0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DLACE-X2-UT1

DLACE-X2-UT1

  • 厂商:

    LATTICE(莱迪思半导体)

  • 封装:

    -

  • 描述:

    IPCOREDEINTERLACERXP2

  • 数据手册
  • 价格&库存
DLACE-X2-UT1 数据手册
Deinterlacer IP Core User’s Guide September 2013 IPUG97_01.1 Table of Contents Chapter 1. Introduction .......................................................................................................................... 4 Quick Facts ........................................................................................................................................................... 4 Features ................................................................................................................................................................ 5 Release Information ..................................................................................................................................... 5 Device Support............................................................................................................................................. 5 Chapter 2. Functional Description ........................................................................................................ 6 Key Concepts........................................................................................................................................................ 6 Block Diagram....................................................................................................................................................... 6 Deinterlacing Algorithms ....................................................................................................................................... 7 Weave .......................................................................................................................................................... 7 Bob............................................................................................................................................................... 7 Intra Motion Adaptive Deinterlacing ............................................................................................................. 7 Inter Motion Adaptive Deinterlacing ............................................................................................................. 7 Frame Rate Conversion ........................................................................................................................................ 8 Dynamic Parameters Updating ............................................................................................................................. 8 Memory Bandwidth and Size ................................................................................................................................ 9 Primary I/O .......................................................................................................................................................... 10 Interface Descriptions ......................................................................................................................................... 11 Video Input/Output ..................................................................................................................................... 11 Memory Interface ....................................................................................................................................... 11 Parameter Register Read/Write Interface .................................................................................................. 12 Timing Specifications .......................................................................................................................................... 13 Video Input/Output Timing ......................................................................................................................... 13 Video Frame Timing................................................................................................................................... 15 Memory Interface Timing ........................................................................................................................... 16 Dynamic Parameters Updating .................................................................................................................. 17 Chapter 3. Parameter Settings ............................................................................................................ 18 Architecture ......................................................................................................................................................... 19 Frame Dimensions ..................................................................................................................................... 19 Filter Physical Characteristics .................................................................................................................... 20 I/O Specification .................................................................................................................................................. 20 Implementation.................................................................................................................................................... 21 Chapter 4. IP Core Generation and Evaluation .................................................................................. 22 Licensing the IP Core.......................................................................................................................................... 22 Getting Started .................................................................................................................................................... 22 Configuring the Deinterlacer IP Core in IPexpress ............................................................................................. 22 IPexpress-Created Files and Top-Level Directory Structure...................................................................... 24 Instantiating the Core ................................................................................................................................. 25 Running Functional Simulation .................................................................................................................. 25 Synthesizing and Implementing the Core in a Top-Level Design .............................................................. 26 Hardware Evaluation........................................................................................................................................... 27 Enabling Hardware Evaluation in Diamond................................................................................................ 27 Enabling Hardware Evaluation in ispLEVER.............................................................................................. 27 Updating/Regenerating the IP Core .................................................................................................................... 27 Regenerating an IP Core in Diamond ........................................................................................................ 27 Regenerating an IP Core in ispLEVER ...................................................................................................... 28 Chapter 5. Support Resources ............................................................................................................ 29 Lattice Technical Support.................................................................................................................................... 29 E-mail Support ........................................................................................................................................... 29 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 2 Deinterlacer IP Core User’s Guide Table of Contents Local Support ............................................................................................................................................. 29 Internet ....................................................................................................................................................... 29 References.......................................................................................................................................................... 29 Revision History .................................................................................................................................................. 29 Appendix A. Resource Utilization ....................................................................................................... 30 LatticeECP2 and LatticeECP2S Devices ............................................................................................................ 30 Ordering Part Number................................................................................................................................ 30 LatticeECP2M and LatticeECP2MS Devices ...................................................................................................... 30 Ordering Part Number................................................................................................................................ 30 LatticeECP3 Devices .......................................................................................................................................... 31 Ordering Part Number................................................................................................................................ 31 LatticeXP2 Devices ............................................................................................................................................. 31 Ordering Part Number................................................................................................................................ 31 IPUG97_01.1, September 2013 3 Deinterlacer IP Core User’s Guide Chapter 1: Introduction The Lattice Deinterlacer IP core converts interlaced video into progressive video format using bob, intra or inter motion adaptive deinterlacing algorithms to reduce interline flickers and jagged edges. The Deinterlacer IP core supports image sizes up to 4kx4k with YCbCr 4:2:2, 4:4:4 and RGB video formats. The Deinterlacer IP core supports dynamic parameter updating via a parameter bus which can be configured to operate on a different clock from the core. Simple frame rate conversion is employed to support different input and output frame rates. Quick Facts Table 1-1 gives quick facts about the Deinterlacer IP core. Table 1-1. Deinterlacer IP Core Quick Facts Deinterlacer IP Core Configuration PAL720x576 YCbCr4:2:2 Core Requirements FPGA Families Supported LatticeECP2™ Minimum Device Required LFE2-12E Targeted Device Resource Utilization Core Requirements LFE2-50E-7F484C Algorithms Intra Inter Intra Inter Registers 2612 3825 2657 3916 LUTs 3144 4702 3223 4774 EBRs 4 7 6 11 FPGA Families Supported LatticeECP3™ Minimum Device Required LFE3-17EA Targeted Device Resource Utilization Core Requirements LFE3-70EA-8FN1156C Algorithms Intra Inter Intra Inter Registers 2609 3833 2656 3916 LUTs 3127 4690 3167 4734 EBRs 4 7 6 11 FPGA Families Supported LatticeXP2™ Minimum Device Required LFXP2-8E Targeted Device Resource Utilization LFXP2-40E-7F484C Algorithms Intra Inter Intra Inter Registers 2612 3825 2657 3916 LUTs 3144 4702 3223 4774 EBRs 4 7 6 11 Lattice Diamond® 1.3 or ispLEVER® 8.1 SP1 Lattice Implementation Design Tool Support 1080 60I to 1080 60P YCbCR4:2:2 Synthesis Synopsys® Synplify™ Pro for Lattice E-2011.03L Simulation Aldec® Active-HDL™ 8.2 SP1 Lattice Edition Mentor Graphics® ModelSim™ SE 6.3F © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 4 Deinterlacer IP Core User’s Guide Introduction Features The Deinterlacer IP core supports the following features: • Single-color, YCbCr 4:2:2, YcbCr 4:4:4 and RGB video formats • Serial and parallel deinterlacing • Weave, bob, intra and inter motion adaptive deinterlacing algorithms • Frame rate conversion • Configurable initial field • Configurable thresholds for inter motion adaptive deinterlacing algorithm • Dynamic parameter update of frame size, initial field and bypass mode • Configurable parameter bus width • Configurable parameters bus clock • Configurable memory bus width and base address • Configurable memory burst length and burst count • Configurable internal FIFO type and depth • 8, 10 or 12-bit color depth per plane • Configurable line buffer type Release Information • Deinterlacer IP core version 1.0 • Last updated August 17, 2011 Device Support • LatticeECP2™, LatticeECP2M, LatticeECP2MS, LatticeECP2S, LatticeECP3, LatticeXP2 IPUG97_01.1, September 2013 5 Deinterlacer IP Core User’s Guide Chapter 2: Functional Description Key Concepts In interlaced video, a frame is divided into two fields, with each field containing every other horizontal line in a frame. One field is transmitted at a time and thus uses only half the bandwidth. Most modern displays support progressive scan, and to display interlaced video on progressive scan displays, deinterlacing, a method of combining the two fields into a frame, is applied to the video signal. Because each frame of interlaced video is composed of two fields that are captured at different moments in time, there will be flickers and jagged edges in the combined frame. A good deinterlacing algorithm should reduce these artifacts as much as possible and yield a good video quality in the process. The Deinterlacer IP core provides several deinterlacing algorithms for different video quality and resource requirements: weave, bob, intra and inter motion adaptive deinterlacing algorithms. Block Diagram Figure 2-1. Deinterlacer IP Core Block Diagram Deinterlacer IP Core Frame Buffer Pixels In Write FIFO Read FIFO Line Buffer Deinterlacing Engine Pixels Out Memory Interface Memory Controller Figure 2-1 shows the block diagram of the Deinterlacer IP core. The core consists of three modules: frame buffer, line buffer and deinterlacer engine. The frame buffer module manages memory write/read and combines interlaced fields into progressive frames. The line buffer module and deinterlacing engine process the combined frames to reduce artifacts. In the deinterlacer, several clock sources are involved. When frame rate conversion is enabled, there are two clocks in the video data path: input pixel sample clock and output pixel sample clock. The frame buffer module handles the rate conversion, and the line buffer and deinterlacing engine operate at the output pixel clock rate. When frame rate conversion is disabled, all the modules in the video data path operate at input pixel clock rate. When dynamic parameter updating is selected, the parameter bus can be configured to run on a separate clock. By default, the parameter bus runs on the input pixel sample clock. The memory interface always operates on a separate clock. The input data must be in interlaced video format. An interlaced frame is composed of two fields. The first field in the interlaced frames can be configured to be the top field or the bottom field. This parameter can be configured at run time. When processing YCbCr 4:2:2 video format, the core copies neighboring pixels’ Cb and Cr vectors to construct the YCbCr 4:4:4 format for deinterlacing. The Deinterlacer IP core does not use multipliers. © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 6 Deinterlacer IP Core User’s Guide Functional Description Deinterlacing Algorithms The Deinterlacer IP core supports weave, bob, intra and inter motion adaptive deinterlacing algorithms. Weave The weave algorithm simply combines the two interlaced fields together. There is no line buffer module or deinterlacing engine instantiated in the core. Weaving is fine when there is no change in the image between fields, but any change will result in artifacts known as “combing,” when pixels in one frame do not line up with pixels in the others, forming jagged edges. Bob The bob algorithm uses one single field to generate a frame by averaging up lines and down lines to generate new lines. Either even or odd fields can be selected for progressive frame generation. Intra Motion Adaptive Deinterlacing Figure 2-2. Intra Deinterlacing Engine Structure Current Frame Spatial Predictor Motion Adaptive Filter Output Frame Intra Deinterlacing Engine Figure 2-2 shows the structure of the intra deinterlacing engine. The intra motion adaptive deinterlacing algorithm enhances the quality of the combined frames by using a spatial predictor with advanced ELA (Edge-based Line Average) algorithm to predict the center pixel. The intra Motion Adaptive Filter uses an enhanced multi-stage median filter with robustness control to perform motion adaptive deinterlacing. Inter Motion Adaptive Deinterlacing Figure 2-3 shows the structure of the inter motion deinterlacing engine. The inter motion adaptive deinterlacing algorithm uses two combined frames (four fields) to generate one progressive frame. The motion detector uses a 3x3 pixel window SAD (Sum of Absolute Differences) algorithm to determine the motion of the center pixel. The SAD value is divided by two thresholds (TH1 and TH2) into three pixel motion regions: still pixel, slow motion pixel or fast motion pixel. Each region has a separate filter with robustness control to generate the output pixel. The final output pixel value is determined by the detector value and the threshold values. The two threshold values can be updated at run time. IPUG97_01.1, September 2013 7 Deinterlacer IP Core User’s Guide Functional Description Figure 2-3. Inter Deinterlacing Engine Structure Current Frame Spatial Predictor Fast Motion Filter MUX Slow Motion Filter Output Frame Still Pixel Filter Motion Detector (SAD) Previous Frame Inter Deinterlacing Engine Frame Rate Conversion The Deinterlacer IP core provides a simple frame rate conversion by copying or dropping frames. When frame rate conversion is enabled, the core’s output data path runs at the output pixel clock rate, and the core needs one more external frame memory space. The output frame rate is controlled by the output pixel sample clock and dout_enable signal. When dout_enable signal is high, the core outputs pixels continuously. When there is no new interlaced video frame, the core will output the last progressive frame repeatedly. When frame rate conversion is disabled, the core’s output data path will run on the input pixel sample clock. The output frame is generated directly from the input interlaced video stream. If there is no new input video frame, the core will stop outputting data. Dynamic Parameters Updating The Deinterlacer IP core provides a parameter bus port for internal parameter update at run time. The parameters are double-buffered so that the core’s operation is not impacted when they are changed. The new values are buffered and transferred to the working registers when the core is ready to accept a new configuration. The UPDATE register is used to indicate when the new values are consumed and when the buffers can accept new data. The parameter register maps are included in Table 2-1. Table 2-1. Parameter Register Maps Address 0x00 Register FRMWIDTH Size Read/Write Description 32 Frame width register. The FRMWIDTH value must be (frame width - 1). The minimum value is 63, and the maximum value is the maximum frame Read/Write width specified on the IP GUI minus 1. The default value is the maximum value. Frame width must be an even number (i.e. FRMWIDTH must be odd). 0x04 FRMHEIGHT 32 Frame height register. The FRMHEIGHT must be (frame height - 1). The minimum value is 63, and the maximum value is the maximum frame Read/Write height specified on the IP GUI minus 1. The default value is the maximum value. Frame height must be an even number (i.e. FRMHEIGHT must be odd). 0x08 INITFLD 32 First field register. Specifies the first field in the interlaced input frames. Read/Write 0 for top field and 1 for bottom field. The default value is the corresponding parameter specified on the IP GUI. 0x0C BYPASS 32 BYPASS mode register. The value can be 0 or 1. When the BYPASS Read/Write register is 1, the Deinterlacer IP core passes the interlaced video through unaltered. The default value is 0. IPUG97_01.1, September 2013 8 Deinterlacer IP Core User’s Guide Functional Description Address Register Size Read/Write Description 0x10 KEEP 32 KEEP mode register. The value can be 0 or 1. When the KEEP register is 1, the core will be locked. The core outputs the same frame repeatedly Read/Write if frame rate conversion is active; otherwise it generates no output frames. The default value is 0. 0x14 INTER_TH1 32 SAD threshold for still pixel for the inter algorithm. The maximum Read/Write value is 65535. N/A for other algorithms. The default value is the corresponding parameter specified on the IP GUI. 0x18 INTER_TH2 32 SAD threshold for slow motion pixel for inter algorithm. The maximum value is 65535. N/A for other algorithms. The default value is the Read/Write corresponding parameter specified on the IP GUI. The INTER_TH2 must be greater than INTER_TH1 value. 0x1C UPDATE 32 Update parameters enable register. The value can be 0 or 1. Setting Read/Write this bit to 1 triggers the update of parameters. The core resets it to 0 after the parameters have been updated. The default value is 0. All the parameter registers can be written to only when the UPDATE register bit is 0. The parameters KEEP, INTER_TH1 and INTER_TH2 will take effect at the next frame, regardless of the UPDATE value. When the UPDATE bit is set to 1, the parameters FRMWIDTH, FRMHEIGHT, INTIFLD and BYPASS will take effect when the frmsync_in signal is active, indicating a new input frame is arriving. After updating its internal parameters, the core resets the UPDATE bit to indicate that the parameter registers are now empty and can take on new values. Memory Bandwidth and Size The Deinterlacer IP core stores and retrieves pixels to/from external memory using memory burst write and read commands. When DDR2 is used for external memory, one burst operation, (burst_length*burst_count/2)*memory_data_width bit, cannot exceed the size of a single video line. A single video line will be transferred though multiple burst write/read transactions internally. For weave, bob and intra algorithms, the Deinterlacer IP core needs a 2-frame memory storage space; if frame rate conversion is active, a 3-frame storage space is required. When the output frame rate is the same as the input frame rate, the required memory bandwidth is twice the input data rate. When the output frame rate is double the input frame rate, the required memory bandwidth is triple the input data rate. For the inter algorithm, the Deinterlacer IP core uses two interlaced frames to generate one progressive frame; it needs a 3-frame storage space. If frame rate conversion is enabled, the core needs a 4-frame memory space. When the output frame rate is the same as the input frame rate, the required memory bandwidth is triple the input data rate. When the output frame rate is double the input frame rate, the required memory bandwidth is five times the data rate of the input video stream. For example, for 8-bit YCbCr 4:2:2 pixel, parallel deinterlacing, if the input pixel sample clock is 74.25MHz and output pixel sample clock is 148.5MHz, the required bandwidth for the intra algorithm is 2*8*(74.25+148.5) = 3564 bit*MHz. The required bandwidth for the inter algorithm is 2*8*(74.25+2*148.5) = 5940 bit*MHz. If the memory data with is 32, the require memory clock will be (3564/32) = 111.375 MHz for the intra algorithm and (5940/32) = 185.625MHz for the inter algorithms. The total external memory size the core requires can be viewed on the Deinterlacer IP GUI. IPUG97_01.1, September 2013 9 Deinterlacer IP Core User’s Guide Functional Description Primary I/O Figure 2-4. Deinterlacer IP Core I/O rstn sr iclk din dvalid_in frmsync_in ready pclk pwrite paddr pwdat prdat oclk dout_enable dout dvalid_out frmsync_out fwidth_out fheight_out Deinterlacer IP Core mem_clk cmd_ready write_data_ready read_data_valid read_data read_cmd write_cmd mem_addr write_data Table 2-2. Primary I/O Port Size I/O Description rstn 1 I Asynchronous active-low reset signal sr 1 I Synchronous reset signal (optional) General I/Os iclk 1 I Input pixel sample clock frmsync_in 1 I New input video frame indicator, active-high dvalid_in 1 I Input video data valid signal, active-high 8/10/12 I Input video data in interlaced frame format ready 1 O When high, indicates that the Deinterlacer IP core can accept more input data oclk 1 I Output sample clock, present when frame rate conversion is active din dout_enable 1 I Input from down-stream module to enable progressive output data, active-high 8/10/12 O Output video pixel in progressive frame format dvalid_out 1 O Output video pixel valid signal, active high frmsync_out 1 O New output frame indicator, active high mem_clk 1 I Memory write/read clock cmd_ready 1 I Input from memory controller indicating it is ready to accept a new command, active-high mem_addr 32 O Memory read/write address read_cmd 1 O Memory read command, active-high read_data 8/16/32/ 64/128 I Read data output from memory dout Memory Interface read_data_valid 1 I Read data valid indicator from memory controller, active-high write_cmd 1 O Memory write command, active-high write_data 8/16/32/ 64/128 O Write data to memory 1 I Input from memory controller indicating that it is ready to accept new write data, active-high write_data_ready Optional I/Os IPUG97_01.1, September 2013 10 Deinterlacer IP Core User’s Guide Functional Description Size I/O fwidth_out Port 16 O Description fheight_out 16 O Current output frame height, only for dynamic mode pclk 1 I Parameters bus clock, configurable pwrite 1 I Parameters bus write enable, active-high paddr 5 I Parameters bus address pwdat 8/16/32 I Parameters bus write data prdat 8/16/32 O Parameters bus read data Current output frame width, only for dynamic mode Interface Descriptions Video Input/Output The Deinterlacer IP core uses a simple handshaking method to pass pixel data into and out of the core. The core asserts its ready output when it is ready to receive data. When the driving module has data to pass to the deinterlacer, it asserts the core’s dvalid_in port and at the same time places the input video data on the din port. The frmsync_in input should be driven to a ‘1’ during the clock cycle when the very first pixel of the interlaced frame is active. Similarly, dvalid_out is active when valid output pixel data is available on dout, and frmsync_out marks the first pixel in the output progressive frames. The ports fwidth_out and fheight_out indicate the current output frame’s width and height, respectively, These are valid only when frmsync_out is asserted. When the input signal dout_enable is asserted, the core will output progressive video pixels. When dout_enable is de-asserted, the core stops generating output pixels after some delay, which is less than 16 output pixel sample clock cycles. Memory Interface The Deinterlacer IP core implements a flexible memory interface which operates on a separate clock from the main core. When connecting to DDR2 memory controller, the burst length and burst count of deinterlacer should have the same values as those of DDR2 memory controller; when connecting to DDR3 memory controller, the burst length of deinterlacer should have the same value with DDR3 memory controller, while the burst count of deinterlacer should be half as that of DDR3 memory controller. The deinterlacer assumes a memory byte addressing scheme. When connecting the memory controller, the address connection should be adjusted according to the DDR memory data width. Normally the address connection can be (Assuming the DDR2/3 memory has 27 bits address width): ddr_addr = {1’b0,mem_addr[25:0]}; // for 8-bit DDR memory only ddr_addr = {2'b00,mem_addr[25:1]}; // for 16-bit DDR memory only ddr_addr = {3'b000,mem_addr[25:2]}; // for 32-bit DDR memory only And the corresponding command should be: ddr_cmd ddr_cmd_valid = (write_cmd) ? 4'b0010 : 4'b0001; // (write_cmd) ? WRITE : READ = (write_cmd || read_cmd); IPUG97_01.1, September 2013 11 Deinterlacer IP Core User’s Guide Functional Description To get maximum throughput on the memory bus (about 5% increase compared to normal connection), the user needs to steer clear of write-to-precharge/read-to-precharge/precharge-to-active during row switching. That is, to access each bank in turn by using write/read with auto-precharge command to close current bank immediately after current burst write/read. In order to adopt this policy, the users should fine tune the combination of Row/Bank/Column address to get the best throughput. For example, when DDR2 memory data width is 16, row size is 14, column size is 10, bank size is 8, burst length is 8 and burst count is 1, which means memory controller user interface data width is 32, row address is 14 bits, column address is 10 bits, bank address is log2(bank size)=3 bits and log2(burst length * burst count)= 3 bits. The memory controller address mapping inside the memory controller IP core is ddr_addr = {row_addr[13:0], bank_addr[2:0], col_addr[9:0]} In order to get the best throughput, we increase the col_addr[2:0] first to utilize the burst operation, then we increase the bank_addr[2:0], followed by increasing the rest of col_addr[9:3], and finally with the row_addr. So the interface to the DDR2/3 memory will look like: ddr_addr = {2’b00, mem_addr[25:14], mem_addr[6:4], mem_addr[13:7], mem_addr[3:1]}; The corresponding command should be: ddr_cmd = (write_cmd) ? 4'b0100 : 4'b0011; // (write_cmd) ? WRITEA : READA As the memory controller user interface data width is 32, mem_addr[1:0] will always be zero. The core has internal control logic to arbitrate between memory write and read operations, ensuring the write_cmd and read_cmd are not asserted at the same time. Two clock cycles after the write_data_ready is asserted, data will be available on the write_data port. That means the parameter “Data_rdy to Write Data Delay” of memory controller must be set to 2 The cmd_ready can be asserted once every two clock cycles, and it should have at least a one-cycle interval, which is consistent with Lattice DDR Memory Controller IP cores. Parameter Register Read/Write Interface The Deinterlacer IP core implements a simple register read/write interface for run-time parameter updates. The parameter bus interface can be configured to run on a separate clock. It operates at the input pixel clock rate by default. When pwrite is high, pwdat and paddr must contain valid data. The contents of all parameter registers will be transferred to the core’s internal storage when UPDATE is asserted. If a parameter hadn’t been written to before the assertion of UPDATE, its old value will be transferred into the internal storage. prdat contains register read data corresponding to the address value placed on the paddr in the previous clock cycle. When the parameter bus data width is equal to 32, paddr[1:0] should be fixed to 0. When the parameter bus data width equals 16, paddr[0] should be fixed to 0. The parameter bus data width should be configured based on the system CPU’s data width. IPUG97_01.1, September 2013 12 Deinterlacer IP Core User’s Guide Functional Description Timing Specifications Video Input/Output Timing The Deinterlacer IP core supports single-color, YCbCr 4:2:2, YCbCr 4:4:4 or RGB video format. For YCbCr 4:4:4 or RGB video format, the three planes are interleaved for serial deinterlacing and combined on the din and dout ports for parallel deinterlacing. Figures 2-5 and 2-6 show the timing of RGB serial deinterlacing and parallel deinterlacing. Figure 2-5. RGB Serial Deinterlacing iclk ready dvalid_in frmsync_in din R G B R G B ... ... ... R G B ... ... B R R G B ... B dout_enable dvalid_out frmsync_out R dout G G Figure 2-6. RGB Parallel Deinterlacing (8-Bit Pixel) iclk dvalid_in frmsync_in din[23:16] R R R R R R ... ... ... R R R ... ... R R R din[15: 8] G G G G G G ... ... ... G G G ... ... G G G din[ 7: 0] B B B B B B ... ... ... B B B ... ... B B B dvalid_out frmsync_out dout[23:16] R R R R R R ... dout[15: 8] G G G G G G ... dout[ 7: 0] B B B B B B ... For YCbCr 4:2:2 video serial deinterlacing, the input and output sequence should be Cb, Y, Cr, Y, …. For parallel deinterlacing, the Y plane occupies the upper bits of the din and dout ports, and the Cb and Cr planes the lower bits. Cb and Cr planes are interleaved in the lower half, and Cb comes before Cr. Figures 2-7 and 2-8 show the timing of YCbCr 4:2:2 serial deinterlacing and parallel deinterlacing. IPUG97_01.1, September 2013 13 Deinterlacer IP Core User’s Guide Functional Description Figure 2-7. YCbCr 4:2:2 Serial Deinterlacing iclk ready dvalid_in frmsync_in Cb din Y Cr Y Cb Y ... ... Cb Y Cr Y ... ... Cr Y Cb Y Cr Y Cr Y dout_enable dvalid_out frmsync_out Cb dout Y Cb Figure 2-8. YCbCr 4:2:2 Parallel Deinterlacing (8-Bit Pixel) iclk dvalid_in frmsync_in din[15: 8] Y Y Y Y Y Y ... ... Y Y Y Y ... ... Y Y Y din[ 7: 0] Cb Cr Cb Cr Cb Cr ... ... Cb Cr Cb Cr ... ... Cb Cr Cb dvalid_out frmsync_out dout[15: 8] Y Y Y Y Y Y ... dout[ 7: 0] Cb Cr Cb Cr Cb Cr ... Figure 2-9 shows the dout_enable control timing. When the dout_enable is de-asserted, the core will stop outputting data after a certain delay. Similarly, when the dout_enable is asserted, the core will begin outputting data after a certain delay. The number of delay clocks is different for different deinterlacing algorithms and the maximum value is less than 16 clocks. The asserting and de-asserting of dout_enable can be used to generate horizontal blanks and vertical blanks depending on the output video format. Figure 2-9. dout_enable Control Timing oclk < 16 clocks < 16 clocks dout_enable dvalid_out dout R G B IPUG97_01.1, September 2013 ... ... ... ... ... R 14 G B ... Deinterlacer IP Core User’s Guide Functional Description Video Frame Timing Figure 2-10 shows the frame timing when frame rate conversion is disabled. After accepting one input interlaced frame, the core starts generating progressive frames. The output frame is driven by the input frame. When a new input frame arrives before the current output frame is finished, the current output frame is dropped, and a new output frame is started. After the last input frame, the deinterlacer stops generating output frames. Figure 2-10. Output Frame Rate is the Same as the Input Frame Rate ready dvalid_in 1st Field 2nd Field 1st Field 2nd Field frmsync_in din Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 Frame 2 Frame 3 dout_enable dvalid_out frmsync_out dout Frame 0 Frame 1 Figure 2-11 shows the frame timing when the output frame rate is twice the input frame rate. Output frames run on a separate output pixel clock. The output frame rate is determined by the output pixel clock and dout_enable signal. The core generates output frames based on the oldest pending input frame(s). When a new input frame is received, the core pushes out the oldest frame and exports the second oldest frame. When there is no new frame input, the core exports the stored frames and then keeps exporting the last frame repeatedly. When the external memory is fully occupied by the unconsumed frames (no more space for new frames), the core will overwrite the latest input frame. Figure 2-11. Output Frame Rate is Twice Input Frame Rate ready dvalid_in frmsync_in din Frame 0 Frame 1 Frame 2 Frame 3 Frame 4 dout_enable dvalid_out frmsync_out dout IPUG97_01.1, September 2013 Frame 0 Frame 1 15 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Deinterlacer IP Core User’s Guide Functional Description Memory Interface Timing Figure 2-12 shows the timing of the memory write operation. When the internal write FIFO is half full, it triggers memory write operation cycles. Memory write operation will continue until the write FIFO is empty. Figure 2-12. Timing Diagram for Memory Write mem_clk cmd_ready write_cmd mem_addr 0 16 32 48 write_data_ready D0 write_data D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 Figure 2-13 shows the timing of the memory read operation. When the internal read FIFO is less than half full, and there is no ongoing write operation, memory read burst operation is started. The length of the read burst operation and once read burst makes the read FIFO half full. The memory write and read operations are in bursts. The memory write and read operations switch at the end of the burst cycle. Figure 2-13. Timing Diagram for Memory Read mem_clk cmd_ready read_cmd mem_addr 0 16 32 48 read_data_valid read_data IPUG97_01.1, September 2013 D0 D1 D2 D3 D4 16 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 Deinterlacer IP Core User’s Guide Functional Description Dynamic Parameters Updating Figure 2-14 shows the timing of dynamic parameters updating. FW and FH are the video frame width and height. IFLD is the INITFLD register value, BP is the BYPASS register value and KP is the KEEP register value. The parameter bus can be configured to operate on a separate clock. By default, it operates at input pixel clock rate. The parameter registers are writable only when the UPDATE register is 0. When the UPDATE register bit is set to 1, the core will update its internal parameter registers with the new values at the next active frmsync_in and reset the UPDATE register bit. Figure 2-14. Timing Diagram for Dynamic Parameters Updating (parameter bus width = 32) iclk frmsync_in pwrite paddr 28 pwdat prdat 0 4 8 12 16 FW FH IFLD BP KP .. .. .. ... 0 IPUG97_01.1, September 2013 20 24 TH1 TH2 ... 17 ... 28 28 1 ... ... 1 0 Deinterlacer IP Core User’s Guide Chapter 3: Parameter Settings This section describes how to generate the Deinterlacer IP core using the Diamond or ispLEVER IPexpress™ tool. Refer to “IP Core Generation and Evaluation” on page 22 for a description of how to generate the IP. The Deinterlacer configuration GUI is accessed via the IPexpress tool and provides an interface for setting the desired parameters and invoking the IP core generator. Since the values of some parameters affect the size of the resultant core, the maximum value for these parameters may be limited by the size of the target device. Table 3-1 provides a list of user-configurable parameters for the Deinterlacer IP core. Table 3-1. Deinterlacer IP Core Parameters Parameter Range/Options Default Video Frame In and Out Video format Single color, YCbCr4:2:2, YcbCr4:4:4 or RGB (Max.) Video frame width 64-4096 (Max.) Video frame height 64-4096 First field Top field, Bottom field YCbCr4:2:2 720 480 Top field Parallel processing Yes, No Yes Dynamic parameters updating Yes, No No Frame rate conversion Yes, No Yes Duplicate frames in frame rate conversion mode Yes, No Yes Deinterlacer algorithms weave, bobe, bobo, intra, inter inter SAD threshold 1 0-65535 90 SAD threshold 2 0-65535 180 Default SAD thresholds value Yes, No No Filter Specification I/O Specifications Input pixel width 8, 10, 12 8 Memory bus width 8, 16, 32, 64, 128 32 Memory base address 0x00000000-0xFFFFFFFF Memory address width Read only 22 Memory size needed Read only 2764800 bytes Parameter bus width 8, 16, 32 0x00000000 32 Separate parameter bus clock Yes, No No Synchronous reset Yes, No No Output frame size ports Yes, No No Memory Type Line buffer type EBR, Distributed EBR Write FIFO type EBR, Distributed EBR Read FIFO type EBR, Distributed EBR Write FIFO depth 32, 64, 128, 256, 512 64 Read FIFO depth 32, 64, 128, 256, 512 64 DDR memory burst length 2, 4, 8 8 Command burst count 1, 2, 4, 8 1 Synthesis options Frequency constraint (MHz) 1-400 250 © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 18 Deinterlacer IP Core User’s Guide Parameter Settings Table 3-1. Deinterlacer IP Core Parameters (Continued) Parameter Range/Options Default Fanout limit 1-200 100 Resource sharing Yes, No Yes Pipelining and retiming Yes, No No Architecture The Architecture tab provides settings for video frames and algorithm options. Figure 3-1. Architecture Tab Frame Dimensions This section provides settings that define the video format, input/output frame dimensions and dynamic parameters updating. Video format defines the format of the video stream. It can be single-color, YCbCr4:2:2, YCbCr4:4:4 or RGB. Video frame width and Video frame height define the video frame size for deinterlacing. First field defines the first field in the input interlaced frames. It can be top field or bottom field. The Parallel processing checkbox determines whether the core processes video stream parallelly. The Dynamic parameters updating checkbox determines whether the core supports parameters updating at runtime. Refer to “Dynamic Parameters Updating” on page 8 for more information. The Frame rate conversion checkbox determines whether the core supports frame rate conversion. When it is enabled, the output video stream runs on a separate clock. The Duplicate frames in frame rate conversion mode checkbox determines whether the core uses duplicated frames when frame rate conversion is enabled. When dynamic parameters updating is enabled, the Max video frame width and Max video frame height specify the largest frame size the core needs to support. The range for the frame dimensions is 64 to 4,096. IPUG97_01.1, September 2013 19 Deinterlacer IP Core User’s Guide Parameter Settings Filter Physical Characteristics Deinterlacing algorithms selects the deinterlacing algorithm of the core. It can be weave, bobe (bob even), bobo (bob odd), intra or inter. SAD threshold 1 defines the threshold value for still pixel for the inter deinterlacing algorithm. SAD threshold 2 defines the threshold value for slow motion pixel for the inter deinterlacing algorithm. The Default SAD thresholds value checkbox determines whether the core uses the default SAD threshold value. When dynamic parameters updating is enabled, the two threshold values can be updated at run time. I/O Specification The I/O Specification tab provides settings for pixel data width, memory bus width, memory base address, parameter bus width and optional ports. Figure 3-2. I/O Specification Tab Input pixel width sets the bit width of the incoming pixel. Values can be 8, 10 and 12. Default value is 8. Memory bus width sets the data width of the memory interface. Values can be 8, 16, 32, 64 and 128. Default value is 32. Memory base address sets the base address of the external memory space used. Value must be in hex format and its bit width cannot exceed 32 bits. Memory address width specifies the address width of the memory interface. Memory space needed specifies the size of the external memory space needed. Memory address width and memory size needed are generated automatically by the GUI. Parameter bus width sets the bus width of the parameter bus interface. This parameter is only available when dynamic parameters updating is selected. Values can be 8, 16 and 32. Default value is 32. The Separate parameter bus clock checkbox determines whether the core uses a separate clock to run the parameter update interface. This parameter is only available when dynamic parameters updating is selected. The Synchronous reset checkbox determines whether the core has a synchronous reset port. IPUG97_01.1, September 2013 20 Deinterlacer IP Core User’s Guide Parameter Settings The Output frame size ports checkbox determines whether the core provides output frame size ports. This parameter is only available when dynamic parameters updating is selected. Implementation The Implementation tab provides settings for the memory type and synthesis constraints. Figure 3-3. Implementation Tab Line buffer type selects EBR or Distributed RAM for the line buffer implementation. Write FIFO type selects EBR or Distributed RAM for the internal write FIFO type of the frame buffer module. Read FIFO type selects EBR or Distributed RAM for the internal read FIFO type of the frame buffer module. Write FIFO depth selects the depth of the internal write FIFO. Read FIFO depth selects the depth of internal read FIFO. The FIFO depth can be 32, 64, 128, 256 or 512. The default value is 64. DDR memory burst length selects the burst length value. Command burst count selects the burst count value for working with the memory controller. The burst length can be 2, 4 and 8. Its default value is 8. The burst count can be 1, 2, 4 and 8. Its default value is 1. Frequency constraint sets the required clock frequency in MHz. This option is active for all the clock domains in the core. Fanout limit sets the fanout limit value for the synthesis tool. Resource sharing and Pipelining and retiming, if enabled, are synthesis directives that are used in the core generation. Users can adjust these options to get a better timing result. IPUG97_01.1, September 2013 21 Deinterlacer IP Core User’s Guide Chapter 4: IP Core Generation and Evaluation This section provides information on how to generate the Deinterlacer IP core using the Diamond or ispLEVER IPexpress tool, and how to include the core in a top-level design. Licensing the IP Core An IP core- and device-specific license is required to enable full, unrestricted use of the Deinterlacer IP core in a complete, top-level design. Instructions on how to obtain licenses for Lattice IP cores are provided on the IP Core Purchasing and Licensing Process page of the Lattice web site. Users may download and generate the Deinterlacer IP core and fully evaluate the core through functional simulation and implementation (synthesis, map, place and route) without an IP license. The Deinterlacer IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited time (approximately four hours) without requiring an IP license. See “Hardware Evaluation” on page 27 for further details. However, a license is required to enable timing simulation, to open the design in the Diamond or the ispLEVER EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout limitation. Getting Started The Deinterlacer IP core is available for download from the Lattice IP server using the IPexpress tool. The IP files are automatically installed using ispUPDATE technology in any user-specified directory. After the IP core has been installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1. To generate a specific IP core configuration, the user specifies: • Project Path – Path to the directory where the generated IP files will be located • File Name – “username” designation given to the generated IP core and corresponding folders and files • (Diamond) Module Output – Verilog or VHDL • (ispLEVER) Design Entry Type – Verilog HDL or VHDL • Device Family – Device family to which the IP core is to be targeted (e.g. LatticeECP2M, LatticeECP3, etc.). Only families that support the particular IP core are listed. • Part Name – Specific targeted part within the selected device family Configuring the Deinterlacer IP Core in IPexpress The Deinterlacer configuration GUI is accessed via the IPexpress tool, and provides an interface for setting the desired parameters and invoking the IP core generator. The start-up IPexpress page allows the user to select the IP to be generated, project directory, user-designated module name, design entry type, and target device. The “File Name” will be used as the username in the core generation. The Deinterlacer IP core is found under IP > DSP, as shown below. © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 22 Deinterlacer IP Core User’s Guide IP Core Generation and Evaluation Figure 4-1. IPexpress Dialog Box (Diamond Version) Important Note: File Name cannot be “deinterlacer_core,” as this name has been used in the internal design of the core. Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress online help for further information. To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display the Deinterlacer IP core Configuration GUI, as shown in Figure 4-2. From this dialog box, the user can select the IP parameter options specific to their application. Refer to See “Parameter Settings” on page 18. for more information on the Deinterlacer IP core parameter settings. IPUG97_01.1, September 2013 23 Deinterlacer IP Core User’s Guide IP Core Generation and Evaluation Figure 4-2. Configuration GUI (Diamond Version) IPexpress-Created Files and Top-Level Directory Structure When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are generated in the specified “Project Path” directory. The directory structure of the generated files is shown in Figure 4-3. This example shows the directory structure generated with the Deinterlacer IP core for the LatticeECP3 device. Figure 4-3. Deinterlacer IP Core Directory Structure IPUG97_01.1, September 2013 24 Deinterlacer IP Core User’s Guide IP Core Generation and Evaluation Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPexpress tool creates several files that are used throughout the design cycle. The names of most of the created files are customized to the user’s module name specified in the IPexpress tool. Table 4-1. File List File Description .lpc This file contains the IPexpress tool options used to recreate or modify the core in the IPexpress tool. .ipx The IPX file holds references to all of the elements of an IP or module after it is generated from the IPexpress tool (Diamond version only). The file is used to bring in the appropriate files during the design implementation and analysis. It is also used to re-load parameter settings into the IP/module generation GUI when an IP/module is being re-generated. .ngo This file provides the synthesized IP core. _bb.v This file provides the synthesis black box for the user’s synthesis. _inst.v This file provides an instance template for the Deinterlacer IP core. _beh.v This file provides the front-end simulation library for the Deinterlacer IP core. Table 4-2 provides a list of additional files providing IP core generation status information and command line generation capability that are generated in the user's project directory. Table 4-2. Additional Files File Description _generate.tcl This file is created when the GUI Generate button is pushed. This file may be run from the command line. _generate.log This is the synthesis and map log file. _gen.log This is the IPexpress IP generation log file. Instantiating the Core The generated Deinterlacer IP core package includes black-box (_bb.v) and instance (_inst.v) templates that can be used to instantiate the core in a top-level design. An example RTL top-level reference source file that can be used as an instantiation template for the IP core is provided in \\deinterlacer_eval\\src\rtl\top. Users may also use this top-level reference as the starting template for the top level for their complete design. Running Functional Simulation Simulation support for the Deinterlacer IP core is provided for the Aldec Active-HDL (Verilog and VHDL) simulator and the Mentor Graphics ModelSim simulator. The functional simulation includes a configuration-specific behavioral model of the Deinterlacer IP core. The test bench sources stimulus to the core and monitors output from the core. The generated IP core package includes the configuration-specific behavior model (_beh.v) for functional simulation in the “Project Path” root directory. The simulation scripts supporting ModelSim evaluation simulation is provided in: \\deinterlacer_eval\\sim\modelsim\scripts The simulation script supporting the Active-HDL evaluation simulation is provided in: \\deinterlacer_eval\\sim\aldec\scripts Both ModelSim and Active-HDL simulation is supported via test bench files provided in: \\deinterlacer_eval\testbench Models required for simulation are provided in the corresponding \models folder. Users may run the Active-HDL evaluation simulation by doing the following: IPUG97_01.1, September 2013 25 Deinterlacer IP Core User’s Guide IP Core Generation and Evaluation 1. Open Active-HDL. 2. Under the Tools tab, select Execute Macro. 3. Browse to folder \\deinterlacer_eval\\sim\aldec\scripts and execute one of the “do” scripts shown. Users may run the ModelSim evaluation simulation by doing the following: 1. Open ModelSim. 2. Under the File tab, select Change Directory and choose the folder \deinterlacer_eval\\sim\modelsim\scripts. 3. Under the Tools tab, select Execute Macro and execute the ModelSim “do” script shown. Note: When the simulation is complete, a pop-up window will appear asking “Are you sure you want to finish?” Choose No to analyze the results. Choosing Yes closes ModelSim. Synthesizing and Implementing the Core in a Top-Level Design Synthesis support for the Deinterlacer IP core is provided for Mentor Graphics Precision RTL or Synopsys Synplify. The Deinterlacer IP core itself is synthesized and is provided in NGO format when the core is generated in IPexpress. Users may synthesize the core in their own top-level design by instantiating the core in their top level as described previously and then synthesizing the entire design with either Synplify or Precision RTL synthesis. The top-level file _eval_top.v provided in: \\deinterlacer_eval\\src\top supports the ability to implement the Deinterlacer IP core in isolation. Push-button implementation of this top-level design with either Synplify or Precision RTL synthesis is supported via the project files _eval.ldf (Diamond) or .syn (ispLEVER) located in the \\deinterlacer_eval\\impl\synplify and \\deinterlacer_eval\\impl\precision directories, respectively. To use this project file in Diamond: 1. Choose File > Open > Project. 2. Browse to \\deinterlacer_eval\\impl\(synplify or precision) in the Open Project dialog box. 3. Select and open .ldf. At this point, all of the files needed to support top-level synthesis and implementation will be imported to the project. 4. Select the Process tab in the left-hand GUI window. 5. Implement the complete design via the standard Diamond GUI flow. IPUG97_01.1, September 2013 26 Deinterlacer IP Core User’s Guide IP Core Generation and Evaluation To use this project file in ispLEVER: 1. Choose File > Open Project. 2. Browse to \\deinterlacer_eval\\impl\(synplify or precision) in the Open Project dialog box. 3. Select and open .syn. At this point, all of the files needed to support top-level synthesis and implementation will be imported to the project. 4. Select the device top-level entry in the left-hand GUI window. 5. Implement the complete design via the standard ispLEVER GUI flow. Hardware Evaluation The Deinterlacer IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited period of time (approximately four hours) without requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in user-defined designs. Enabling Hardware Evaluation in Diamond Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be enabled/disabled in the Strategy dialog box. It is enabled by default. Enabling Hardware Evaluation in ispLEVER In the Processes for Current Source pane, right-click the Build Database process and choose Properties from the drop-down menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is enabled by default. Updating/Regenerating the IP Core By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP core or to create a new but similar one. Regenerating an IP Core in Diamond To regenerate an IP core in Diamond: 1. In IPexpress, click the Regenerate button. 2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate. 3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Target box. 4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx extension. 5. Click Regenerate. The module’s dialog box opens showing the current option settings. 6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As the options change, the schematic diagram of the module changes to show the I/O and the device resources the module will need. IPUG97_01.1, September 2013 27 Deinterlacer IP Core User’s Guide IP Core Generation and Evaluation 7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not available in stand-alone mode). 8. Click Generate. 9. Check the Generate Log tab to check for warnings and error messages. 10.Click Close. The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP core required to support simulation, synthesis and implementation. The IP core may be included in a user’s design by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the module’s dialog box showing the current option settings. Then go to step 6 above. Regenerating an IP Core in ispLEVER To regenerate an IP core in ispLEVER: 1. In the IPexpress tool, choose Tools > Regenerate IP/Module. 2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.lpc) file of the IP core you wish to regenerate, and click Open. 3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core in the Source Value box. Make your new settings in the Target Value box. 4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base of the .lpc file name will be the base of all the new file names. The LPC Target File must end with an .lpc extension. 5. Click Next. The IP core’s dialog box opens showing the current option settings. 6. In the dialog box, choose desired options. To get information about the options, click Help. Also, check the About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with additional information. As the options change, the schematic diagram of the IP core changes to show the I/O and the device resources the IP core will need. 7. Click Generate. 8. Click the Generate Log tab to check for warnings and error messages. IPUG97_01.1, September 2013 28 Deinterlacer IP Core User’s Guide Chapter 5: Support Resources Lattice Technical Support There are a number of ways to receive technical support. E-mail Support techsupport@latticesemi.com Local Support Contact your nearest Lattice sales office. Internet www.latticesemi.com References • HB1009, LatticeECP3 Family Handbook • HB1003, LatticeECP2/M Family Handbook • HB1004, LatticeXP2 Family Handbook Revision History Date Document Version IP Core Version Change Summary August 2011 01.0 1.0 Initial release. September 2013 01.1 1.1 Added information in the Memory Interface section. Provided the scheme on improving data bus throughput. Updated corporate logo. Updated Lattice Technical Support information. © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 29 Deinterlacer IP Core User’s Guide Appendix A: Resource Utilization This appendix gives resource utilization information for Lattice FPGAs using the Deinterlacer IP core. IPexpress, the Lattice IP configuration utility, is included as a standard feature of the Diamond and ispLEVER design tools. Details regarding the use of IPexpress can be found in the IPexpress, Diamond or ispLEVER help systems. For more information on the Diamond or ispLEVER design tools, visit the Design Software page of the Lattice web site. LatticeECP2 and LatticeECP2S Devices Table A-1. Performance and Resource Utilization1 Video Format Frame Frame Deinterlacer Pixel Memory Bus Frame Rate Width Height Algorithm Width Width Conversion Registers LUT4s EBRs fMAX (iclk) fMAX (mem_clk) fMAX (oclk) YCbCr4:2:2 720 576 intra 8 32 Yes 2612 3144 4 254 278 258 YCbCr4:2:2 720 576 inter 8 32 Yes 3825 4702 7 294 260 256 YCbCr4:2:2 1920 1080 intra 8 32 Yes 2657 3223 6 248 262 250 YCbCr4:2:2 1920 1080 inter 8 32 Yes 3916 4774 11 267 244 242 1. Performance and utilization data are generated targeting a LFE2-50E-7F484C device using Lattice Diamond 1.3 and Synplify Pro E2011.03L software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2 family. Ordering Part Number The Ordering Part Number (OPN) for the Deinterlacer IP core targeting LatticeECP2/S devices is DLACE-P2-U1. LatticeECP2M and LatticeECP2MS Devices Table A-2. Performance and Resource Utilization1 Video Format Frame Frame Deinterlacer Pixel Memory Bus Frame Rate Width Height Algorithm Width Width Conversion Registers LUT4s EBRs fMAX (iclk) fMAX (mem_clk) fMAX (oclk) 256 YCbCr4:2:2 720 576 intra 8 32 Yes 2612 3144 4 253 291 YCbCr4:2:2 720 576 inter 8 32 Yes 3825 4702 7 296 237 251 YCbCr4:2:2 1920 1080 intra 8 32 Yes 2657 3223 6 287 275 263 YCbCr4:2:2 1920 1080 inter 8 32 Yes 3916 4774 11 280 233 231 1. Performance and utilization data are generated targeting a LFE2M50E-7F484C device using Lattice Diamond 1.3 and Synplify Pro E2011.03L software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2M family. Ordering Part Number The Ordering Part Number (OPN) for Deinterlacer IP core targeting LatticeECP2M/S devices is DLACE-PM-U1. © 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG97_01.1, September 2013 30 Deinterlacer IP Core User’s Guide Resource Utilization LatticeECP3 Devices Table A-3. Performance and Resource Utilization1 Video Format Frame Frame Deinterlacer Pixel Memory Bus Frame Rate Width Height Algorithm Width Width Conversion Registers LUT4s EBRs fMAX (iclk) fMAX (mem_clk) fMAX (oclk) 249 YCbCr4:2:2 720 576 intra 8 32 Yes 2609 3127 4 281 257 YCbCr4:2:2 720 576 inter 8 32 Yes 3833 4690 7 288 245 251 YCbCr4:2:2 1920 1080 intra 8 32 Yes 2656 3167 6 252 252 244 YCbCr4:2:2 1920 1080 inter 8 32 Yes 3916 4734 11 243 255 243 1. Performance and utilization data are generated targeting a LFE3-70EA-8FN1156C device using Lattice Diamond 1.3 and Synplify Pro E2011.03L software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP3 family. Ordering Part Number The Ordering Part Number (OPN) for Deinterlacer IP core targeting LatticeECP3 devices is DLACE-E3-U1. LatticeXP2 Devices Table A-4. Performance and Resource Utilization1 Video Format YCbCr4:2:2 Frame Frame Deinterlacer Pixel Memory Bus Frame Rate Width Height Algorithm Width Width Conversion Registers LUT4s EBRs 720 576 intra 8 32 Yes 2612 3144 4 fMAX (iclk) fMAX (mem_clk) fMAX (oclk) 232 247 214 YCbCr4:2:2 720 576 inter 8 32 Yes 3825 4702 7 228 212 225 YCbCr4:2:2 1920 1080 intra 8 32 Yes 2657 3223 6 239 233 217 YCbCr4:2:2 1920 1080 inter 8 32 Yes 3916 4774 11 252 226 221 1. Performance and utilization data are generated targeting a LFXP2-40E-7F484C device using Lattice Diamond 1.3 and Synplify Pro E2011.03L software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeXP2 family. Ordering Part Number The Ordering Part Number (OPN) for Deinterlacer IP core targeting LatticeXP2 devices is DLACE-X2-U1. IPUG97_01.1, September 2013 31 Deinterlacer IP Core User’s Guide
DLACE-X2-UT1 价格&库存

很抱歉,暂时无法提供与“DLACE-X2-UT1”相匹配的价格&库存,您可以联系我们找货

免费人工找货