0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ML1490PP

ML1490PP

  • 厂商:

    LANSDALE

  • 封装:

  • 描述:

    ML1490PP - RF/IF/Audio Amplifier Wideband Amplifier With AGC - LANSDALE Semiconductor Inc.

  • 详情介绍
  • 数据手册
  • 价格&库存
ML1490PP 数据手册
ML1490 RF/IF/Audio Amplifier Wideband Amplifier With AGC Legacy Device: Motorola MC1490 The ML1490 is an integrated circuit featuring wide–range AGC for use in RF/IF amplifiers and audio amplifiers. • High Power Gain: 50 dB Typ at 10 MHz 45 dB Typ at 60 MHz 35 dB Typ at 100 MHz • Wide Range AGC: 60 dB Min, DC to 60 MHz • 6.0 V to 15 V Operation, Single Polarity Supply • Operating Temperature Range TA = –40° to +85°C Note: See Similar ML1350 For Possible Option MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.) Rating Power Supply Voltage AGC Supply Input Differential Voltage Operating Temperature Range Storage Temperature Range Junction Temperature Symbol VCC VAGC VID TA Tstg TJ Value +18 VCC 5.0 –40 to +85 –65 to +150 +150 Unit Vdc Vdc Vdc °C °C °C VCC GND 2 –+ 3 4 (Top View) Output (–) 1 8 Output (+) 8 1 P DIP 8 = PP PLASTIC PACKAGE CASE 626 CROSS REFERENCE/ORDERING INFORMATION PACKAGE MOTOROLA LANSDALE P DIP 8 MC1490P ML1490PP Note: Lansdale lead free (Pb) product, as it becomes available, will be identified by a part number prefix change from ML to MLE. PIN CONNECTIONS 7 Substrate Ground 6 5 Noninverting Input AGC Input Representative Schematic Diagram 2 1.5 k VAGC 5 470 2.0 k 470 70 5.5 k 12.1 k 8 (+) Outputs (–) 1 45 66 6 5.0 k 5.0 k 5.6 k 1.1 k 1.1 k 8.4 k Substrate 1.9k 200 3 7 1.4 k 2.8 k 200 200 2.8 k VCC Inverting Input SCATTERING PARAMETERS (VCC = +12 Vdc, TA = +25°C, Zo = 50 Ω) f = MHz Typ Parameter Input Reflection Coefficient Output Reflection Coefficient Forward Transmission Coefficient Reverse Transmission Coefficient Symbol |S11| θ11 |S22| θ22 |S21| θ21 S12 θ12 30 0.95 –7.3 0.99 –3.0 16.8 128 0.00048 84.9 60 0.93 –16 0.98 –5.5 14.7 64.3 0.00092 79.2 Unit – deg – deg – deg – deg 4 (–) (+) Inputs Pins 3 and 7 should both be connected to circuit ground. Page 1 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. ELECTRICAL CHARACTERISTICS (VCC = 12 Vdc, f = 60 MHz, BW = 1.0 MHz, TA = 25°C) Characteristic Power Supply Current Drain AGC Range (AGC) 5.0 V Min to 7.0 V Max Output Stage Current (Sum of Pins 1 and 8) Single–Ended Power Gain RS = RL = 50 Ω Noise Figure RS = 50 Ohms Power Dissipation Figure – 19 – 19 19 – Symbol ICC MAGC IO GP NF PD Min – –60 4.0 40 – – Typ – – – – 6.0 168 Max 17 – 7.5 – – 204 Unit mA dB mA dB dB mW Figure 1. Unneutralized Power Gain versus Frequency (Tuned Amplifier, See Figure 19) AC , SINGLE±ENDED VOLTAGE GAIN (dB) 70 G P , UNNEUTRALIZED GAIN (dB) (SINGLE–ENDED OUTPUT) 60 50 40 30 20 10 0 10 20 50 f, FREQUENCY (MHZ) 100 200 VCC = 12 Vdc 50 40 30 20 10 0 Figure 2. Voltage Gain versus Frequency (Video Amplifier, See Figure 20) RL = 1.0 k VCC = 12 Vdc RL = 100 Ω RL = 10 Ω 0.1 1.0 10 f, FREQUENCY (MHZ) 100 1000 Figure 3. Dynamic Range: Output Voltage versus Input Voltage (Video Amplifier, See Figure 20) 10 V O, OUTPUT VOLTAGE (V RMS) AV , SINGLE VOLTAGE GAIN (dB) 5.0 1.0 0.5 RL = 1.0 k 0.1 0.05 100 Ω 10 Ω 0.01 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 VCC = 12 Vdc V5(AGC) = 0 V f = 1.0 MHz 50 Figure 4. Voltage Gain versus Frequency (Video Amplifier, See Figure 20) VCC = 6.3 Vdc 40 30 20 10 0 0.3 100 Ω RL = 1.0 kΩ 0.5 1.0 3.0 5.0 10 30 50 100 300 en, INPUT VOLTAGE (mVRMS) f, FREQUENCY (MHZ) Page 2 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. Legacy Applications Information Figure 5. Voltage Gain and Supply Current versus Supply Voltage (Video Amplifier, See Figure 20) AV, SINGLE±ENDED VOLTAGE GAIN (dB) 45 40 35 30 25 20 15 10 5.0 0 2.0 4.0 6.0 8.0 10 12 14 16 VCC, SUPPLY VOLTAGE (V) ICC f = 1.0 MHz Rl = 1.0 Ω AV 24 I C , SUPPLY CURRENT (mAdc) GR , GAIN REDUCTION (dB) 21 18 15 12 9.0 6.0 3.0 0 0 10 20 30 40 50 60 70 80 0 3.0 6.0 9.0 12 15 18 21 24 27 30 VR(AGC), AGC VOLTAGE (Vdc) RAGC = 0 Ω RAGC = 5.6 kΩ RAGC = 100 kΩ VR(AGC) RAGC 5 MC1490P Figure 6. Typical Gain Reduction versus AGC Voltage Figure 7. Typical Gain Reduction versus AGC Current 0 GR , GAIN REDUCTION (dB) 10 G p ,POWER GAIN (dB) 20 30 40 50 60 70 80 –40 –20 0 20 40 60 80 100 120 140 160 IAGC AGC CURRENT (µA) 100 < RAGC < 100 k Figure 8. Fixed Tuned Power Gain Reduction versus Temperature (See Test Circuit, Figure 19) 50 40 30 20 10 0 –10 –20 5.0 5.2 VCC = 12 Vdc f = 60 MHz RAGC = 5.6 kΩ 5.4 5.6 5.8 6.0 6.2 6.4 +75°C 0°C +25°C –55°C +125°C 6.6 6.8 7.0 VR(AGC), AGC VOLTAGE (Vdc) Figure 9. Power Gain versus Supply Voltage (See Test Circuit, Figure 19) 80 70 Gp , POWER GAIN (dB) 60 50 40 30 20 10 0 0 2.0 4.0 6.0 8.0 10 12 14 16 VCC, POWER SUPPLY VOLTAGE (V) GP NF, NOISE FIGURE (dB) f = 60 MHz 10 9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 15 Figure 10. Noise Figure versus Frequency RS Optimized for minimum NF 20 25 30 35 40 50 60 70 80 90 100 150 f, FREQUENCY (MHz) Page 3 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. Legacy Applications Information Figure 11. Noise Figure versus Source Resistance 20 18 NF, NOISE FIGURE (dB) 16 14 12 10 8.0 6.0 4.0 2.0 0 100 200 400 600 1.0 k 2.0 k 4.0 k 10 k RS, SOURCE RESISTANCE (Ω) f = 30 MHz VCC = 12 Vdc f = 105 MHz f = 60 MHz NOISE FIGURE (dB) 40 35 30 25 20 15 10 5 0 0 –10 –20 –30 –40 –50 –60 –70 –80 GR, GAIN REDUCTION (dB) Test circuit has tuned input providing a source resistance optimized for best noise figure. f = 30 MHz BW = 1.0 MHz Figure 12. Noise Figure versus AGC Gain Reduction Figure 13. Harmonic Distortion versus AGC Gain Reduction for AM Carrier (For Test Circuit, See Figure 14) 40 HARMONIC DISTORTION IN DETECTED MODULATION (%) 35 30 25 20 15 10 5.0 0 0 10 20 30 40 50 60 70 80 GR, GAIN REDUCTION (dB) EO = 2400 mVpp 240 mVpp f = 10.7 MHz Modulation: 90 % AM, f m = 1.0 kHz Load at Pin 8 = 2.0 kΩ EO = peak–to–peak envelope of modulated 10.7 MHz carrier at Pin 8 760 mVpp Figure 14. 10.7 MHz Amplifier Gain 7 0.002 6 VAGC 10.7 MHz (50 Ω Source) 5.6 k 5 4 82 pF 50–150 pF L1 ML1490 55 dB, BW 100 kHz 8 1 36 pF 50 Ω Load L2 RFC +12 Vdc 0.002 3 2 0.002 L1 = 24 turns, #22 AWG wire on a T12–44 micro metal Toroid core (–124 pF) L2 = 20 turns, #22 AWG wire on a T12–44 micro metal Toroid core (–100 pF) Page 4 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. Legacy Applications Information Figure 15. S11 and S22, Input and Output Reflection Coefficient Figure 16. S11 and S22, Input and Output Reflection Coefficient Figure 17. S21, Forward Transmission Coefficient (Gain) 70 MHz 80 MHz 10 100 MHz 120 MHz 150 MHz Figure 18. S12, Reverse Transmission Coefficient (Feedback) 5.0 60 MHz 50 MHz 5.0 40 MHz 10 30 MHz 20 MHz 15 10 MHz 200 MHz Page 5 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. Legacy Applications Information Figure 19. 60 MHz Power Gain Test Circuit 0.0001 µF 7 C2 VAGC L1 Input (50 Ω) 5 C1 4 RAGC VR(AGC) 3 2 +12 Vdc 0.001 µF ML1490 1 6 8 L2 C3 Shield C4 Output (50 Ω) Figure 20. Video Amplifier 0.001 µF 7 10 k 5.6 k 1.0 µF 6 ML1490 5 4 0.001 µF +12 Vdc 0.001 µF 2 3 1.0 µF 1 eo 8 RL 1.0 µF VR(AGC) VR(AGC) ei L1 = 7 turns, #20 AWG wire, 5/16" Dia.,5/8" long L2 = 6 turns, #14 AWG wire, 9/16" Dia.,3/4" long C1,C2,C3 = (1–30) pF C4 = (1–10) pF Figure 21. 30 MHz Amplifier (Power Gain = 50 dB, BW 1.0 MHz) 0.002 µF 6 (1 – 30) pF Input (50 Ω) L1 5 VAGC Figure 22. 100 MHz Mixer VAGC ≈ 6.0 V 7 8 ML1490 1 2 1 – 10 pF 10 µH C2 T1 RL = 50 Ω Input from local oscillator (70 MHz) Signal Input (100 MHz) 100 (1 – 10) pF 5 6 L1 4 7 8 L2 1 (1 – 10) pF (1 – 30) pF IF Output (30 MHz) ML1490 38 pF 5.6 k 43 0.002 µF VR(AGC) (1 – 30) pF +12 Vdc 3 0.002 µF 2 +12 Vdc 10 µH 0.002 µF L1 = 12 turns, #22 AWG wire on a Toroid core, (T37–6 micro metal or equiv). T1: Primary = 17 turns, #20 AWG wire on a Toroid core, (T44–6). Secondary = 2 turns, #20 AWG wire. L1 = 5 turns, #16 AWG wire, 1/4" , ID Dia., 5/8" long L2 = 16 turns, #20 AWG wire on a Toroid core, (T44–6). Figure 23. Two–Stage 60 MHz IF Amplifier (Power Gain 80 dB, BW 1.5 MHz) 10 k VR(AGC) 5.1 k Input (50 Ω) 24 pF 4 200 µH 5 6 (1–10) pF 0.002 µF +12 Vdc 2 3 RFC 10 µH ML1490 1 (1–10) pF (1–10) pF 7 Shield 8 T1 0.002 µF 7 4 5 6 Shield T2 8 ML1490 1 (1–10) pF 2 3 0.001 µF RFC Output (50 Ω) 1.0 k 39 pF 0.002 µF T1: Primary Winding = 15 turns, #22 AWG wire, 1/4" ID Air Core Secondary Winding = 4 turns, #22 AWG wire, Coefficient of Coupling ≈ 1.0 T2: Primary Winding = 10 turns, #22 AWG wire, 1/4" ID Air Core Secondary Winding = 2 turns, #22 AWG wire, Coefficient of Coupling ≈ 1.0 Page 6 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. DESCRIPTION OF SPEECH COMPRESSOR The amplifier drives the base of a PNP transistor operating common–emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level Vr. Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than Vr ≈ 7.0 V The resulting output is fil. tered by Cx, Rx. Rx controls the charging time constant or attack time. Cx is involved in both charge and discharge. R2 (the 150 kΩ and input resistance of the emitter–follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making Rx small and R2 large. (A Darlington emitter–follower may be needed if extremely slow decay times are required.) The emitter–follower Q2 drives the AGC Pin 5 of the ML1490PP and reduces the gain. R3 controls the slope of signal compression. Table 1. Distortion versus Frequency Frequency Frequency 100 Hz 300 Hz 1.0 kHz 10 kHz 100 kHz Distortion 10 mV ei 3.5% 2% 1.5% 1.5% 1.5% 100 mV ei 12% 10% 8% 8% 8% Distortion 10 mV ei 15% 6% 3% 1% 1% 100 mV ei 27% 20% 9% 3% 3% Notes 1 and 2 Notes: (1) (2) Decay = 300 ms Attack = 20 ms Cx = 7.5 µF Rx = 0 (Short) (3) (4) Notes 3 and 4 Decay = 20 ms Attack = 3.0 ms Cx = 0.68 µF Rx = 1.5 kΩ Figure 24. Speech Compressor +12 V 25 µF 0.001 1.0 k 1.0 k 2 5 15 µF Input 4 6 15 µF R3 15 k 7 ML1490 3 +12 V +12 V 1 8 10 µF 10 µF Output +12 V R2 Q2 2N3904 4.7 k 150 k Cx Rx 220 Q1 2N3906 D1 6.8 k 2.2 k Vr 33 k R1 100 k Page 7 of 8 www.lansdale.com Issue A ML1490 LANSDALE Semiconductor, Inc. OUTLINE DIMENSIONS P DIP = PP (ML1490PP) PLASTIC PACKAGE CASE 626–05 ISSUE K 8 5 –B– 1 4 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 0.030 0.040 F NOTE 2 –A– L C –T– SEATING PLANE J N D K M M TA B H G 0.13 (0.005) M M Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc. Page 8 of 8 www.lansdale.com Issue A
ML1490PP
1. 物料型号 - 型号:ML1490 - 替代型号:摩托罗拉MC1490

2. 器件简介 - ML1490是一款集成电路,具有宽范围自动增益控制(AGC),用于RF/IF放大器和音频放大器。 - 特点包括高功率增益、宽范围AGC、6.0V至15V单极性电源操作、工作温度范围从-40℃至+85℃。

3. 引脚分配 - 引脚3和7应连接到电路地。

4. 参数特性 - 供电电流:17 mA - AGC范围(AGC)5.0 V最小至7.0 V最大:-60 dB - 输出级电流(引脚1和8电流之和):4.0 mA至7.5 mA - 单端功率增益Rs=RL=50:40 dB - 噪声系数Rs=50欧姆:6.0 dB - 功率耗散:168 mW至204 mW

5. 功能详解应用信息 - ML1490用于视频放大器和调谐放大器,具有不同的增益和AGC电压特性。 - 提供了多种测试电路图和应用示例,如60 MHz功率增益测试电路、视频放大器、30 MHz放大器和100 MHz混频器。

6. 封装信息 - 封装类型:P DIP 8 - 封装案例:626 - 封装尺寸:提供了详细的英寸和毫米尺寸,以及轮廓图。
ML1490PP 价格&库存

很抱歉,暂时无法提供与“ML1490PP”相匹配的价格&库存,您可以联系我们找货

免费人工找货