PD(Note1) PD(Note1) PD(Note2) PD(Note2) TJ Topr Tstg
Rating
37 150 10 350 400 500 625 400 150 -40 ~ +85 -55 ~ +150
Unit
V mA mA
mW
℃ ℃ ℃
Note 1 : Mounted on a glass epoxy PCB board (25.4 × 25.4mm).TA=25℃ Note 2 : TA=25℃
◈ Recommended operating conditions
Characteristic
Cathode to Anode voltage Cathode current
Symbol
VKA IK
Rating Min.
Vref 1
Max.
36 100
Unit
V mA
◈ Electrical Characteristics (Ta=25℃, unless otherwise noted.)
Characteristic
Reference voltage (Fig.1) Reference input voltage deviation over temperature (Fig.1, Note1,2) Ratio of delta reference input voltage to delta cathode voltage (Fig.2) Reference current (Fig.2) Reference input current deviation over temperature (Fig.2, Note 1,2) Minimum cathode current for regulation Off-state cathode current (Fig.3) Dynamic impedance (Fig.1, Note3)
Symbol
Vref ΔVref ΔVref ΔVKA Iref ΔIref IK(MIN) IK(off) ZKA
Condition
VKA=Vref, IK=10mA VKA=Vref , IK=10mA @ -40˚C ≤ Ta ≤ 85˚C
IK=10mA Vref≤VKA≤36V
Min. Typ. Max.
SN431B SN431A 2.482 2.470 2.495 2.508 2.520 30
Unit
V
7
mV
-
-1.0 1.8 0.4 0.35 2.7 0.15
-2.7 4.0 2.5 1.0 1000 0.5
mV/V μΑ μΑ mΑ nA Ω
IK=10mA, R1=10KΩ, R2=∞ IK=10mA, R1=10KΩ, R2=∞ @ -40˚C ≤ Ta ≤ 85˚C VKA=Vref VKA=36V, Vref=0V VKA=Vref, f ≤ 1.0KHz 1.0mA ≤ IK ≤ 100mA
KSD-I0A013-006
3
SN431/SNF431
Fig. 1 Test circuit for VKA=Vref Fig. 2 Test circuit for VKA>Vref Fig. 3 Test circuit for IK(off)
Input
IK
VKA
Input R1 R2
Vref IK Iref
VKA
Input
VKA
IK(off)
V KA = V ref × (1 +
Note.
1. Ambient temperature range: TLOW = -40℃, THigh = 85℃
R1 ) + I ref × R1 R2
2. The deviation parameters △Vref and △Iref are defined as the difference between the maximum value and minimum value obtained over the full operating ambient temperature range that applied.
∆Vref = Vref Max – Vref Min ∆Ta = T2 – T1
A mbient Temperature
The average temperature coefficient of the reference input voltage, αVref is defined as:
ΔV ref × 10 6 ) ppm V ref (T a = 25℃) α V ref ( )= ℃ ΔT a (
Example : △Vref = 30mV and the slope is positive, △Vref @ 25℃ = 2.495V △Ta = 70℃
0.03 ( ) × 10 6 ppm 2.495 αVref ( )= = 171ppm / ℃ ℃ 70
3. The dynamic impedance ZKA is defined as:
Ζ KA = ΔVKA ΔI K
When the device is operating with two external resistors, R1 and R2, (refer to Fig.2) the total dynamic impedance of the circuit is given by:
Ζ KA ' = Ζ KA × (1 + R1 ) R2
KSD-I0A013-006
4
SN431/SNF431
◈ Electrical Characteristic Curves
Fig.4 Vref vs TA [%]
0.8
Fig.5 Iref vs TA Reference Input Current - Iref [µA]
5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 20 40 60 80 100
1.0 0.6 0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 -60 -40 -20 0 20 40 60 80 100
Reference Voltage Change - Vref
VKA=Vref IK=10mA
IK=10mA R1=10KΩ R2=∞
Ambient Temperature - TA [℃]
Ambient Temperature - TA [℃]
Fig.6 IKA vs VKA
150 125 100 75 50 25 0 -25 -50 -75 -100 -125 -150 -2
800
Fig.7 IKA vs VKA
700 600 500 400 300 200 100 0 -100 -200 -1 0 1 2 3
Cathode Current - IKA [mA]
TA=25℃
Cathode Current - IKA [µA]
VKA=Vref
VKA=Vref TA=25℃
-1
0
1
2
3
Cathode Voltage - VKA [V] Fig.8 Ioff vs TA Delta Reference Voltage - △Vref [mV] Off-State Cathode Current - Ioff [nA]
4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 20 40 60 80 100
0 -5 -10 -15 -20 -25 0 4
Cathode Voltage - VKA [V] Fig.9 △Vref vs VKA
VKA= 36V Vref=0V
IK=10mA TA=25℃
8
12
16
20
24
28
32
36
40
Ambient Temperature - TA [℃]
Cathode Voltage - VKA [V]
KSD-I0A013-006
5
SN431/SNF431
◈ Electrical Characteristic Curves
Fig.10 AV vs f
60
OUTPUT
IK=10mA
50
Voltage Gain - AV [dB]
TA=25℃
IK 10kΩ 220Ω
40
30
10μF
10kΩ
20
GND
10
0 1k 10k 100k 1000k 10000k
Voltage Gain Test Circuit
Frequency - f [Hz]
Fig.11 |ZKA| vs f
Vout
100
500Ω Rs=100Ω
Reference Impedance – |ZKA| [Ω]
IK=10mA TA=25℃
10
IK
1uF
Vin GND
1
0.1 1k 10k 100k 1000k 10000k
ZKA = Vout/Vin x Rs
Frequency - f [Hz]
Dynamic Impedance Test Circuit
KSD-I0A013-006
6
SN431/SNF431
Fig.12 Pulse Response
220Ω
OUTPUT
Voltage Swing [V]
0.9V/Div
Output
Pulse Generator f = 100kHz
50Ω
GND
5V/Div
Input
Pulse Response Test Circuit
Time [µS]
KSD-I0A013-006
7
SN431/SNF431
◈ Typical Application
Vcc
Vcc Vout
R1
Vout
R2
Vin
Vin < Vref -> Vout=Vcc Vin > Vref -> Vout≒2.0V
Vout = ( 1 +
R1 )Vref R2
Vth=Vref
Fig14. Shunt Regulator
Fig15. Single-Supply Comparator with Temperature-Compensated Threshold
Vcc
Isink
Iout Vcc RCL
Rs
Isink = Vref / RS Fig16. Constant Current Sink
Iout = Vref / RCL Fig17. Constant Current Source
Vcc
Vout
Vcc Vout
R1
R1
R2
R2
Vout = ( 1 +
R1 )Vref R2
Vout = ( 1 + R1 )Vref R2
Vin(min) = Vout + Vbe Vout(min) = Vref + Vbe Fig18. Series Pass Regulator
Fig19. High Currnet Shunt Regulator
KSD-I0A013-006
8
SN431/SNF431
◈ SOT-89 Outline Dimension (unit : mm)
※ Recommend PCB solder land
[Unit: mm]
KSD-I0A013-006
9
SN431/SNF431
◈ SOT-23 Outline Dimension (unit : mm)
※ Recommend PCB solder land
[Unit: mm]
KSD-I0A013-006
10
SN431/SNF431
◈ SOT-25 Outline Dimension (unit : mm)
※ Recommend PCB solder land
[Unit: mm]
KSD-I0A013-006
11
SN431/SNF431
◈ TO-92 Outline Dimension (unit : mm)
KSD-I0A013-006
12
SN431/SNF431
◈ TO-92M Outline Dimension (unit : mm)
KSD-I0A013-006
13
SN431/SNF431
The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.). Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp.. Specifications mentioned in this publication are subject to change without notice.
KSD-I0A013-006
14
很抱歉,暂时无法提供与“SNF431BS”相匹配的价格&库存,您可以联系我们找货
免费人工找货