0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
INTV-DINT-P2-UT3

INTV-DINT-P2-UT3

  • 厂商:

    LATTICE(莱迪思半导体)

  • 封装:

    -

  • 描述:

    Lattice Programmable Products License

  • 数据手册
  • 价格&库存
INTV-DINT-P2-UT3 数据手册
Interleaver/De-interleaver IP Core User’s Guide December 2010 IPUG61_02.7 Table of Contents Chapter 1. Introduction .......................................................................................................................... 4 Quick Facts ........................................................................................................................................................... 4 Features ................................................................................................................................................................ 8 Chapter 2. Functional Description ...................................................................................................... 10 Block Diagrams ................................................................................................................................................... 10 Convolutional Interleaver/de-interleaver .................................................................................................... 11 Rectangular Interleaver/De-interleaver ...................................................................................................... 12 Latency....................................................................................................................................................... 13 Signal Descriptions ............................................................................................................................................. 13 Timing Diagrams ................................................................................................................................................. 16 Chapter 3. Parameter Settings ............................................................................................................ 17 Type and Mode Tab ............................................................................................................................................ 18 Type ........................................................................................................................................................... 18 Mode .......................................................................................................................................................... 18 Convolutional Parameters Tab............................................................................................................................ 19 Interleaver/Deinterleaver............................................................................................................................ 19 Rectangular Parameters Tab .............................................................................................................................. 20 Interleaver/Deinterleaver............................................................................................................................ 20 Block Size Type ......................................................................................................................................... 20 Permutations .............................................................................................................................................. 21 Convolutional Optional Pins Tab......................................................................................................................... 21 Rectangular Optional Pins Tab ........................................................................................................................... 22 Chapter 4. IP Core Generation............................................................................................................. 24 Licensing the IP Core.......................................................................................................................................... 24 Getting Started .................................................................................................................................................... 24 IPexpress-Created Files and Top Level Directory Structure............................................................................... 26 Permutation Pattern Input File Format ................................................................................................................ 28 Instantiating the Core .......................................................................................................................................... 28 Running Functional Simulation ........................................................................................................................... 28 Synthesizing and Implementing the Core in a Top-Level Design ....................................................................... 29 Hardware Evaluation........................................................................................................................................... 30 Enabling Hardware Evaluation in Diamond................................................................................................ 30 Enabling Hardware Evaluation in ispLEVER.............................................................................................. 30 Updating/Regenerating the IP Core .................................................................................................................... 30 Regenerating an IP Core in Diamond ........................................................................................................ 30 Regenerating an IP Core in ispLEVER ...................................................................................................... 31 Chapter 5. Support Resources ............................................................................................................ 32 Lattice Technical Support.................................................................................................................................... 32 Online Forums............................................................................................................................................ 32 Telephone Support Hotline ........................................................................................................................ 32 E-mail Support ........................................................................................................................................... 32 Local Support ............................................................................................................................................. 32 Internet ....................................................................................................................................................... 32 References.......................................................................................................................................................... 32 LatticeEC/ECP ........................................................................................................................................... 32 LatticeECP2/M ........................................................................................................................................... 32 LatticeECP3 ............................................................................................................................................... 32 LatticeSC/M................................................................................................................................................ 32 LatticeXP.................................................................................................................................................... 33 © 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. IPUG61_02.7 December 2010 2 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Table of Contents LatticeXP2.................................................................................................................................................. 33 Revision History .................................................................................................................................................. 33 Appendix A. Resource Utilization ....................................................................................................... 34 LatticeECP3 FPGAs............................................................................................................................................ 34 Ordering Part Number................................................................................................................................ 34 LatticeECP and LatticeEC FPGAs ...................................................................................................................... 34 Ordering Part Number................................................................................................................................ 34 LatticeECP2 Devices .......................................................................................................................................... 35 Ordering Part Number................................................................................................................................ 35 LatticeECP2M Devices ....................................................................................................................................... 35 Ordering Part Number................................................................................................................................ 35 LatticeXP Devices ............................................................................................................................................... 35 Ordering Part Number................................................................................................................................ 35 LatticeXP2 Devices ............................................................................................................................................. 36 Ordering Part Number................................................................................................................................ 36 LatticeSC/M Devices........................................................................................................................................... 36 Ordering Part Number................................................................................................................................ 36 IPUG61_02.7 December 2010 3 Interleaver/De-interleaver IP Core User’s Guide Chapter 1: Introduction Interleaving is a technique commonly used in communication systems to overcome correlated channel noise such as burst error or fading. The interleaver rearranges input data such that consecutive data are spaced apart. At the receiver end, the interleaved data is arranged back into the original sequence by the de-interleaver. As a result of interleaving, correlated noise introduced in the transmission channel appears to be statistically independent at the receiver and thus allows better error correction. The Lattice Interleaver/de-interleaver IP core supports rectangular block type and convolutional architectures. Rectangular interleaving arranges the input data row-wise in a matrix. The interleaved data is obtained by reading the columns of the matrix. Convolutional interleaving feeds the input data to a number of branches, each of which has a shift register with pre-defined length. The output data is taken from the branch outputs. Lattice’s Convolutional Interleaver/de-interleaver IP Cores are compliant with ATSC and DVB standards, while the Rectangular Interleaver/de-interleaver is compliant with IEEE 802.16a standard. Quick Facts Table 1-1 through Table 1-9 give quick facts about the Interleaver/de-interleaver IP core for LatticeEC™, LatticeECP™, LattceECP2™, LatticeECP2M™, LatticeECP3™, LatticeSC™, LatticeSCM™, LatticeXP™, and LatticeXP2™ devices, respectively. Table 1-1. Interleaver/De-interleaver IP Core for LatticeEC Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements LatticeEC Minimal Device Needed LFEC3E LUTs sysMEM EBRs LFEC20E-5F672C 200 100 100 2 2 4 4 200 Lattice Diamond™ 1.0 or ispLEVER® 8.1 Lattice Implementation Synthesis Synopsys® Synplify™ Pro for Lattice D-2009.12L-1 Aldec® Active-HDL™ 8.2 Lattice Edition Simulation IPUG61_02.7 December 2010 Rectangular De-interleaver 200 Registers Design Tool Support Rectangular Interleaver FPGA Families Supported Targeted Device Resource Utilization Convolutional De-interleaver Mentor Graphics ModelSim™ SE 6.3F 4 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Introduction Table 1-2. Interleaver/De-interleaver IP Core for LatticeECP Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements FPGA Families Supported Minimal Device Needed LUTs sysMEM EBRs Rectangular De-interleaver LFECP6E LFECP20E-5F672C 200 200 100 100 2 2 4 4 Registers 200 Lattice Implementation Design Tool Support Rectangular Interleaver LatticeECP Targeted Device Resource Utilization Convolutional De-interleaver Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation Mentor Graphics ModelSim SE 6.3F Table 1-3. Interleaver/De-interleaver IP Core for LatticeECP2 Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements FPGA Families Supported Minimal Device Needed LUTs sysMEM EBRs LFE2-6E 200 200 100 100 1 1 2 2 200 Lattice Implementation Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation IPUG61_02.7 December 2010 Rectangular De-interleaver LFE2-50E-7F672C Registers Design Tool Support Rectangular Interleaver LatticeECP2 Targeted Device Resource Utilization Convolutional De-interleaver Mentor Graphics ModelSim SE 6.3F 5 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Introduction Table 1-4. Interleaver/De-interleaver IP Core for LatticeECP2M Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements FPGA Families Supported Minimal Device Needed LUTs sysMEM EBRs Rectangular De-interleaver LFE2M20E LFECP2M35E-7F672C 200 200 100 100 1 1 2 2 Registers 200 Lattice Implementation Design Tool Support Rectangular Interleaver LatticeECP2M Targeted Device Resource Utilization Convolutional De-interleaver Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation Mentor Graphics ModelSim SE 6.3F . Table 1-5. Interleaver/De-interleaver IP Core for LatticeECP3 Devices Quick Facts Interleaver/De-interleaver IP Configuration Convolutional Interleaver Core Requirements FPGA Families Supported LUTs sysMEM EBRs Registers LFSC3GA25E-7F900C 150 150 100 100 1 1 2 2 200 200 150 150 Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation IPUG61_02.7 December 2010 Rectangular De-interleaver LFE3-17 Lattice Implementation Design Tool Support Rectangular Interleaver Lattice ECP3 Minimal Device Needed Targeted Device Resource Utilization Convolutional De-interleaver Mentor Graphics ModelSim SE 6.3F 6 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Introduction . Table 1-6. Interleaver/De-interleaver IP Core for LatticeSC Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements FPGA Families Supported Minimal Device Needed LUTs sysMEM EBRs Rectangular De-interleaver LFSC3GA15E LFSC3GA25E-7F900C 200 200 100 100 1 1 2 2 Registers 200 Lattice Implementation Design Tool Support Rectangular Interleaver LatticeSC Targeted Device Resource Utilization Convolutional De-interleaver Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation Mentor Graphics ModelSim SE 6.3F Table 1-7. Interleaver/De-interleaver IP Core for LatticeSCM Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements FPGA Families Supported Minimal Device Needed LUTs sysMEM EBRs LFSCM3GA25EP1-7F900C 200 200 100 100 1 1 2 2 200 Lattice Implementation Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation IPUG61_02.7 December 2010 Rectangular De-interleaver LFSCM3GA15EP1 Registers Design Tool Support Rectangular Interleaver LatticeSCM Targeted Device Resource Utilization Convolutional De-interleaver Mentor Graphics ModelSim SE 6.3F 7 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Introduction Table 1-8. Interleaver/De-interleaver IP Core for LatticeXP Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements Convolutional De-interleaver FPGA Families Supported LatticeXP Minimal Device Needed LFXP3C Targeted Device Resource Utilization LUTs Rectangular De-interleaver LFXP20C-5F484C 200 200 100 100 2 2 4 4 sysMEM EBRs Registers 200 Lattice Implementation Design Tool Support Rectangular Interleaver Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation Mentor Graphics ModelSim SE 6.3F Table 1-9. Interleaver/De-interleaver IP Core for LatticeXP2 Devices Quick Facts Interleaver/de-interleaver IP Configuration Convolutional Interleaver Core Requirements Convolutional De-interleaver FPGA Families Supported Lattice XP2 Minimal Device Needed LFXP2-5E Targeted Device Resource Utilization LUTs sysMEM EBRs Rectangular De-interleaver LFXP2-30E-7FT256CES 200 200 100 100 1 1 2 2 Registers 200 Lattice Implementation Design Tool Support Rectangular Interleaver Lattice Diamond 1.0 or ispLEVER 8.1 Synthesis Synopsys Synplify Pro for Lattice D-2009.12L-1 Aldec Active-HDL 8.2 Lattice Edition Simulation Mentor Graphics ModelSim SE 6.3F Features • High performance and area efficient symbol interleaver/de-interleaver • Supports multiple standards, such as DVB, ATSC and IEEE 802.16 • Convolutional and rectangular block type architectures available • Fully synchronous design using a single clock • Symbol size from 1 to 256 bits • Full handshake capability for input and output interfaces • Rectangular block type features – Variable block size – Variable number of rows – Variable number of columns – Row permutations IPUG61_02.7 December 2010 8 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Introduction – Column permutations • Convolutional type features – User-configurable number of branches – User-configurable branch length IPUG61_02.7 December 2010 9 Interleaver/De-interleaver IP Core User’s Guide Chapter 2: Functional Description The functionality of the Convolutional and Rectangular Interleaver/de-interleaver cores are described in this chapter. Figure 2-1 shows a convolutional interleaver/de-interleaver block diagram. Figure 2-2 shows a rectangular interleaver/de-interleaver block diagram. Block Diagrams Figure 2-1. Convolutional Interleaver/De-interleaver Block Diagram rstn dout clk obstart din ibstart inpvalid Convolutional Interleaver/ De-interleaver outvalid outvalidstart Optional Pins rfib ce Optional Pins zeronewblk sr Figure 2-2. Rectangular Interleaver/De-interleaver Block Diagram rstn dout clk obstart din obend ibstart outvalid inpvalid rfi ce Rectangular Interleaver/ De-interleaver sr blksizeset blksize Optional Pins numrowset numrows numcolset numcols IPUG61_02.7 December 2010 Optional Pins rfib 10 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Functional Description Figure 2-3 shows the role of interleaving and de-interleaving in a broadband wireless access system. Figure 2-3. Broadband Wireless Access System Base Station Data Baseband Interface Sync Byte Inversion and Randomization Reed Solomon Coder (204, 188) Convolutional Interleaver Convolutional Code Puncturing/ Mapping Baseboard Pulse Shaping Modulator & Physical Interface Matched Filter & Equalizer Depuncture/ Convolutional Decoder Convolutional De-interleaver Reed Solomon Decoder synch1 Byte Inversion & De-randomization Baseboard Interface To RF Channel Subscriber Station From RF Channel Physical Interface Demodulator Data Convolutional Interleaver/de-interleaver The convolutional interleaver consists of a bank of N branches. The value of N is set by the number of branches parameter. The interleaver pushes input data into the first shift register of a branch and reads the data from the output of the last register of the branch. The first branch has no delay, and every succeeding branch thereafter has a delay increase of R up to (N-1)*R, where R is the depth of the interleaver. The value of R is set by the branch_length parameter. The input and output are both connected to a commutator that synchronously rotates to each branch for each input symbol starting at branch zero. After switching to the final branch, the commutator rotates back to branch zero and repeats the process. Figure 2-4. Convolutional Interleaver Functional Diagram 0 R R R DIN 1 2 DOUT R R R N-1 R R R R R R The de-interleaver is constructed similar to the interleaver, but its branches are arranged opposite to those of the interleaver. The first branch has a delay of (N-1)*R and the last branch has no delay. IPUG61_02.7 December 2010 11 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Functional Description Figure 2-5. Convolutional De-Interleaver Functional Diagram 0 R R R DIN R R R DOUT N-4 R R R N-3 R R N-2 R N-1 Rectangular Interleaver/De-interleaver The rectangular interleaver receives the encoded data and formats it into a rectangular array of m rows and n columns. Typically, each row of the array composes a code word of length n. Symbols are read in row-wise and written out column-wise as indicated in Figure 2-6. Figure 2-6. Rectangular Interleaver Matrix Read out symbols {1, x, y, z,2, u, v, w, 3, ..., mn} Read in coded symbols 1 {1, 2, 3, ..., mn} x 2 y v z w 3 4 u mn Inter-row and inter-column permutation formats may also be incorporated, but the matrix must be completely filled to do that. An example is shown in Figure 2-7 with a 4 x 5 array. Figure 2-7. Row Permutation R(1, 2, 3, 4) R(2, 4, 1, 3) 1 2 3 4 5 11 12 13 14 15 6 7 8 9 10 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 16 17 18 19 20 6 7 8 9 10 The notation R (2,4,1,3) for row permutation means row 1 is changed to row 2, row 2 to row 4, row 3 to row 1 and row 4 to row 3. IPUG61_02.7 December 2010 12 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Functional Description Figure 2-8. Column Permutation C(1, 2, 3, 4, 5) C(4, 2, 1, 5, 3) 11 12 13 14 15 13 12 15 11 14 1 3 2 3 4 5 2 5 1 4 16 17 18 19 20 18 17 20 16 19 6 8 7 8 9 10 7 10 6 9 The notation C(4,2,1,5,3) used to specify column permutation means column 1 is changed to column 4, column 2 to column 2, column 3 to column 1, column 4 to column 5 and column 5 to column 3. Block de-interleaving is also a permutation formatting that is opposite of the permutation done for interleaving. This insures that the original data is correctly restored from the interleaver’s output data. De-interleaving of the last generated array from Figure 2-8 is illustrated in Figure 2-9. Figure 2-9. De-interleaving C(4, 2, 1, 5, 3) R(2, 4, 1, 3) C(1, 2, 3, 4, 5) R(1, 2, 3, 4) 13 12 15 11 14 11 12 13 14 15 1 2 3 4 5 3 1 6 7 8 9 10 2 5 1 4 2 3 4 5 18 17 20 16 19 16 17 18 19 20 11 12 13 14 15 8 6 16 17 18 19 20 7 10 6 9 7 8 9 10 In the last array the rows are read out left-to-right and top-to-bottom to give the output data {1, 2, 3,...,20}. The block interleaver reads in one block of symbols and then outputs the same block with symbols rearranged. No new inputs can be read until the previous block’s interleaved symbols are output. Latency Latency for convolutional core, defined as the number of clock cycles between the sampling of the first input data and the availability of the first interleaved data at the output port, is six clock cycles. Latency for rectangular core, defined as the number of clock cycles between the sampling of the last input data in the block and the availability of the first interleaved data at the output port, is five clock cycles. Signal Descriptions Table 2-1 and Table 2-2 list the input and output signals for the Interleaver/de-interleaver IP cores. Table 2-1. Convolutional Interleaver/de-interleaver Signal Description Port Name I/O Type Width clk Input 1 System Clock rstn Input 1 Asynchronous Reset. When this signal is asserted, all the core’s registers are cleared. This is an active low signal. IPUG61_02.7 December 2010 Signal Description 13 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Functional Description Table 2-1. Convolutional Interleaver/de-interleaver Signal Description (Continued) Port Name I/O Type Width Signal Description This signal must be asserted when the first data is being presented on input. It must be asserted only if rfib is high or the current output stream is aborted. ibstart Input 1 inpvalid Input 1 din Input 1-256 Input Data. The input symbols present on this port are interleaved/de-interleaved. Output 1-256 Output Data. The interleaved/de-interleaved symbols are output on this port. ce Input 1 Clock Enable. This signal has the highest priority after rstn. The core operation freezes if this signal is low. Use of this port increases the size of the core. It should only be selected if necessary. sr Input 1 Synchronous Reset. When this signal is high, all the registers in the core are cleared synchronously. Use of this port increases the size of the core. It should only be selected if necessary. Output 1 This signal indicates that the first interleaved data is present on the dout output port after an output latency of few cycles. dout ibstart also initializes the commutator arms to branch zero. The signal inpvalid must be high for this signal to be effective. Qualifies input data din to be a valid new data symbol. Optional Signals obstart outvalid Output 1 This signal indicates that a valid data is present on the dout output port. However, some of the output data may be from the initial values stored in the branch registers, as it takes a few cycles for the branch registers to get filled up with input data from the din port. outvalidstart Output 1 This signal indicates that a valid data is present on the dout output port and it corresponds to a valid data from the din port. rfib Output 1 This signal is asserted for one cycle as soon as the interleaver is ready to accept a new data. After rfib goes high, a new data stream and ibstart can be applied at the input. 1 This signal is available in the convolutional interleaver mode only. This signal is similar to rfib but with the following differences. The signal zeronewblk is only asserted when the input data source has filled all the storage elements in the interleaver. It indicates that the input source can again start feeding the data. This signal can be used for Block Boundary Synchronization. This signal is also asserted high at synchronous and asynchronous resets. zeronewblk Output Table 2-2. Rectangular Interleaver /De-interleaver Signal Description Port Name I/O Type Width clk Input 1 System Clock rstn Input 1 Asynchronous Reset. This is an active low signal. When this signal is asserted, all the registers in the core are cleared. Input 1 This signal signifies the first data on input din. It must be asserted only after rfib goes high. Otherwise the core will terminate the processing of the current block and start processing the new block. The signals inpvalid and rfi must be high for ibstart to be effective. Input 1 Qualifies the input data din as a valid data symbol. If rfi is low, inpvalid will be ignored except for the case when the last input data symbol is placed at the din port. din Input 1-256 Input Data. The input symbols present on this port are interleaved/de-interleaved. dout Output 1-256 Output Data. The interleaved/de-interleaved symbols are output on this port. obstart Output 1 Assertion of this signal indicates that first data is present on the dout output port. ibstart inpvalid IPUG61_02.7 December 2010 Signal Description 14 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Functional Description Table 2-2. Rectangular Interleaver /De-interleaver Signal Description (Continued) Port Name I/O Type Width Signal Description outvalid Output 1 Assertion of this signal indicates that valid data is present on the dout output port. obend Output 1 Assertion of this signal indicates that the last output data is present on the dout output port. rfi Output 1 Ready for Input. This signal is asserted when the core is ready to accept data. It is de-asserted one clock cycle before the last input data is read. Input 4-16 Block size value is supplied through this port for variable block size configurations. The core reads the value on this port when ibstart is high. Input 2-9 Number of columns in the current block. The number of columns value is provided through this port for a variable number of columns configuration. The core reads the value on this port when ibstart is high. Input 3-9 Number of rows in current block. The number of rows value is provided through this port for a variable number of rows configuration. The core reads the value on this port when ibstart is high. Input 1 Clock Enable. This signal has the highest priority after rstn. The core operation freezes if this signal is low. This port increases the size of the core and should only be selected if necessary Input 1 Synchronous Reset. When this signal is high, all the registers in the core are cleared synchronously. This port increases the size of the core and should only be selected if necessary. 1 This signal is high if the number of columns value provided on the numcols port is valid. If the value on numcols is not valid, numcolset is low. It is active three clock cycles after the number of columns value is sampled. If invalid, the signal rfi (and the optional rfib signal, if selected) will be asserted in the next clock cycle. 1 This signal is high if the number of rows value provided on the numrows port is valid. If the value on numrows is not valid, numrowset is low. It is active three clock cycles after the number of rows value is sampled. If invalid, the signal rfi (and the optional rfib signal, if selected) will be asserted in the next clock cycle. Output 1 This signal is high if the block size value provided on blksize port is valid. If the block size value on blksize is not valid, blksizeset is low. It is active three clock cycles after the block size value is sampled. If invalid, the signal rfi (and the optional rfib signal, if selected) will be asserted in the next clock cycle. Output 1 This signal is asserted for one cycle as soon as the interleaver is ready to accept a new data block. After rfib goes high, a new data block and ibstart can be applied at the input. Optional Signals blksize numcols numrows ce sr numcolset Output numrowset Output blksizeset rfib IPUG61_02.7 December 2010 15 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Functional Description Timing Diagrams Figure 2-10. Convolutional Interleaver Interface Timing clk rstn sr ce rfib ibstart inpvalid din D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31 XX XX XX XX XX XX O0 O1 O2 outvalid obstart dout O3 O4 O5 O6 O7 O8 O9 O10 O11 O12 O13 O14 O15 O16 O17 O18 O19 O20 O21 O22 O23 O24 Figure 2-11. Rectangular Interleaver Interface Timing clk rstn sr ce rfi rfib ibstart inpvalid din D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 outvalid obstart dout XX O0 O1 O2 O3 O4 O5 O6 O7 O8 O9 O10 O11 obend Latency 5 Clocks IPUG61_02.7 December 2010 16 Shown Delay 4 Clocks ACTUAL DELAY INT : 4 DEINT :2 Interleaver/De-interleaver IP Core User’s Guide Chapter 3: Parameter Settings The IPexpress™ tool is used to create IP and architectural modules in the Diamond or ispLEVER software. Refer to “IP Core Generation” on page 24 for a description of how to generate the IP. The Interleaver/de-interleaver IP core can be customized to suit a specific application by adjusting parameters prior to core generation. Since the values of some parameters affect the size of the resultant core, the maximum value for these parameters may be limited by the size of the target device. Table 3-1 and Table 3-2 provide the list of user configurable parameters for the Interleaver/de-interleaver IP core. The parameter settings are specified using the Interleaver/de-interleaver IP core Configuration GUI in IPexpress. Table 3-1. Convolutional Interleaver/De-interleaver Parameter Descriptions Parameter Range/Options Default Type Convolutional/Rectangular Mode Interleaver/de-interleaver Interleaver 1-256 8 ECP/EC: 7-256 12 1-780 17 Symbol Width Number of Branches Branch Length Table 3-2. Rectangular Interleaver De-interleaver Parameter Descriptions Parameter Range/Options Default Interleaver or De-interleaver Interleaver 1-256 8 Constant Row*Col Variable Constant ECP/EC: 9-65536 4096 Number of Columns 2-256 256 Number of Rows 4-256 16 Mode Symbol Width Block Size Type Block Size Row Permutations Yes or No No Column Permutations Yes or No No Row Type Constant/Variable Constant Column Type Constant/Variable Constant Row Width 3-9 5 Column Width 2-9 9 ECP/EC: 4-16 13 Block Width IPUG61_02.7 December 2010 17 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Parameter Settings Type and Mode Tab Figure 3-1 shows the Type and Mode tab of the Interleaver/de-interleaver IP core configuration dialog box. The user can select Convolutional or Rectangular type and Interleaver or De-interleaver mode. • If Convolutional type is selected, when the user clicks Next, the Convolutional tab displays. • If Rectangular type is selected, when the user clicks Next, the Rectangular tab displays. Figure 3-1. Type and Mode Tab Type This parameter allows the user to choose either Convolutional or Rectangular type. Mode This parameter determines allows the user to choose either Interleaver or De-interleaver mode. IPUG61_02.7 December 2010 18 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Parameter Settings Convolutional Parameters Tab If Convolutional was selected in the Type and Mode tab, the Convolutional Parameters tab is displayed when the Next button is clicked. Figure 3-2 shows the Convolutional Parameters tab of the Interleaver/de-interleaver IP core configuration dialog box. Figure 3-2. Convolutional Parameters Tab Interleaver/Deinterleaver The following options are available in the Convolutional Parameters tab for both Interleaver or De-interleaver modes. Symbol Width This options sets the data width of the input symbols. Num Branches This options sets the number of branches of the commutator arm. Branch Lengths This options sets the difference in storage elements for consecutive branches. IPUG61_02.7 December 2010 19 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Parameter Settings Rectangular Parameters Tab If Rectangular was selected in the Type and Mode tab, the Rectangular Parameters tab is displayed when the Next button is clicked. Figure 3-3 shows the Rectangular Parameters tab of the Interleaver/de-interleaver IP core configuration dialog box. Figure 3-3. Convolutional Parameters Tab Interleaver/Deinterleaver The following options are available in the Rectangular Parameters tab for both Interleaver or De-interleaver modes. Symbol Width This parameter specifies the data width of the input symbols. Block Size Type This parameter specifies the block size input to the core. There are three options for giving block size value. • Constant: In this configuration the block size value is constant and assigned a value during core configuration. • Row*Col: In this configuration, block size value is computed form the Row and Column values. • Variable: In this configuration, block size value is given through an input port. IPUG61_02.7 December 2010 20 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Parameter Settings Block Size Constant Parameters Block Size This parameter is only available if Block Size Type = Constant. Block size input to the core: The block size value should be such that the last symbol in the block should come on the last row. Therefore block size value should be greater than (Col*(Row-1)) and less than or equal to (Col*Row). When block size type is constant, number of rows and number of columns is also constant. Inter-row permutations and inter-column permutations are supported when block size value is Col*Row. Col is number of columns and Row is number of rows. Number of Columns This parameter specifies the number of columns used in the core. Inter-row permutations and inter-column permutations are supported when block size value is Col*Row. Number of Rows This parameter specifies the number of rows used in the core. Inter-row permutations and inter-column permutations are supported when block size value is Col*Row. Permutations Row Permutations Rows can be permutated if required.Inter-row permutations and inter-column permutations are supported when block size value is Col*Row. Column Permutations Columns can be permutated if required. Inter-row permutations and inter-column permutations are supported when block size value is Col*Row. Row Type There are two options for giving number of rows. • Constant: In this configuration, number of rows value is constant and assigned a value during core configuration. • Variable: In this configuration, number of rows value is given through an input port. Row permutations are not supported when Row type is variable. Column Type There are two options for giving number of columns. • Constant: In this configuration, number of columns value is constant and assigned a value during core configuration. • Variable: In this configuration, number of columns value is given through the input port. Column permutations are not supported when Column type is variable. Row Width This parameter is only available if Row Type = Variable. Width for number of rows port (numrows). Column Width This parameter is only available if Column Type = Variable. Width for number of columns port (numcols) Block Width This parameter is only available if Block Size Type = Variable. Block Width required for the block size value. For variable block size type, either rows or columns or both can be selected to be variable. Both rows and columns cannot be constant. Row and column permutations are not supported when block size type is variable. Convolutional Optional Pins Tab If Convolutional was selected in the Type and Mode tab, the Convolutional Optional Pins tab is displayed when the Next button is clicked twice. Figure 3-4 shows the Convolutional Parameters tab of the Interleaver/de-interleaver IP core configuration dialog box. IPUG61_02.7 December 2010 21 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Parameter Settings Figure 3-4. Convolutional Optional Pins Tab In this tab, all ports are optional in convolutional mode, users can select or de-select them to interface with other modules. Rectangular Optional Pins Tab If Rectangular was selected in the Type and Mode tab, the Rectangular Optional Pins tab is displayed when the Next button is clicked twice. Figure 3-5 shows the Convolutional Parameters tab of the Interleaver/de-interleaver IP core configuration dialog box. IPUG61_02.7 December 2010 22 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Parameter Settings Figure 3-5. Rectangular Optional Pins Tab In this tab, all ports are optional in rectangular mode, users can select or de-select them to interface with other modules. IPUG61_02.7 December 2010 23 Interleaver/De-interleaver IP Core User’s Guide Chapter 4: IP Core Generation This chapter provides information on how to generate the Lattice Interleaver/de-interleaver IP core using the Diamond or ispLEVER software IPexpress tool, and how to include the core in a top-level design. Licensing the IP Core An IP core- and device-specific license is required to enable full, unrestricted use of the Interleaver/de-interleaver IP core in a complete, top-level design. Instructions on how to obtain licenses for Lattice IP cores are given at: http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm Users may download and generate the Interleaver/de-interleaver IP core and fully evaluate the core through functional simulation and implementation (synthesis, map, place and route) without an IP license. The Interleaver/deinterleaver IP core also supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited time (approximately four hours) without requiring an IP license. See “To use this project file in Diamond:” on page 29 for further details. However, a license is required to enable timing simulation, to open the design in the Diamond or ispLEVER EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout limitation. Getting Started The Interleaver/de-interleaver IP core is available for download from the Lattice IP Server using the IPexpress tool. The IP files are automatically installed using ispUPDATE technology in any customer-specified directory. After the IP core has been installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1. The IPexpress tool GUI dialog box for the Interleaver/de-interleaver IP core is shown in Figure 4-1. To generate a specific IP core configuration the user specifies: • Project Path – Path to the directory where the generated IP files will be loaded. • File Name – “username” designation given to the generated IP core and corresponding folders and files. • (Diamond) Module Output – Verilog or VHDL. • (ispLEVER) Design Entry Type – Verilog HDL or VHDL • Device Family – Device family to which IP is to be targeted (e.g. LatticeECP2M, LatticeECP3, etc.). Only families that support the particular IP core are listed. • Part Name – Specific targeted part within the selected device family. IPUG61_02.7 December 2010 24 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation Figure 4-1. IPexpress Dialog Box (Diamond Version) Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool online help for further information. To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display the Interleaver/de-interleaver IP core Configuration GUI, as shown in Figure 4-2. From this dialog box, the user can select the IP parameter options specific to their application. Refer to “Parameter Settings” on page 17 for more information on the Interleaver/de-interleaver IP core parameter settings. IPUG61_02.7 December 2010 25 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation Figure 4-2. Configuration GUI (Diamond Version) IPexpress-Created Files and Top Level Directory Structure When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are generated in the specified “Project Path” directory. The directory structure of the generated files is shown in Figure 4-3. IPUG61_02.7 December 2010 26 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation Figure 4-3. LatticeECP3 Interleaver/de-interleaver IP Core Directory Structure Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPexpress tool creates several files that are used throughout the design cycle. The names of most of the created files are customized to the user’s module name specified in the IPexpress tool. Table 4-1. File List File Description _inst.v This file provides an instance template for the IP. .v This file provides the Interleaver/de-interleaver core for simulation. _beh.v This file provides a behavioral simulation model for the Interleaver/de-interleaver core. _bb.v This file provides the synthesis black box for the user’s synthesis. .ngo The ngo files provide the synthesized IP core. .lpc This file contains the IPexpress tool options used to recreate or modify the core in the IPexpress tool. .ipx The IPX file holds references to all of the elements of an IP or Module after it is generated from the IPexpress tool (Diamond version only). The file is used to bring in the appropriate files during the design implementation and analysis. It is also used to re-load parameter settings into the IP/Module generation GUI when an IP/Module is being re-generated. _top.[v,vhd] This file provides a module which instantiates the Interleaver/de-interleaver core. This file can be easily modified for the user's instance of the Interleaver/de-interleaver core. This file is located in the intv_dint_eval/_/src/rtl/top directory. IPUG61_02.7 December 2010 27 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation Table 4-1. File List (Continued) File Description _generate.tcl Created when GUI “Generate” button is pushed, invokes generation, may be run from command line. _generate.log IPexpress scripts log file. _gen.log IPexpress IP generation log file Permutation Pattern Input File Format For the rectangular core, inter-row and inter-column permutations are supported. The permutation patterns are given through a configuration file. This file should have “.cfg” extension. The Interleaver/de-interleaver GUI requires this file during core configuration. The following example explains the contents of the configuration file: radix = 10; row_permute_array = 5,3,4,1,2,0; col_permute_array = 4,2,3,0,1; The first line in the configuration file indicates the radix of the values in the row and column permutation arrays. The values can be entered in binary, decimal or hexadecimal formats. For binary, decimal and hexadecimal numbers, radix values of 2, 10 and 16 respectively must be entered. In the above example, number of rows are 6 and number of columns are 5. Row and column permutations are entirely independent of each other. Therefore, any of these permutation combinations can be selected: row only, column only, both or none. For the above example, inter-row permutations are done as follows: row number 5 is placed at row number 0. row number 3 is placed at row number 1. row number 4 is placed at row number 2. row number 1 is placed at row number 3. row number 2 is placed at row number 4. row number 0 is placed at row number 5. For the above example, inter-column permutations are done as follows: column number 4 is placed at column number 0. column number 2 is placed at column number 1. column number 3 is placed at column number 2. column number 0 is placed at column number 3. column number 1 is placed at column number 4. Instantiating the Core The generated Interleaver/de-interleaver IP core package includes black-box (_bb.v) and instance (_inst.v) templates that can be used to instantiate the core in a top-level design. An example RTL toplevel reference source file that can be used as an instantiation template for the IP core is provided in \\intv_dint_eval\\src\rtl\top. Users may also use this top-level reference as the starting template for the top-level for their complete design. Running Functional Simulation Simulation support for the Interleaver/de-interleaver IP core is provided for Aldec Active-HDL (Verilog and VHDL) simulator, Mentor Graphics ModelSim simulator. The functional simulation includes a configuration-specific behavioral model of the Interleaver/de-interleaver IP core. The test bench sources stimulus to the core, and monitors output from the core. The generated IP core package includes the configuration-specific behavior model IPUG61_02.7 December 2010 28 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation (_beh.v) for functional simulation in the “Project Path” root directory. The simulation scripts supporting ModelSim evaluation simulation is provided in  \\intv_dint_eval\\sim\modelsim\scripts. The simulation script supporting Aldec evaluation simulation is provided in  \\intv_dint_eval\\sim\aldec\scripts. Both Modelsim and Aldec simulation is supported via test bench files provided in  \\intv_dint_eval\testbench. Models required for simulation are provided in the corresponding \models folder. Users may run the Aldec evaluation simulation by doing the following: 1. Open Active-HDL. 2. Under the Tools tab, select Execute Macro. 3. Browse to folder \\intv_dint_eval\\sim\aldec\scripts and execute one of the "do" scripts shown. Users may run the Modelsim evaluation simulation by doing the following: 1. Open ModelSim. 2. Under the File tab, select Change Directory and choose the folder  \intv_dint_eval\\sim\modelsim\scripts. 3. Under the Tools tab, select Execute Macro and execute the ModelSim “do” script shown. Note: When the simulation completes, a pop-up window will appear asking “Are you sure you want to finish?” Answer “No” to analyze the results (answering “Yes” closes ModelSim). Synthesizing and Implementing the Core in a Top-Level Design Synthesis support for the Interleaver/de-interleaver IP core is provided for Mentor Graphics Precision or Synopsys Synplify. The Interleaver/de-interleaver IP core itself is synthesized and is provided in NGO format when the core is generated in IPexpress. Users may synthesize the core in their own top-level design by instantiating the core in their top-level as described previously and then synthesizing the entire design with either Synplify or Precision RTL Synthesis. The following text describes the evaluation implementation flow for Windows platforms. The flow for Linux and UNIX platforms is described in the Readme file included with the IP core. The top-level files _top.v are provided in \\intv_dint_eval\\src\rtl\top. Push-button implementation of the reference design is supported via Diamond or ispLEVER project files, .syn, located in the following directory: \\intv_dint_eval\\impl\(synplify or precision). To use this project file in Diamond: 1. Choose File > Open > Project. 2. Browse to \\intv_dint_eval\\impl\synplify (or precision) in the Open Project dialog box. 3. Select and open .ldf. At this point, all of the files needed to support top-level synthesis and implementation will be imported to the project. 4. Select the Process tab in the left-hand GUI window. 5. Implement the complete design via the standard Diamond GUI flow. To use this project file in ispLEVER: 1. Choose File > Open Project. IPUG61_02.7 December 2010 29 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation 2. Browse to \\intv_dint_eval\\impl\synplify (or precision) in the Open Project dialog box. 3. Select and open .syn. At this point, all of the files needed to support top-level synthesis and implementation will be imported to the project. 4. Select the device top-level entry in the left-hand GUI window. 5. Implement the complete design via the standard ispLEVER GUI flow. Hardware Evaluation The Interleaver/de-interleaver IP core supports supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware for a limited period of time (approximately four hours) without requiring the purchase of an IP license. It may also be used to evaluate the core in hardware in userdefined designs. Enabling Hardware Evaluation in Diamond Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be enabled/disabled in the Strategy dialog box. It is enabled by default. Enabling Hardware Evaluation in ispLEVER In the Processes for Current Source pane, right-click the Build Database process and choose Properties from the dropdown menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is enabled by default. Updating/Regenerating the IP Core By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP core or to create a new but similar one. Regenerating an IP Core in Diamond To regenerate an IP core in Diamond: 1. In IPexpress, click the Regenerate button. 2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate. 3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Target box. 4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx extension. 5. Click Regenerate. The module’s dialog box opens showing the current option settings. 6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As the options change, the schematic diagram of the module changes to show the I/O and the device resources the module will need. 7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not available in stand-alone mode). 8. Click Generate. IPUG61_02.7 December 2010 30 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor IP Core Generation 9. Check the Generate Log tab to check for warnings and error messages. 10.Click Close. The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP core required to support simulation, synthesis and implementation. The IP core may be included in a user's design by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the module’s dialog box showing the current option settings. Then go to step 6 above. Regenerating an IP Core in ispLEVER To regenerate an IP core in ispLEVER: 1. In the IPexpress tool, choose Tools > Regenerate IP/Module. 2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.lpc) file of the IP core you wish to regenerate, and click Open. 3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core in the Source Value box. Make your new settings in the Target Value box. 4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base of the .lpc file name will be the base of all the new file names. The LPC Target File must end with an .lpc extension. 5. Click Next. The IP core’s dialog box opens showing the current option settings. 6. In the dialog box, choose desired options. To get information about the options, click Help. Also, check the About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with additional information. As the options change, the schematic diagram of the IP core changes to show the I/O and the device resources the IP core will need. 7. Click Generate. 8. Click the Generate Log tab to check for warnings and error messages. IPUG61_02.7 December 2010 31 Interleaver/De-interleaver IP Core User’s Guide Chapter 5: Support Resources This chapter contains information about Lattice Technical Support, additional references, and document revision history. Lattice Technical Support There are a number of ways to receive technical support. Online Forums The first place to look is Lattice Forums (http://www.latticesemi.com/support/forums.cfm). Lattice Forums contain a wealth of knowledge and are actively monitored by Lattice Applications Engineers. Telephone Support Hotline Receive direct technical support for all Lattice products by calling Lattice Applications from 5:30 a.m. to 6 p.m. Pacific Time. • For USA & Canada: 1-800-LATTICE (528-8423) • For other locations: +1 503 268 8001 In Asia, call Lattice Applications from 8:30 a.m. to 5:30 p.m. Beijing Time (CST), +0800 UTC. Chinese and English language only. • For Asia: +86 21 52989090 E-mail Support • techsupport@latticesemi.com • techsupport-asia@latticesemi.com Local Support Contact your nearest Lattice Sales Office. Internet www.latticesemi.com References LatticeEC/ECP • HB1000, LatticeEC/ECP Family Handbook LatticeECP2/M • HB1003, LatticeECP2/M Family Handbook LatticeECP3 • HB1009, LatticeECP3 Family Handbook LatticeSC/M • DS1004, LatticeSC/M Family Data Sheet IPUG61_02.7 December 2010 32 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Support Resources LatticeXP • HB1001, LatticeXP Family Handbook LatticeXP2 • DS1009, Lattice XP2 Datasheet Revision History Date Document Version IP Version September 2006 02.1 3.0 Added LatticeECP2, LatticeSC, and LatticeXP FPGA family support; added IPexpress user-configurable support. December 2006 02.2 3.1 Updated appendix tables. June 2007 02.3 3.2 Updated appendices. Added support for LatticeXP2 FPGA family. August 2007 02.4 3.2 Updated Convolutional Interleaver/de-interleaver Signal Description table. Change Summary Added LatticeECP2M FPGA family support. Updated Rectangular Interleaver /De-interleaver Signal Description table. Updated Convolutional Interleaver/de-interleaver Block Diagram. Updated Rectangular Interleaver De-interleaver Block Diagram. Updated Convolutional Interleaver Interface Timing Diagram. Updated Rectangular Interleaver Interface Timing Diagram. August 2008 02.5 3.3 Added Quick Facts table. Updated appendices. July 2010 2.6 3.3 Divided document into chapters. Added table of contents. Added Quick Facts tables in Chapter 1, “Introduction.” Added new content in Chapter 4, “IP Core Generation.” December 2010 2.7 3.4 Added support for Diamond software throughout. Added support for LatticeECP3 family. IPUG61_02.7 December 2010 33 Interleaver/De-interleaver IP Core User’s Guide Appendix A: Resource Utilization This appendix gives resource utilization information for Lattice FPGAs using the Interleaver/de-interleaver IP core. IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond and ispLEVER design tools. Details regarding the usage of IPexpress can be found in the IPexpress and Diamond or ispLEVER help system. For more information on the Diamond or ispLEVER design tools, visit the Lattice web site at: www.latticesemi.com/software. LatticeECP3 FPGAs Table A-1. Performance and Utilization1 IPexpress User-Configurable Mode sysMEM™ EBRs fMAX (MHz) 1 336 Slices LUTs Registers I/Os Convolutional Interleaver DVB 86 122 159 23 Convolutional De-Interleaver DVB 89 133 164 23 1 340 Rectangular Interleaver 802.16 54 64 101 24 2 340 Rectangular De-Interleaver 802.16 72 82 132 24 2 338 1. Performance and utilization data are generated using an LFE3-95E-8FN672CES device with Lattice’s Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP3 family. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeECP3 devices is INTV-DINTE3-U3. LatticeECP and LatticeEC FPGAs Table A-2. Performance and Utilization1 Slices LUTs Registers I/Os sysMEM EBRs fMAX (MHz) 92 128 159 23 2 267 Convolutional De-Interleaver DVB 95 140 164 23 2 235 Rectangular Interleaver 802.16 61 81 101 24 4 258 Rectangular De-Interleaver 802.16 81 94 132 24 4 230 IPexpress User-Configurable Mode Convolutional Interleaver DVB 1. Performance and utilization data are generated using an LFECP20E-5F672C device with Lattice’s Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP/EC family. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeECP/EC devices is INTV-DINTE2-U3. IPUG61_02.7 December 2010 34 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Resource Utilization LatticeECP2 Devices Table A-3. Performance and Resource Utilization1 IPexpress User-Configurable Mode Slices LUTs Registers I/Os sysMEM EBRs fMAX (MHz) 86 121 159 23 1 357 Convolutional De-Interleaver DVB 88 132 164 23 1 370 Rectangular Interleaver 802.16 52 75 101 24 2 370 Rectangular De-Interleaver 802.16 70 103 132 24 2 370 Convolutional Interleaver DVB 1. Performance and utilization data are generated using an LFE2-50E-7F672C device with Lattice’s Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2 family. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeECP2 devices is INTV-DINTP2-U3. LatticeECP2M Devices Table A-4. Performance and Resource Utilization1 IPexpress User-Configurable Mode Slices LUTs Registers I/Os sysMEM EBRs fMAX (MHz) Convolutional Interleaver DVB 86 121 159 23 1 329 Convolutional De-Interleaver DVB 88 132 164 23 1 370 Rectangular Interleaver 802.16 52 75 101 24 2 353 Rectangular De-Interleaver 802.16 70 103 132 24 2 370 1. Performance and utilization data are generated using an LFE2M35E-7F484C device with Lattice’s. Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2M family. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeECP2M devices is INTV-DINTPM-U3. LatticeXP Devices Table A-5. Performance and Resource Utilization1 IPexpress User-Configurable Mode Slices LUTs Registers I/Os sysMEM EBRs fMAX (MHz) Convolutional Interleaver DVB 92 128 159 23 2 211 Convolutional De-Interleaver DVB 95 140 164 23 1 194 Rectangular Interleaver 802.16 61 81 101 24 4 191 Rectangular De-Interleaver 802.16 81 94 132 24 4 233 1. Performance and utilization data are generated using an LFXP20E-5F484C device with Lattice’s Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeXP family. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeXP devices is INTV-DINT-XMU3. IPUG61_02.7 December 2010 35 Interleaver/De-interleaver IP Core User’s Guide Lattice Semiconductor Resource Utilization LatticeXP2 Devices Table A-6. Performance and Resource Utilization1 Slices LUTs Registers I/Os sysMEM EBRs fMAX (MHz) Convolutional Interleaver DVB 86 121 159 23 1 314 Convolutional De-Interleaver DVB 88 132 164 23 1 299 Rectangular Interleaver 802.16 52 75 101 24 2 314 Rectangular De-Interleaver 802.16 70 103 132 24 2 314 IPexpress User-Configurable Mode 1. Performance and utilization data are generated using an LFXP2-30E-7F484C device with Lattice’s Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeXP2 family. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeXP2 devices is INTV-DINT-X2U3. LatticeSC/M Devices Table A-7. Performance and Resource Utilization1 Slices LUTs Registers I/Os sysMEM EBRs fMAX (MHz) Convolutional Interleaver DVB 107 139 159 23 1 375 Convolutional De-Interleaver DVB 110 154 164 23 1 375 Rectangular Interleaver 802.16 56 84 101 24 2 375 Rectangular De-Interleaver 802.16 77 117 132 24 2 375 IPexpress User-Configurable Mode 1. Performance and utilization data are generated using an LFSC3GA25E-7F900C device with Lattice’s Diamond 1.0 software. Performance may vary when using a different software version or targeting a different device density or speed grade within the LatticeSC/M families. Ordering Part Number The Ordering Part Number (OPN) for the Interleaver/de-interleaver targeting LatticeSC/M devices is INTV-DINTXM-U3. IPUG61_02.7 December 2010 36 Interleaver/De-interleaver IP Core User’s Guide
INTV-DINT-P2-UT3 价格&库存

很抱歉,暂时无法提供与“INTV-DINT-P2-UT3”相匹配的价格&库存,您可以联系我们找货

免费人工找货