TM
ispMACH 5000VG Family
3.3V In-System Programmable
SuperBIG, SuperWIDE High Density PLDs
TM
TM
December 2001
Data Sheet
■ Ease of Design
Features
• Product term sharing
• Extensive clocking and OE capability
■ High Density
• 768 to 1,024 macrocells
• 196 to 384 I/Os
■ Easy System Integration
•
•
•
•
•
•
•
•
■ sysCLOCK™ PLL – Timing Control
•
•
•
•
Multiply and divide factors between 1 and 32
Clock shifting capability ± 3.5ns in 500ps steps
Multiple output frequencies
External feedback capability for board-level
clock deskew
• LVDS/LVPECL clock input capability
■ High Speed Logic Implementation
• SuperWIDE 68-input logic block
• Up to 160 product terms per output
• Hierarchical routing structure provides fast interconnect
ispMACH 5000VG Introduction
The ispMACH 5000VG represents the third generation
of Lattice’s SuperWIDE CPLD architecture. Through
their wide 68-input blocks, these devices give significantly improved speed performance for typical designs
over architectures with fewer inputs.
■ sysIO™ Capability
•
•
•
•
•
•
•
•
•
•
•
3.3V power supply
Hot socketing
Input pull-up, pull-down or bus-keeper
Open drain capability
Slew rate control
Macrocell-based power management
IEEE 1149.1 boundary scan testable
In-system programmable via IEEE 1532 ISC
compliant interface
LVCMOS 1.8, 2.5 and 3.3
LVTTL
SSTL 2 (I & II)
SSTL 3 (I & II)
CTT 3.3, CTT 2.5
HSTL (I & III)
PCI-X, PCI 3.3
GTL+
AGP-1X
5V tolerance
Programmable drive strength
The ispMACH 5000VG takes the unique benefits of the
SuperWIDE architecture and extends it to higher densities referred to as SuperBIG, by using the combination
of an innovative product term architecture and a twotiered hierarchical routing architecture. Additionally,
sysCLOCK and sysIO capabilities have been added to
maximize system-level performance and integration.
Table 1. ispMACH 5000VG Family Selection Guide
Macrocells
User I/O Options
ispMACH
5768VG
ispMACH
51024VG
768
1,024
196/304
304/384
tPD (ns)
5.0
5.0
tS – Set-up with 0 Hold (ns)
3.0
3.0
tCO (ns)
4.4
4.4
fMAX (MHz)
178
178
Supply Voltage (V)
3.3V
3.3V
256-ball fpBGA
484-ball fpBGA
484-ball fpBGA
676-ball fpBGA
Package
www.latticesemi.com
1
5kvg_09
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
RESETB
GOE1
GOE2
TOE
Figure 1. Functional Block Diagram
I/O Bank 0
GLB
I/O Bank 3
GLB
GLB
SRP
VCCO0
VREF0
GCLK0
GLB
GLB
GLB
GLB
GLB
GLB
SRP
GLB
VCCP0
GNDP0
GLB
GLB
GLB
GLB
Global Routing Pool
PLL0
GLB
GLB
VCCP1
GNDP1
GLB
SRP
GLB
GLB
GLB
GLB
SRP
GLB
PLL1
GLB
SRP
GLB
VCCO3
VREF3
GCLK3
SRP
GLB
GLB
GCLK1
VREF1
VCCO1
GLB
SRP
GLB
GCLK2
VREF2
VCCO2
GLB
SRP
GLB
GLB
I/O Bank 2
TDI
TDO
TMS
TCK
VCCJ
I/O Bank 1
GLB
Overview
The ispMACH 5000VG devices consist of multiple SuperWIDE 68-input, 32-macrocell Generic Logic Blocks
(GLBs) interconnected by a tiered routing system. Figure 1 shows the functional block diagram of the ispMACH
5000VG. Groups of four GLBs, referred to as segments, are interconnected via a Segment Routing Pool (SRP).
Segments are interconnected via the Global Routing Pool (GRP.) Together the GLBs and the routing pools allow
designers to create large designs in a single device without compromising performance.
Each GLB has 68 inputs coming from the SRP and contains 163 product terms. These product terms form groups
of five product term clusters, which feed the PT sharing array or the macrocell directly. The ispMACH 5000VG
allows up to 160 product terms to be connected to a single macrocell via the product term expanders and PT Sharing Array.
The macrocell is designed to provide flexible clocking and control functionality with the capability to select between
global, product term and block-level resources. The outputs of the macrocells are fed back into the switch matrices
and, if required, the sysIO cell.
All I/Os in the ispMACH 5000VG family are sysIOs, which are split into four banks. Each bank has a separate I/O
power supply and reference voltage. The sysIO cells allow operation with a wide range of today’s emerging interface standards. Within a bank, inputs can be set to a variety of standards, providing the reference voltage requirements of the chosen standards are compatible. Within a bank, the outputs can be set to differing standards,
providing the I/O power supply voltage and the reference voltage requirements of the chosen standard are compatible. Support for this wide range of standards allows designers to achieve significantly higher board-level performance compared to the more traditional LVCMOS standards.
2
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
The ispMACH5000VG devices also contain sysCLOCK Phase Locked Loops (PLLs) that provide designers with
increased clocking flexibility. The PLLs can be used to synthesize new clocks for use on-chip or elsewhere within
the system. They can also be used to deskew clocks, again both at the chip and system levels. A variable delay line
capability further improves this and allows designers to retard or advance the clock in order to tune set-up and
clock-to-out times for optimal results. The ispMACH 5000VG Family Selection Guide (Table 1) details the key
attributes and packages for the ispMACH 5000VG devices.
ispMACH 5000VG Architecture
The ispMACH 5000VG Family of In-System Programmable High Density Logic Devices is based on segments containing four Generic Logic Blocks (GLBs) and a hierarchical routing pool (GRP) structure interconnecting the segments. A segment routing pool (SRP) connects each GLB in a segment allowing the maximum flexibility and
speed.
Outputs from the GLBs drive the Segment Routing Pool (SRP) and the Global Routing Pool (GRP). Enhanced
switching resources are provided to allow signals in the Segment Routing Pool to drive any or all the GLBs in the
segment. Optimal switching is provided to allow all signals in the Global Routing Pool to be routed to any or all
SRPs. This mechanism allows fast, efficient connections across the entire device.
Segment
Each segment contains four GLBs and a segment routing pool (SRP). Each GLB has 32 internal feedback outputs
and 16 external feedback outputs, for a total of 48 outputs from each GLB feeding the SRP. The SRP contains up to
384 signals, 48 from each GLB and 192 from the GRP, with full routing capability. This routing scheme maximizes
the flexibility and speed of the device without sacrificing the routing.
Figure 2. Segment
To
GRP
To
GRP
48
48
Clocks
4
Clocks
48
GLB
68
48
GLB
Segment
Routing
Pool
(SRP)
68
4
48
To
GRP
Clocks
48
68
GLB
48
GLB
68
192
From
GRP
4
Clocks
4
48
To
GRP
Generic Logic Block
Each GLB contains 32 macrocells and a fully populated, programmable AND-array with 160 logic product terms
and three control product terms. The GLB has 68 inputs from the Segment Routing Pool, which are available in
both true and complement form for every product term. The three control product terms are used for shared reset,
clock and output enable functions. Figure 3 shows the structure of the GLB from the macrocell perspective. This is
referred to as a macrocell slice. There are 32 macrocell slices per GLB.
AND-Array
The programmable AND-Array consists of 68 inputs and 163 output product terms. The 68 inputs from the SRP are
used to form 136 lines in the AND-Array (true and complement of the inputs). Each line in the array can be connected to any of the 163 output product terms via a wired AND. Each of the 160 logic product terms feed the DualOR Array with the remaining three control product terms feeding the Shared PT Clock, Shared PT Reset and
Shared PT OE. Every set of five product terms from the 160 logic product terms forms a product term cluster start3
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Figure 3. Macrocell Slice
From
SRP
PT OE to
I/O Block
From
I/O Cell
From
n-7
68
PTSA Bypass
Output
to I/O Block
D
Q
PTSA
PT Clock
Clk En
To
n+7
GRP and SRP
R/L
Shared PT Clock
BCLK0
BCLK1
BCLK2
BCLK3
Speed/
Power
Clk
P R
PT Preset
PT Reset
Shared PT Reset
Global Reset
AND Array
Dual-OR Array
Macrocell
Figure 4. AND-Array
In[0]
In[66]
In[67]
PT0
PT1
PT2
PT3
PT4
Cluster 0
PT155
PT156
PT157
Cluster 31
PT158
PT159
PT160 Shared clock
PT161 Shared reset
PT162 Shared OE
Note:
Indicates programmable fuse.
ing with PT0. There is one product term cluster for every macrocell in the GLB. In addition to the three control product terms, the first, third, fourth and fifth product terms of each cluster can be used as a PTOE (output macrocells
only), PT Clock, PT Preset and PT Reset, respectively. Figure 4 is a graphical representation of the AND-Array.
4
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Enhanced Dual-OR Array
To facilitate logic functions requiring a very large number of product terms, the ispMACH 5000VG architecture has
been enhanced with an innovative product term expander capability. This capability is embedded in the Dual-OR
Array. The Dual-OR Array consists of 64 OR gates. There are two OR gates per macrocell in the GLB. These OR
gates are referred to as the Expandable PTSA OR gate and the PTSA-Bypass OR gate.
The PTSA-Bypass OR gate receives its five inputs from the combination of product terms associated with the product term cluster. The PTSA-Bypass OR gate feeds the macrocell directly for fast narrow logic. The Expandable
PTSA OR gate receives five inputs from the combination of product terms associated with the product term cluster.
It also receives an additional input from the Expanded PTSA OR gate of the N-7 macrocell, where N is the number
of the macrocell associated with the current OR gate. The Expandable PTSA OR gate feeds the PTSA for sharing
with other product terms and the N+7 Expandable PTSA OR gate. This allows cascading of multiple OR gates for
wide functions. There is a small timing adder for each level of expansion. Figure 5 is a graphical representation of
the Enhanced Dual-OR Array.
Figure 5. Enhanced Dual-OR Array
From PT0
PT OE
To I/O Block
From
n-7
From PT1
PTSA Bypass
n
To PTSA
From PT2
PT Clock
From PT3
To Macrocell
To Macrocell
To
n+7
PT Preset
To Macrocell
From PT4
PT Reset
5
To Macrocell
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Product Term Sharing Array
The Product Term Sharing Array (PTSA) consists of 32 inputs from the Dual-OR Array (Expandable PTSA OR) and
32 outputs directly to the macrocells. Each output is the OR term of any combination of the seven Expandable
PTSA OR terms connected to that output. Every Nth macrocell is connected to N-3, N-2, N-1, N, N+1, N+2 and
N+3 PTSA OR terms via a programmable connection. This wraps around the logic, Macrocell 0 gets its logic from
29, 30, 31, 0, 1, 2, 3. The Expandable PTSA OR used in conjunction with the PTSA allows wide functions to be
implemented easily and efficiently. Without using the Expandable PTSA OR capability, the greatest number of
product terms that can be included in a single function with one pass of delay is 35. Figure 6 shows the graphical
representation of the PTSA.
Figure 6. Product Term Sharing Array
PTSA OR 0
Macrocell 0
PTSA OR 1
PTSA OR 2
Macrocell 1
Macrocell 2
PTSA OR 3
PTSA OR 29
Macrocell 29
PTSA OR 30
Macrocell 30
PTSA OR 31
Macrocell 31
Macrocell
The 32 registered macrocells in the GLB are driven by the 32 outputs from the PTSA or the PTSA bypass. Each
macrocell contains a programmable XOR gate, a programmable register/latch flip-flop and the necessary clocks
and control logic to allow combinatorial or registered operation.
The macrocells each have two outputs, which can be fed to the SRP, GRP and I/O cell. This dual or concurrent output capability from the macrocell gives efficient use of the hardware resources. One output can be a registered
function for example, while the other output can be an unrelated combinatorial function. A direct register input from
the I/O cell facilitates efficient use of the macrocell to construct high-speed input registers.
Macrocell registers can be clocked from one of several global or product term clocks available on the device. A global and product term clock enable is also provided, eliminating the need to gate the clock to the macrocell registers
directly. Reset and preset for the macrocell register is provided from both global and product term signals. The
macrocell register can be programmed to operate as a D-type register or a D-type latch. Figure 7 is a graphical representation of the ispMACH 5000VG macrocell.
6
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Figure 7. Macrocell
From
I/O Cell
PTSA Bypass
Output to
I/O Block
From PTSA
D
Q
PT Clock
Clk En
GRP and SRP
R/L
Shared PT Clock
BCLK0
BCLK1
BCLK2
BCLK3
Clk
P R
PT Preset
PT Reset
Shared PT Reset
Global Reset
I/O Cell
The I/O cell of the ispMACH 5000VG device provides a high degree of flexibility. It includes the sysIO feature and
an enhanced output enable MUX for optimal performance both on- and off-chip. The sysIO feature allows I/O cells
to be configured to different I/O standards, drive strengths and slew rates. The enhanced output enable MUX provides up to 14 different output enable choices per I/O cell.
The I/O cell contains an output enable (OE) MUX, a programmable tri-state output buffer, a programmable input
buffer, a programmable pull-up resistor, a programmable pull-down resistor and a programmable bus-keeper latch.
The I/O cell receives its input from its associated macrocell. The I/O cell has a feedback line to its associated macrocell and a direct path to the GRP and SRP.
The output enable (OE) MUX selects the OE signal per I/O cell. The inputs to the OE MUX are the four Shared
PTOE signals, PTOE and the two GOE signals. The OE MUX also has the ability to choose either the true or
inverse of each of these signals. The output of the OE MUX goes through a logical AND with the TOE signal to
allow easy tri-stating of the outputs for testing purposes.
The four shared PTOE signals are derived from PT163 of each GLB in the segment. The PTOE signal is derived
from the first product term in each macrocell cluster, which is directly routed to the OE MUX. Therefore, every I/O
cell can have a different OE signal. Figure 8 is a graphical representation of the I/O cell.
7
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Figure 8. I/O Cell
Shared (Segment) PTOE 0
Shared (Segment) PTOE 1
Shared (Segment) PTOE 2
Shared (Segment) PTOE 3
PTOE
GOE0
GOE1
VCCO for
this bank
VCCO to all
other I/Os
in bank
TOE
Data Output
from Macrocell
Output Buffer
(VCCO independent for
open drain outputs)
Data Input to Routing
GND
CMOS/TTL
Input Buffer
(VREF independent)
I/O
Pad
Data Input to Macrocell
+
–
VREF dependent
Input Buffer
VREF to all
other I/Os in bank
sysIO Capability
The ispMACH 5000VG devices are divided into four sysIO banks, where each bank is capable of supporting 14 different I/O standards. Each sysIO bank has its own I/O supply voltage (VCCO) and reference voltage (VREF)
resources allowing each bank complete independence from the others. Each I/O within a bank is individually configurable based on the VCCO and VREF settings. Table 2 lists the sysIO standards with the typical values for VCCO,
VREF and VTT.
Table 2. ispMACH 5000VG Supported I/O Standards
sysIO Standard
VCCO
VREF
VTT
LVTTL
3.3V
N/A
N/A
LVCMOS-3.3
3.3V
N/A
N/A
LVCMOS-2.5
2.5V
N/A
N/A
LVCMOS-1.8
1.8V
N/A
N/A
PCI 3.3
3.3V
N/A
N/A
PCI-X
3.3V
N/A
N/A
AGP-1X
3.3V
N/A
N/A
SSTL3, Class I & II
3.3V
1.5V
1.5V
SSTL2, Class I & II
2.5V
1.25V
1.25V
CTT 3.3
3.3V
1.5V
1.5V
CTT 2.5
2.5V
1.25V
1.25V
HSTL, Class I
1.5V
0.75V
0.75V
HSTL, Class III
1.5V
0.9V
1.5V
GTL+
N/A
1.0V
1.5V
LVPECL, Differential1
N/A
N/A
N/A
LVDS1
N/A
N/A
N/A
1. LVDS and LVPECL are only supported on the dedicated clock pins.
8
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Global clock pins have additional capabilities that allow for higher performance applications. Two global clock pins
can be paired together to create a single global clock pin that can interface with certain differential signals.
The TOE and JTAG pins of the ispMACH 5000VG device are the only pins that do not have sysIO capabilities.
These pins only support the LVTTL and LVCMOS standards.
There are three classes of I/O interface standards that are implemented in the ispMACH 5000VG devices. The first
is the unterminated, single-ended interface. It includes the 3.3V LVTTL standard along with the 1.8V, 2.5V and 3.3V
LVCMOS interface standards. Additionally, PCI 3.3, PCI-X and AGP-1X are all subsets of this type of interface.
The second type of interface implemented is the terminated, single-ended interface standard. This group of interfaces includes different versions of SSTL and HSTL interfaces along with CTT and GTL+. Usage of these particular
I/O interfaces requires the use of an additional VREF signal. At the system level, a termination voltage, VTT, is also
required. Typically, an output will be terminated to VTT at the receiving end of the transmission line it is driving.
The final types of interfaces implemented are the differential standards LVDS and LVPECL. These interfaces are
implemented on clock pins only. When using one of the differential standards, a pair of global clock pins (GCLK0
and GCLK1 or GCLK3 and GCLK2) is combined to create a single clock signal.
For more information on the sysIO capability, please refer to Technical Note TN1000: ispMACH 5000VG sysIO
Design and Usage Guidelines .
GLB Clock Distribution
The ispMACH 5000VG family has four dedicated clock input pins: GCLK0-GCLK3. GLCK0 and GCLK3 can be
routed through a PLL circuit or routed directly to the internal clock nets. The internal clock nets (CLK0-CLK3) are
directly related to the dedicated clock pins (see Secondary Clock Divider exception when using the sysCLOCK circuit). These feed the GLB clock multiplexes which generate the GLB clock signals (BCLK0-BCLK3). The GLB clock
multiplexer allows a variety of true and complementary versions of the clocks to be used within the GLB. Each
block clock can be the true or inverse of its associated global clock or the inverse of the adjacent global clock.
Figure 9 shows the clock distribution network.
Figure 9. Clock Distribution Network
I/O/CLK_OUT0
GCLK0
CLK0
CLK_OUT0
VREF0
Clock Net
BCLK0
To Macrocells
BCLK1
To Macrocells
PLL0
SEC_OUT0
CLK1
GCLK1
Clock Net
VREF1
sysCLOCK PLLs
Global Clock Routing
GLB Clock Routing
VREF2
GCLK2
CLK2
Clock Net
SEC_OUT1
BCLK2
To Macrocells
BCLK3
To Macrocells
PLL1
VREF3
CLK_OUT1
CLK3
GCLK3
Clock Net
I/O/CLK_OUT1
9
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
sysCLOCK PLL
The sysCLOCK PLL circuitry consists of Phase-Lock Loops (PLLs) and the various dividers, reset and feedback
signals associated with the PLLs. This feature gives the user the ability to synthesize clock frequencies and generate multiple clock signals for routing within the device. Furthermore, it can generate clock signals that are
deskewed either at the board level or the device level.
The ispMACH 5000VG devices provide two PLL circuits. PLL0 receives its clock inputs from GCLK 0 and provides
outputs to CLK 0 (CLK 1 when using the secondary clock). PLL1 operates with signals from GCLK 3 and CLK 3
(CLK 2 when using the secondary clock). The PLL outputs (CLK_OUT) are routed via a dedicated net to a dedicated pad. Further the buffers at these dedicated pads are regular I/O buffers that can select either the I/O macrocell or the CLK_OUT (CLK_OUT0/CLK_OUT1) signal. The CLK_OUT nets are not routed through the GRP.
Additionally, there are two sets of signals used for external control. Each PLL has a set of PLL_RST, PLL_FBK and
PLL_LOCK signals. Figure 10 shows the ispMACH 5000VG PLL block diagram.
Figure 10. PLL Block Diagram
CLK_IN
Input Clock
(M) Divider
Programable
Delay
PLL_RST
VCO
and
Phase
Detector
Post-scalar
(V) Divider
CLK_OUT
Clock Net
PLL_LOCK
Feedback
Loop
(N) Divider
Secondary
Clock
(K) Divider
SEC_OUT
Clock Net
PLL_FBK
In order to facilitate the multiply and divide capabilities of the PLL, each PLL has dividers associated with it: M, N
and K. The M divider is used to divide the clock signal, while the N divider is used to multiply the clock signal. The
K divider is only used when a secondary clock output is needed. This divider divides the primary clock output and
feeds to a separate global clock net. The V divider is used to provide lower frequency output clocks, while maintaining a stable, high frequency output from the PLL’s VCO circuit.
The PLL also has a delay feature that allows the output clock to be advanced or delayed to improve set-up and
clock-to-out times for better performance. This operates by inserting delay on the input or feedback lines in 0.5ns
increments from 0 to 3.5ns. For more information on the PLL, please refer to Technical Note TN1003: ispMACH
5000VG PLL Usage Guidelines .
Power Management
The ispMACH 5000VG devices provide unique power management controls. The devices have two power settings,
high power and low power, on a per node basis. Low power consumption is approximately 50% of high power consumption with a timing delay adder (tLP) to the routing delay of the low power node. Each node can be configured
as either high power or low power. However, care should be taken when sharing product terms between nodes with
different power settings.
The ispMACH 5000VG devices also have a power-off feature for unused product terms. By default, any product
term that is not used is configured as such. This allows the device to operate at minimal power consumption without affecting the timing of the design. For more information on power management, please refer to Technical Note
TN1002: Power Estimation in ispMACH 5000VG Devices.
10
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
IEEE 1149.1-Compliant Boundary Scan Testability
All ispMACH 5000VG devices have boundary scan cells and are compliant to the IEEE 1149.1 standard. This
allows functional testing of the circuit board on which the device is mounted through a serial scan path that can
access all critical logic notes. Internal registers are linked internally, allowing test data to be shifted in and loaded
directly onto test nodes, or test node data to be captured and shifted out for verification. In addition, these devices
can be linked into a board-level serial scan path for more board-level testing. The test access port has its own supply voltage and can operate with LVCMOS3.3, 2.5 and 1.8V standards.
sysIO Quick Configuration
To facilitate the most efficient board test, the physical nature of the I/O cells must be set before running any continuity tests. As these tests are fast, by nature, the overhead and time that is required for configuration of the I/Os’
physical nature should be minimal so that board test time is minimized. The ispMACH 5000VG family of devices
allows this by offering the user the ability to quickly configure the physical nature of the sysIO cells. This quick configuration takes milliseconds to complete, whereas it takes seconds for the entire device to be programmed. Lattice's ispVM™ System programming software can either perform the quick configuration through the PC parallel
port, or can generate the ATE or test vectors necessary for a third-party test system.
IEEE 1532-Compliant In-System Programming
In-system programming of devices provides a number of significant benefits including rapid prototyping, lower
inventory levels, higher quality and the ability to make in-field modifications. All ispMACH 5000VG devices provide
In-System Programming (ISPTM) capability through their Boundary Scan Test Access Port. This capability has been
implemented in a manner that ensures that the port remains compliant to the IEEE 1532 standard. By using IEEE
1532 as the communication interface through which ISP is achieved, customers get the benefit of a standard, welldefined interface.
The ispMACH 5000VG devices can be programmed across the commercial temperature and voltage range. The
PC-based Lattice software facilitates in-system programming of ispMACH 5000VG devices. The software takes the
JEDEC file output produced by the design implementation software, along with information about the scan chain,
and creates a set of vectors used to drive the scan chain. The software can use these vectors to drive a scan chain
via the parallel port of a PC. Alternatively, the software can output files in formats understood by common automated test equipment. This equipment can then be used to program ispMACH 5000VG devices during the testing
of a circuit board.
Security Bit
A programmable security bit is provided on the ispMACH 5000VG devices as a deterrent to unauthorized copying
of the array configuration patterns. Once programmed, this bit prevents readback of the programmed pattern by a
device programmer, securing proprietary design from competitors. The security bit also prevents programming and
verification. The entire device must be erased in order to erase the security bit.
Hot Socketing
The ispMACH 5000VG devices are well suited for those applications that require hot socketing capability. Hot socketing a device requires that the device, when powered down, can tolerate active signals on the I/Os and inputs without being damaged. Additionally, it requires that the effects of the powered-down device be minimal on active
signals.
Density Migration
The ispMACH 5000 family has been designed to ensure that different density devices in the same package have
the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration
from lower density parts to higher density parts. In many cases, it is possible to shift a lower utilization design targeted for a high density device to a lower density device. However, the exact details of the final resource utilization
will impact the likely success in each case.
11
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Absolute Maximum Ratings1, 2, 3
Supply Voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.4V
PLL Supply Voltage (VCCP) . . . . . . . . . . . . . . . . . . . . -0.5 to 5.4V
Output Supply Voltage (VCCO) . . . . . . . . . . . . . . . . . . -0.5 to 5.4V
Input Voltage Applied4 . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 5.6V
Tri-state Output Voltage Applied. . . . . . . . . . . . . . . . . -0.5 to 5.6V
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . -65 to 150°C
Junction Temperature (Tj) with Power Applied . . . . . -55 to 130°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and Undershoot of -2V to (VIH (MAX)+2) volts is permitted for a duration of < 20ns.
Recommended Operating Conditions
Symbol
Parameter
Min
Max
Units
VCC
Supply Voltage
3.0
3.6
V
VCCP
Supply Voltage for PLL block
3.0
3.6
V
1.65
3.6
V
0
90
C
-40
105
C
Min
Max
Units
1000
—
Cycles
VCCJ
Supply Voltage for IEEE1149.1 Test Access Port
Tj (Commercial)
Junction Commercial Operation
Tj (Industrial)
Junction Industrial Operation
Note: VCCJ must be set in appropriate range to be compatible with desired LVCMOS standard.
Erase Reprogram Specifications
Parameter
Erase/Reprogram Cycle
Hot Socketing Characteristics1,2,3
Symbol
IDK
Parameter
Input or I/O Leakage Current
Min
Typ
Max
Units
0 ≤ VIN ≤ VIH (MAX)
Condition
—
—
+/-100
µA
VIH (MAX) ≤ VIN ≤ 5.5V
—
—
+/-100
µA
1. Insensitive to sequence of VCC and VCCO. However, assumes monotonic rise / fall rates for VCC and VCCO.
2. LVTTL, LVCMOS only
3. 0 < VCC ≤ VCC (MAX), 0 < VCCO ≤ VCCO (MAX)
12
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
1
IIL, IIH
IPU2
Parameter
Input or I/O Leakage Current
I/O Weak Pull-up Resistor Current
2
Condition
Min
0V ≤ VIN ≤ VIH (MAX)
0 ≤ VIN ≤ 0.7 VCCO
Typ
Max
Units
—
—
+/-10
µA
VCCO = 3.3
-30
—
-150
µA
VCCO = 2.5
-20
—
-150
µA
VCCO = 1.8
-10
—
-150
µA
IPD
I/O Weak Pull-down Resistor Current VIL (MAX) ≤ VIN ≤ VIH (MAX)
30
—
150
µA
IBHLS2
Bus Hold Low Sustaining Current
VIN = VIL (MAX)
30
—
—
µA
IBHHS2
Bus Hold High Sustaining Current
VIN = 0.7 VCCO
IBHLO2
Bus Hold Low Overdrive Current
0V ≤ VIN ≤ VIH (MAX)
IBHHO
Bus Hold High Overdrive Current
0V ≤ VIN ≤ VIH (MAX)
ICC3, 4, 5
Operating Power Supply Current
VCC = 3.3V
VBHT
Bus Hold Trip Points
C1
I/O Capacitance3
C2
Clock Capacitance3
C3
Global Input Capacitance3
2
VCCO = 3.3
-30
—
—
µA
VCCO = 2.5
-20
—
—
µA
VCCO = 1.8
-10
—
—
µA
—
—
150
µA
—
—
-150
µA
—
380
—
mA
VIL
(MAX)
—
VIH
(MIN)
V
—
10
—
pf
—
10
—
pf
—
10
—
pf
VCC = 3.3V, VIO = 0 to VIH (MAX)
VCCO = 3.3V, 2.5, 1.8, 1.5
VCC = 3.3V, VIO = 0 to VIH (MAX)
VCCO = 3.3V, 2.5, 1.8, 1.5
VCC = 3.3V, VIO = 0 to VIH (MAX)
VCCO = 3.3V, 2.5, 1.8, 1.5
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not
measured with the output driver active. Bus maintenance circuits are disabled.
2. Only available for LVCMOS and LVTTL standards.
3. TA = 25°C, f = 1.0MHz.
4. Device configured with 16-bit counters.
5. ICC varies with specific device configuration and operating frequency.
13
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
sysIO Recommended Operating Conditions2
VCCO (V)
Standard
1
VREF (V)
Min
Max
Min
Max
LVCMOS 3.3
3.0
3.6
—
—
LVCMOS 2.5
2.3
2.7
—
—
LVCMOS 1.8
1.65
1.95
—
—
LVTTL
3.0
3.6
—
—
PCI 3.3
3.0
3.6
—
—
PCI-X
3.0
3.6
—
—
AGP-1X
3.15
3.45
—
—
SSTL 2
2.3
2.7
1.15
1.35
SSTL 3
3.0
3.6
1.3
1.7
CTT 3.3
3.0
3.6
1.35
1.65
CTT 2.5
2.3
2.7
1.35
1.65
HSTL
1.4
1.6
0.68
0.9
GTL+
1.4
3.6
0.882
1.122
1. Software default setting.
2. Typical values for VCCO and VREF are the average of the Min and Max values.
14
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
sysIO DC Electrical Characteristics
Over Recommended Operating Conditions
VIL
Standard
LVCMOS 3.31
LVCMOS 3.3
LVTTL
LVCMOS 2.5
LVCMOS 1.8
VIH
Min (V)
Max (V)
Min (V)
Max (V)
VOL
Max (V)
-0.3
0.8
2.0
5.5
0.4
-0.3
-0.3
-0.3
-0.3
0.8
0.8
0.7
0.35VCCO
2.0
5.5
2.0
5.5
1.7
3.6
0.65VCCO
3.6
IOL2
(mA)
IOH2
(mA)
VOH
Min (V)
2.4
20
-20
0.4
2.4
16, 12
8, 5.33, 4
-16, -12,
-8, -5.33, -4
0.2
VCCO - 0.2
0.1
-0.1
0.4
2.4
20
-20
0.2
VCCO - 0.2
0.1
-0.1
0.4
VCCO - 0.4
16, 12, 8,
5.33, 4
-16, -12, -8,
-5.33, -4
0.2
VCCO - 0.2
0.1
-0.1
0.4
VCCO-0.4
12, 8,
5.33, 4
-12, -8,
-5.33, -4
0.2
VCCO - 0.2
0.1
-0.1
PCI 3.3
-0.3
0.3VCCO
0.5VCCO
3.6
0.1VCCO
0.9VCCO
1.5
-0.5
PCI-X
-0.3
0.35VCCO
0.5VCCO
3.6
0.1VCCO
0.9VCCO
1.5
-0.5
AGP-1X
-0.3
0.3VCCO
0.5VCCO
3.6
0.1VCCO
0.9VCCO
1.5
-0.5
SSTL3 class I
-0.3
VREF-0.2
VREF+0.2
3.6
0.7
VCCO-1.1
8
-8
SSTL3 class II
-0.3
VREF-0.2
VREF+0.2
3.6
0.5
VCCO-0.9
16
-16
SSTL2 class I
-0.3
VREF-0.18
VREF+0.18
3.6
0.54
VCCO-0.62
7.6
-7.6
SSTL2 class II
-0.3
VREF-0.18
VREF+0.18
3.6
0.35
VCCO-0.43
15.2
-15.2
CTT 3.3
-0.3
VREF-0.2
VREF+0.2
3.6
VREF-0.4
VREF+0.4
8
-8
CTT 2.5
-0.3
VREF-0.2
VREF+0.2
3.6
VREF-0.4
VREF+0.4
8
-8
HSTL class I
-0.3
VREF-0.1
VREF+0.1
3.6
0.4
VCCO-0.4
8
-8
HSTL class III
-0.3
VREF-0.1
VREF+0.1
3.6
0.4
VCCO-0.4
24
-8
GTL+
-0.3
VREF-0.2
VREF+0.2
3.6
0.6
n/a
36
n/a
1. Software default setting
2. The average DC current drawn by I/Os between adjacent bank GND connections, or between the last GND in an I/O bank and the end of
the I/O bank, as shown in the logic signals connection table, shall not exceed 96mA.
sysIO Differential Input DC Electrical Characteristics and Operating
Conditions
Symbol
Parameter
Test Conditions
Min
Max
VINP . VINM
LVDS Input voltage
—
0
2.4
VTHD
LVDS Differential input
threshold
—
±100mV
—
VIL
LVPECL Input Voltage
Low
VCC-1.81
VCC-1.48
VIH
LVPECL Input Voltage
High
VCC = 3.0 to 3.6V
VCC = 3.3V
VCC = 3.0 to 3.6V
VCC = 3.3V
15
1.49V
1.83V
VCC-1.17
VCC-0.88
2.14V
2.42V
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG External Switching Characteristics
Over Recommended Operating Conditions
-5
Parameter
1,2,3
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max
Units
tPD
Data propagation delay, 5-PT bypass
—
5.0
—
7.5
—
10.0
—
12.0
ns
tPD_PTSA
Data propagation delay, intrasegment path
—
6.0
—
9.0
—
11.5
—
13.5
ns
tPD_GLOBAL
Data propagation delay, intersegment path
—
6.5
—
9.75
—
13.0
—
16.0
ns
tS
GLB register setup time before clock,
5-PT bypass
3.0
—
5.0
—
7.5
—
9.3
—
ns
tS_PTSA
GLB register setup time before clock
3.0
—
6.0
—
8.5
—
10.0
—
ns
tSIR
GLB register setup time before clock, input
register path
2.8
—
3.0
—
4.0
—
5.0
—
ns
tH
GLB register hold time before clock, 5-PT
bypass
0.0
—
0.0
—
0.0
—
0.0
—
ns
tH_PTSA
GLB register hold time before clock
0.0
—
0.0
—
0.0
—
0.0
—
ns
tHIR
GLB register hold time before clock, input
reg. path
0.0
—
0.0
—
0.0
—
0.0
—
ns
tCO
GLB register clock-to-output delay
—
4.4
—
5.0
—
6.0
—
7.0
ns
tR
External reset pin to output delay
—
6.5
—
9.0
—
10.0
—
10.9
ns
tRW
External reset pulse duration
4.0
—
6.0
—
8.0
—
9.5
—
ns
tLPTOE/DIS
Input to output local product term output
enable/disable
—
7.0
—
9.75
—
11.5
—
13.4
ns
tSPTOE/DIS
Input to output segment product term
output enable/disable
—
8.0
—
11.25
—
17.5
—
20.4
ns
tGOE/DIS
Global OE input to output enable/disable
—
6.2
—
7.5
—
8.85
—
10.0
ns
tCW
Global clock width, high or low
1.6
—
2.75
—
3.6
—
4.3
—
ns
tGW
Global gate width low (for low transparent)
or high (for high transparent)
1.8
—
2.75
—
3.6
—
4.3
—
ns
tWIR
Input register clock width, high or low
1.8
—
2.75
—
3.6
—
4.3
—
ns
Clock-to-out skew, block level
—
0.25
—
0.35
—
0.45
—
0.55
ns
Clock-to-out skew, segment level
—
0.4
—
0.5
—
0.6
—
0.7
ns
tSKEW
4
fMAX
Clock frequency with internal feedback
178.6
—
117.0
—
87.0
—
73.0
—
MHz
fMAX (Ext.)
Clock frequency with external feedback,
1/ (tS_PTSA + tCO)
135.1
—
90.9
—
69.0
—
58.8
—
MHz
fMAX (Tog.)
Clock frequency max Toggle
312.5
—
181.0
—
138.0
—
116.0
—
MHz
1.
2.
3.
4.
Timing v.1.20
Timing numbers are based on default LVCMOS 3.3 I/O Buffers. Use timing adjusters provided to calculate timing for other standards.
Measured using standard switching circuit, assuming segment and global routing loading of 1, worst case PTSA loading and 1 output
switching.
Pulse widths and clock widths less than minimum will cause unknown behavior.
Standard 16-bit counter using SRP feedback.
16
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG External Switching Characteristics
Over Recommended Operating Conditions
-5
Parameter
1,2,3
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max
Units
tPD
Data propagation delay, 5-PT bypass
—
5.0
—
7.5
—
10.0
—
12.0
ns
tPD_PTSA
Data propagation delay, intrasegment path
—
6.0
—
9.0
—
11.5
—
13.5
ns
tPD_GLOBAL
Data propagation delay, intersegment path
—
6.5
—
9.75
—
13.0
—
16.0
ns
tS
GLB register setup time before clock,
5-PT bypass
3.0
—
5.0
—
7.5
—
9.3
—
ns
tS_PTSA
GLB register setup time before clock
3.0
—
6.0
—
8.5
—
10.0
—
ns
tSIR
GLB register setup time before clock, input
register path
2.8
—
3.0
—
4.0
—
5.0
—
ns
tH
GLB register hold time before clock, 5-PT
bypass
0.0
—
0.0
—
0.0
—
0.0
—
ns
tH_PTSA
GLB register hold time before clock
0.0
—
0.0
—
0.0
—
0.0
—
ns
tHIR
GLB register hold time before clock, input
reg. path
0.0
—
0.0
—
0.0
—
0.0
—
ns
tCO
GLB register clock-to-output delay
—
4.4
—
5.0
—
6.0
—
7.0
ns
tR
External reset pin to output delay
—
6.5
—
9.0
—
10.0
—
10.9
ns
tRW
External reset pulse duration
4.0
—
6.0
—
8.0
—
9.5
—
ns
tLPTOE/DIS
Input to output local product term output
enable/disable
—
7.0
—
9.75
—
11.5
—
13.4
ns
tSPTOE/DIS
Input to output segment product term
output enable/disable
—
8.0
—
11.25
—
17.5
—
20.4
ns
tGOE/DIS
Global OE input to output enable/disable
—
6.2
—
7.5
—
8.85
—
10.0
ns
tCW
Global clock width, high or low
1.6
—
2.75
—
3.6
—
4.3
—
ns
tGW
Global gate width low (for low transparent)
or high (for high transparent)
1.8
—
2.75
—
3.6
—
4.3
—
ns
tWIR
Input register clock width, high or low
1.8
—
2.75
—
3.6
—
4.3
—
ns
Clock-to-out skew, block level
—
0.25
—
0.35
—
0.45
—
0.55
ns
Clock-to-out skew, segment level
—
0.4
—
0.5
—
0.6
—
0.7
ns
tSKEW
4
fMAX
Clock frequency with internal feedback
178.6
—
117.0
—
87.0
—
73.0
—
MHz
fMAX (Ext.)
Clock frequency with external feedback,
1/ (tS_PTSA + tCO)
135.1
—
90.9
—
69.0
—
58.8
—
MHz
fMAX (Tog.)
Clock frequency max Toggle
312.5
—
181.0
—
138.0
—
116.0
—
MHz
1.
2.
3.
4.
Timing v.1.10
Timing numbers are based on default LVCMOS 3.3 I/O Buffers. Use timing adjusters provided to calculate timing for other standards.
Measured using standard switching circuit, assuming segment and global routing loading of 1, worst case PTSA loading and 1 output
switching.
Pulse widths and clock widths less than minimum will cause unknown behavior.
Standard 16-bit counter using SRP feedback.
17
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Timing Model
The task of determining the timing through the ispMACH 5000VG family, like any CPLD, is relatively simple. The
timing model provided in Figure 11 shows the specific delay paths. Once the implementation of a given function is
determined either conceptually or from the software report file, the delay path of the function can easily be determined from the timing model. The Lattice design tools report the timing delays based on the same timing model for
a particular design. Note that the internal timing parameters are given for reference only, and are not tested. The
external timing parameters are tested and guaranteed for every device. For more information on the timing model
and usage, please refer to Technical Note TN1001: ispMACH 5000VG Timing Model Design and Usage Guidelines.
Figure 11. ispMACH 5000VG Timing Model
tPDb
From Feedback
IN
tROUTE
tGRP
tBLK
tLP
tIN
tIOI
Feedback
tFBK
tPDi
tPTSA
tEXP
Data
Q
tINREG
SCLK
tGCLK_IN
tIOI
tGCLK
tPTCLK
tBCLK
C.E.
tPLL_DELAY
tPLL_SEC_DELAY
tPTSR
tBSR
S/R
MC Reg
RST
tRST
tIOI
tSPTOE
OE
tGOE
tIOI
tPTOE
Italicized items are optional delay adders
18
tBUF
tIOO
tEN
tDIS
OUT
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Internal Timing Parameters
Over Recommended Operating Conditions
-5
Parameter
Description
-75
-10
-12
Min Max Min Max Min Max Min Max Units
In/Out Delays
tIN
Input Buffer Delay
—
0.65
—
0.95
—
1.25
—
1.40
ns
tGCLK_IN
Global Clock Input Buffer Delay
—
0.65
—
0.95
—
1.25
—
1.40
ns
tGOE
Global OE Pin Delay
—
4.05
—
5.00
—
6.00
—
7.00
ns
tBUF
Delay through Output Buffer
—
1.15
—
1.50
—
1.75
—
1.90
ns
tEN
Output Enable Time
—
2.15
—
2.50
—
2.85
—
3.00
ns
tDIS
Output Disable Time
—
2.15
—
2.50
—
2.85
—
3.00
ns
tRSTb
Global RESETbar Pin Delay
—
4.60
—
6.50
—
7.00
—
7.50
ns
tROUTE
Delay through SRP
—
2.80
—
4.20
—
5.65
—
6.90
ns
tPTSA
Product Term Sharing Array Delay
—
0.40
—
1.85
—
2.35
—
2.50
ns
tPDB
5-PT Bypass Propagation Delay
—
0.40
—
0.85
—
1.35
—
1.80
ns
tPDi
Macrocell Propagation Delay
—
1.00
—
0.50
—
0.50
—
0.80
ns
tINREG
Input Buffer to Macrocell Register Delay
—
3.00
—
3.05
—
3.50
—
4.40
ns
tFBK
Internal Feedback Delay
—
0.00
—
0.00
—
0.00
—
0.00
ns
tGCLK
Global Clock Tree Delay
—
0.85
—
0.70
—
0.55
—
0.65
ns
tPLL_DELAY
Programmable PLL Delay Increment
Routing Delays
—
0.50
—
0.50
—
0.50
—
0.50
ns
Additional Delay When Using Secondary PLL
tPLL_SEC_DELAY
Output
—
0.60
—
0.60
—
0.60
—
0.60
ns
tGRP
—
1.50
—
2.25
—
3.00
—
4.00
ns
0.65
—
0.65
—
1.05
—
1.25
—
ns
Global Routing Pool Delay
Register/Latch Delays
tS
D-Register Setup Time
tS_PT
D-Register Setup Time with PT Clock
0.65
—
0.65
—
1.05
—
1.25
—
ns
tH
D-Register Hold Time
0.00
—
0.00
—
0.00
—
0.00
—
ns
tST
T-Register Setup Time
1.15
—
1.15
—
1.55
—
1.75
—
ns
tST_PT
T-Register Setup Time with PT Clock
1.15
—
1.15
—
1.55
—
1.75
—
ns
tHT
T-Register Hold Time
0.00
—
0.00
—
0.00
—
0.00
—
ns
tCOi
Register Clock to Output/Feedback MUX Time
—
1.75
—
1.85
—
2.45
—
3.05
ns
tCES
Clock Enable Setup Time
2.60
—
3.90
—
5.05
—
5.95
—
ns
tCEH
Clock Enable Hold Time
0.60
—
0.90
—
1.20
—
1.45
—
ns
tSL
Latch Setup Time
2.80
—
4.20
—
5.50
—
6.60
—
ns
tSL_PT
Latch Setup Time with PT Clock
2.80
—
4.20
—
5.50
—
6.60
—
ns
tHL
Latch Hold Time
0.00
—
0.00
—
0.00
—
0.00
—
ns
tGOi
Latch Gate to Output/Feedback MUX Time
—
1.75
—
2.50
—
3.50
—
4.50
ns
tPDLi
Propagation Delay through Transparent Latch to
Output/Feedback MUX
—
2.40
—
3.50
—
4.00
—
4.50
ns
tSRi
Asynchronous Reset or Set to Output/Feedback
MUX Delay
—
0.75
—
1.00
—
1.25
—
1.50
ns
tSRR
Asynchronous Reset or Set Recovery Delay
—
1.00
—
1.50
—
2.00
—
2.50
ns
Control Delays
tBCLK
GLB PT Clock Delay
—
3.10
—
4.65
—
6.00
—
7.00
ns
tPTCLK
Macrocell PT Clock Delay
—
3.00
—
4.50
—
6.00
—
7.00
ns
19
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Internal Timing Parameters (Continued)
Over Recommended Operating Conditions
-5
Parameter
Description
-75
-10
-12
Min Max Min Max Min Max Min Max Units
tBSR
Block PT Set/Reset Delay
—
2.00
—
3.00
—
4.00
—
4.80
ns
tPTSR
Macrocell PT Set/Reset Delay
—
2.00
—
3.00
—
4.00
—
4.80
ns
tSPTOE
Segment PT OE Delay
—
2.40
—
3.60
—
7.75
—
9.10
ns
tPTOE
Macrocell PT OE Delay
—
1.40
—
2.10
—
1.75
—
2.10
ns
Notes:
Timing v.1.20
1. Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.
2. tPLL_DELAY is the unit increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to 3.5ns in either
direction in units of 0.5ns for each step.
ispMACH 51024VG Internal Timing Parameters
Over Recommended Operating Conditions
-5
Parameter
Description
-75
-10
-12
Min Max Min Max Min Max Min Max Units
In/Out Delays
tIN
Input Buffer Delay
—
0.65
—
0.95
—
1.25
—
1.40
ns
tGCLK_IN
Global Clock Input Buffer Delay
—
0.65
—
0.95
—
1.25
—
1.40
ns
tGOE
Global OE Pin Delay
—
4.05
—
5.00
—
6.00
—
7.00
ns
tBUF
Delay through Output Buffer
—
1.15
—
1.50
—
1.75
—
1.90
ns
tEN
Output Enable Time
—
2.15
—
2.50
—
2.85
—
3.00
ns
tDIS
Output Disable Time
—
2.15
—
2.50
—
2.85
—
3.00
ns
tRSTb
Global RESETbar Pin Delay
—
4.60
—
6.50
—
7.00
—
7.50
ns
tROUTE
Delay through SRP
—
2.80
—
4.20
—
5.65
—
6.90
ns
tPTSA
Product Term Sharing Array Delay
—
0.40
—
1.85
—
2.35
—
2.50
ns
tPDB
5-PT Bypass Propagation Delay
—
0.40
—
0.85
—
1.35
—
1.80
ns
tPDi
Macrocell Propagation Delay
—
1.00
—
0.50
—
0.50
—
0.80
ns
tINREG
Input Buffer to Macrocell Register Delay
—
3.00
—
3.05
—
3.50
—
4.40
ns
tFBK
Internal Feedback Delay
—
0.00
—
0.00
—
0.00
—
0.00
ns
tGCLK
Global Clock Tree Delay
—
0.85
—
0.70
—
0.55
—
0.65
ns
tPLL_DELAY
Programmable PLL Delay Increment
Routing Delays
—
0.50
—
0.50
—
0.50
—
0.50
ns
Additional Delay When Using Secondary PLL
tPLL_SEC_DELAY
Output
—
0.60
—
0.60
—
0.60
—
0.60
ns
tGRP
—
1.50
—
2.25
—
3.00
—
4.00
ns
0.65
—
0.65
—
1.05
—
1.25
—
ns
Global Routing Pool Delay
Register/Latch Delays
tS
D-Register Setup Time
tS_PT
D-Register Setup Time with PT Clock
0.65
—
0.65
—
1.05
—
1.25
—
ns
tH
D-Register Hold Time
0.00
—
0.00
—
0.00
—
0.00
—
ns
tST
T-Register Setup Time
1.15
—
1.15
—
1.55
—
1.75
—
ns
tST_PT
T-Register Setup Time with PT Clock
1.15
—
1.15
—
1.55
—
1.75
—
ns
tHT
T-Register Hold Time
0.00
—
0.00
—
0.00
—
0.00
—
ns
tCOi
Register Clock to Output/Feedback MUX Time
—
1.75
—
1.85
—
2.45
—
3.05
ns
20
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Internal Timing Parameters (Continued)
Over Recommended Operating Conditions
-5
Parameter
Description
-75
-10
-12
Min Max Min Max Min Max Min Max Units
tCES
Clock Enable Setup Time
2.60
—
3.90
—
5.05
—
5.95
—
ns
tCEH
Clock Enable Hold Time
0.60
—
0.90
—
1.20
—
1.45
—
ns
tSL
Latch Setup Time
2.80
—
4.20
—
5.50
—
6.60
—
ns
tSL_PT
Latch Setup Time with PT Clock
2.80
—
4.20
—
5.50
—
6.60
—
ns
tHL
Latch Hold Time
0.00
—
0.00
—
0.00
—
0.00
—
ns
tGOi
Latch Gate to Output/Feedback MUX Time
—
1.75
—
2.50
—
3.50
—
4.50
ns
tPDLi
Propagation Delay through Transparent Latch to
Output/Feedback MUX
—
2.40
—
3.50
—
4.00
—
4.50
ns
tSRi
Asynchronous Reset or Set to Output/Feedback
MUX Delay
—
0.75
—
1.00
—
1.25
—
1.50
ns
tSRR
Asynchronous Reset or Set Recovery Delay
—
1.00
—
1.50
—
2.00
—
2.50
ns
Control Delays
tBCLK
GLB PT Clock Delay
—
3.10
—
4.65
—
6.00
—
7.00
ns
tPTCLK
Macrocell PT Clock Delay
—
3.00
—
4.50
—
6.00
—
7.00
ns
tBSR
Block PT Set/Reset Delay
—
2.00
—
3.00
—
4.00
—
4.80
ns
tPTSR
Macrocell PT Set/Reset Delay
—
2.00
—
3.00
—
4.00
—
4.80
ns
tSPTOE
Segment PT OE Delay
—
2.40
—
3.60
—
7.75
—
9.10
ns
tPTOE
Macrocell PT OE Delay
—
1.40
—
2.10
—
1.75
—
2.10
ns
Notes:
Timing v.1.10
1. Internal Timing Parameters are not tested and are for reference only. Refer to Timing Model in this data sheet for further details.
2. tPLL_DELAY is the unit increment by which the clock signal can be incremented. The PLL can adjust the clock signal by up to 3.5ns in either
direction in units of 0.5ns for each step.
21
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Timing Adders
Adder
Type
Base
Parameter
tBLA
tROUTE
tEXP
tPTSA
tLP
tROUTE
-5
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max Units
GLB Loading Adder
—
0.0
—
0.0
—
0.0
—
0.0
ns
PT Expander Adder
—
1.5
—
2.0
—
2.5
—
2.5
ns
Low Power Adder
—
1.5
—
1.5
—
1.5
—
1.5
ns
tIOI Input Adders
LVCMOS18_in
tIN, tGCLK_IN, Using LVCMOS1.8
tRSTb, tGOE
standard
—
0.90
—
0.90
—
0.90
—
0.90
ns
LVCMOS25_in
tIN, tGCLK_IN, Using LVCMOS2.5
tRSTb, tGOE
standard
—
0.15
—
0.15
—
0.15
—
0.15
ns
LVCMOS33_in
tIN, tGCLK_IN, Using LVCMOS3.3
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVTTL
tIN, tGCLK_IN,
Using LVTTL standard
tRSTb, tGOE
—
0.0
—
0.0
—
0.0
—
0.0
ns
PCI_in
tIN, tGCLK_IN,
Using PCI standard
tRSTb, tGOE
—
0.0
—
0.0
—
0.0
—
0.0
ns
PCI_X_in
tIN, tGCLK_IN, Using PCI_X
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
AGP_1X_in
tIN, tGCLK_IN, Using AGP-1X
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
SSTL3_I_in
tIN, tGCLK_IN, Using SSTL3_I
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
SSTL3_II_in
tIN, tGCLK_IN, Using SSTL3_II
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
SSTL2_I_in
tIN, tGCLK_IN, Using SSTL2_I
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
SSTL2_II_in
tIN, tGCLK_IN, Using SSTL2_II
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
CTT33_in
tIN, tGCLK_IN, Using CTT3.3
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
CTT25_in
tIN, tGCLK_IN, Using CTT2.5
tRSTb, tGOE
standard
—
0.15
—
0.15
—
0.15
—
0.15
ns
HSTL_I_in
tIN, tGCLK_IN, Using HSTL_I
tRSTb, tGOE
standard
—
1.25
—
1.25
—
1.25
—
1.25
ns
HSTL_III_in
tIN, tGCLK_IN, Using HSTL_III
tRSTb, tGOE
standard
—
1.25
—
1.25
—
1.25
—
1.25
ns
GTL+_in
tIN, tGCLK_IN, Using GTL+
tRSTb, tGOE
standard
—
1.50
—
1.50
—
1.50
—
1.50
ns
LVDS_in
tGCLK_IN
Using LVDS
standard
—
1.70
—
1.70
—
1.70
—
1.70
ns
LVPECL_in
tGCLK_IN
Using LVPECL
standard
—
2.10
—
2.10
—
2.10
—
2.10
ns
LVCMOS18_4mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 4mA Buffer
—
3.00
—
3.00
—
3.00
—
3.00
ns
LVCMOS18_5mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 5.33mA Buffer
—
2.50
—
2.50
—
2.50
—
2.50
ns
LVCMOS18_8mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 8mA Buffer
—
1.85
—
1.85
—
1.85
—
1.85
ns
tIOO Output Adders
Note: Open drain timing is the same as corresponding LVCMOS timing.
22
Timing v.1.20
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Timing Adders (Continued)
Adder
Type
Base
Parameter
-5
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max Units
LVCMOS18_12mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 12mA Buffer
—
1.35
—
1.35
—
1.35
—
1.35
ns
LVCMOS25_4mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 4mA Buffer
—
1.50
—
1.50
—
1.50
—
1.50
ns
LVCMOS25_5mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 5.33mA Buffer
—
1.25
—
1.25
—
1.25
—
1.25
ns
LVCMOS25_8mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 8mA Buffer
—
0.70
—
0.70
—
0.70
—
0.70
ns
LVCMOS25_12mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 12mA Buffer
—
0.50
—
0.50
—
0.50
—
0.50
ns
LVCMOS25_16mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 16mA Buffer
—
0.25
—
0.25
—
0.25
—
0.25
ns
LVCMOS33_4mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 4mA Buffer
—
1.50
—
1.50
—
1.50
—
1.50
ns
LVCMOS33_5mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 5.33mA Buffer
—
1.25
—
1.25
—
1.25
—
1.25
ns
LVCMOS33_8mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 8mA Buffer
—
0.40
—
0.40
—
0.40
—
0.40
ns
LVCMOS33_12mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 12mA Buffer
—
0.10
—
0.10
—
0.10
—
0.10
ns
LVCMOS33_16mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 16mA Buffer
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS33_20mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 20mA Buffer
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVTTL
tBUF, tEN, tDIS
Output configured as
LVTTL Buffer
—
0.0
—
0.0
—
0.0
—
0.0
ns
Slow Slew
tBUF, tEN
Output configured for
slow slew rate
—
1.50
—
1.50
—
1.50
—
1.50
ns
PCI_out
tBUF, tEN, tDIS Using PCI standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
PCI_X_out
Using PCI-X
tBUF, tEN, tDIS
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
AGP_1X_out
tBUF, tEN, tDIS
Using AGP-1X
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
SSTL3_I_out
tBUF, tEN, tDIS
Using SSTL3_I
standard
—
-0.25
—
-0.25
—
-0.25
—
-0.25
ns
SSTL3_II_out
tBUF, tEN, tDIS
Using SSTL3_II
standard
—
-0.35
—
-0.35
—
-0.35
—
-0.35
ns
SSTL2_I_out
tBUF, tEN, tDIS
Using SSTL2_I
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
SSTL2_II_out
tBUF, tEN, tDIS
Using SSTL2_II
standard
—
-0.25
—
-0.25
—
-0.25
—
-0.25
ns
CTT33_out
tBUF, tEN, tDIS
Using CCT3.3
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
CTT25_out
tBUF, tEN, tDIS
Using CCT2.5
standard
—
0.25
—
0.25
—
0.25
—
0.25
ns
HSTL_I_out
tBUF, tEN, tDIS
Using HSTL_I
standard
—
-0.30
—
-0.30
—
-0.30
—
-0.30
ns
Note: Open drain timing is the same as corresponding LVCMOS timing.
23
Timing v.1.20
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Timing Adders (Continued)
Adder
Type
Base
Parameter
-5
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max Units
HSTL_III_out
tBUF, tEN, tDIS
Using HSTL_III
standard
—
0.00
—
0.00
—
0.00
—
0.00
ns
GTL+_out
tBUF, tEN, tDIS
Using GTL+
standard
—
0.30
—
0.30
—
0.30
—
0.30
ns
Note: Open drain timing is the same as corresponding LVCMOS timing.
Timing v.1.20
ispMACH 51024VG Timing Adders
Adder
Type
Base
Parameter
-5
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max Units
tBLA
tROUTE
GLB Loading Adder
—
0.0
—
0.0
—
0.0
—
0.0
ns
tEXP
tPTSA
PT Expander Adder
—
1.5
—
2.0
—
2.5
—
2.5
ns
tLP
tROUTE
Low Power Adder
—
1.5
—
1.5
—
1.5
—
1.5
ns
tIOI Input Adders
LVCMOS18_in
tIN, tGCLK_IN, Using LVCMOS1.8
tRSTb, tGOE
standard
—
0.90
—
0.90
—
0.90
—
0.90
ns
LVCMOS25_in
tIN, tGCLK_IN, Using LVCMOS2.5
tRSTb, tGOE
standard
—
0.15
—
0.15
—
0.15
—
0.15
ns
LVCMOS33_in
tIN, tGCLK_IN, Using LVCMOS3.3
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVTTL
tIN, tGCLK_IN,
Using LVTTL standard
tRSTb, tGOE
—
0.0
—
0.0
—
0.0
—
0.0
ns
PCI_in
tIN, tGCLK_IN,
Using PCI standard
tRSTb, tGOE
—
0.0
—
0.0
—
0.0
—
0.0
ns
PCI_X_in
tIN, tGCLK_IN, Using PCI_X
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
AGP_1X_in
tIN, tGCLK_IN, Using AGP-1X
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
SSTL3_I_in
tIN, tGCLK_IN, Using SSTL3_I
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
SSTL3_II_in
tIN, tGCLK_IN, Using SSTL3_II
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
SSTL2_I_in
tIN, tGCLK_IN, Using SSTL2_I
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
SSTL2_II_in
tIN, tGCLK_IN, Using SSTL2_II
tRSTb, tGOE
standard
—
1.00
—
1.00
—
1.00
—
1.00
ns
CTT33_in
tIN, tGCLK_IN, Using CTT3.3
tRSTb, tGOE
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
CTT25_in
tIN, tGCLK_IN, Using CTT2.5
tRSTb, tGOE
standard
—
0.15
—
0.15
—
0.15
—
0.15
ns
HSTL_I_in
tIN, tGCLK_IN, Using HSTL_I
tRSTb, tGOE
standard
—
1.25
—
1.25
—
1.25
—
1.25
ns
HSTL_III_in
tIN, tGCLK_IN, Using HSTL_III
tRSTb, tGOE
standard
—
1.25
—
1.25
—
1.25
—
1.25
ns
GTL+_in
tIN, tGCLK_IN, Using GTL+
tRSTb, tGOE
standard
—
1.50
—
1.50
—
1.50
—
1.50
ns
Note: Open drain timing is the same as corresponding LVCMOS timing.
24
Timing v.1.10
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Timing Adders (Continued)
Adder
Type
Base
Parameter
-5
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max Units
LVDS_in
tGCLK_IN
Using LVDS
standard
—
1.70
—
1.70
—
1.70
—
1.70
ns
LVPECL_in
tGCLK_IN
Using LVPECL
standard
—
2.10
—
2.10
—
2.10
—
2.10
ns
LVCMOS18_4mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 4mA Buffer
—
3.00
—
3.00
—
3.00
—
3.00
ns
LVCMOS18_5mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 5.33mA Buffer
—
2.50
—
2.50
—
2.50
—
2.50
ns
LVCMOS18_8mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 8mA Buffer
—
1.85
—
1.85
—
1.85
—
1.85
ns
LVCMOS18_12mA_out
tBUF, tEN, tDIS
Output configured as
1.8V & 12mA Buffer
—
1.35
—
1.35
—
1.35
—
1.35
ns
LVCMOS25_4mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 4mA Buffer
—
1.50
—
1.50
—
1.50
—
1.50
ns
LVCMOS25_5mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 5.33mA Buffer
—
1.25
—
1.25
—
1.25
—
1.25
ns
LVCMOS25_8mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 8mA Buffer
—
0.70
—
0.70
—
0.70
—
0.70
ns
LVCMOS25_12mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 12mA Buffer
—
0.50
—
0.50
—
0.50
—
0.50
ns
LVCMOS25_16mA_out
tBUF, tEN, tDIS
Output configured as
2.5V & 16mA Buffer
—
0.25
—
0.25
—
0.25
—
0.25
ns
LVCMOS33_4mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 4mA Buffer
—
1.50
—
1.50
—
1.50
—
1.50
ns
LVCMOS33_5mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 5.33mA Buffer
—
1.25
—
1.25
—
1.25
—
1.25
ns
LVCMOS33_8mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 8mA Buffer
—
0.40
—
0.40
—
0.40
—
0.40
ns
LVCMOS33_12mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 12mA Buffer
—
0.10
—
0.10
—
0.10
—
0.10
ns
LVCMOS33_16mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 16mA Buffer
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVCMOS33_20mA_out
tBUF, tEN, tDIS
Output configured as
3.3V & 20mA Buffer
—
0.0
—
0.0
—
0.0
—
0.0
ns
LVTTL
tBUF, tEN, tDIS
Output configured as
LVTTL Buffer
—
0.0
—
0.0
—
0.0
—
0.0
ns
Slow Slew
tBUF, tEN
Output configured for
slow slew rate
—
1.50
—
1.50
—
1.50
—
1.50
ns
PCI_out
tBUF, tEN, tDIS Using PCI standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
PCI_X_out
tBUF, tEN, tDIS
Using PCI-X
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
AGP_1X_out
tBUF, tEN, tDIS
Using AGP-1X
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
SSTL3_I_out
tBUF, tEN, tDIS
Using SSTL3_I
standard
—
-0.25
—
-0.25
—
-0.25
—
-0.25
ns
SSTL3_II_out
tBUF, tEN, tDIS
Using SSTL3_II
standard
—
-0.35
—
-0.35
—
-0.35
—
-0.35
ns
tIOO Output Adders
Note: Open drain timing is the same as corresponding LVCMOS timing.
25
Timing v.1.10
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Timing Adders (Continued)
Adder
Type
Base
Parameter
-5
Description
-75
-10
-12
Min
Max
Min
Max
Min
Max
Min
Max Units
SSTL2_I_out
tBUF, tEN, tDIS
Using SSTL2_I
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
SSTL2_II_out
tBUF, tEN, tDIS
Using SSTL2_II
standard
—
-0.25
—
-0.25
—
-0.25
—
-0.25
ns
CTT33_out
tBUF, tEN, tDIS
Using CCT3.3
standard
—
0.0
—
0.0
—
0.0
—
0.0
ns
CTT25_out
tBUF, tEN, tDIS
Using CCT2.5
standard
—
0.25
—
0.25
—
0.25
—
0.25
ns
HSTL_I_out
tBUF, tEN, tDIS
Using HSTL_I
standard
—
-0.30
—
-0.30
—
-0.30
—
-0.30
ns
HSTL_III_out
tBUF, tEN, tDIS
Using HSTL_III
standard
—
0.00
—
0.00
—
0.00
—
0.00
ns
GTL+_out
tBUF, tEN, tDIS
Using GTL+
standard
—
0.30
—
0.30
—
0.30
—
0.30
ns
Note: Open drain timing is the same as corresponding LVCMOS timing.
26
Timing v.1.10
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
sysCLOCK PLL Timing
Over Recommended Operating Conditions1
Symbol
Parameter
Conditions
Min
Max
Units
tR,tF
Input clock, rise and fall time
20% to 80%
—
3.0
ns
tINSTB
Input clock stability, period jitter (peak)1
—
—
+/- 200
ps
tPWH
Input clock, high time
—
1.6
—
ns
tPWL
Input clock, low time
—
1.6
—
ns
fMDIVIN
M Divider input, frequency range
—
5
180
MHz
fMDIVOUT
M Divider output, frequency range
—
5
180
MHz
fVDIVIN
V Divider input, frequency range
—
60
200
MHz
fVDIVOUT
V Divider output, frequency range
—
5
180
MHz
tOUTDUTY
Output clock, duty cycle
tJIT(CC)
tJIT(φ)
Output clock, cycle to cycle jitter (peak)
Output clock, accumulated phase jitter (peak)
2
—
40
60
%
Clean Reference,
5MHz ≤ fMDIVOUT < 80MHz
—
+/- 200
ps
Clean Reference,
80MHz ≤ fMDIVOUT ≤ 180MHz
—
+/- 100
ps
Clean Reference,
5MHz ≤ fMDIVOUT < 80MHz
—
+/- 200
ps
Clean Reference,
80MHz ≤ fMDIVOUT ≤ 180MHz
—
+/- 100
ps
Internal feedback
—
1
ns
External feedback
—
500
ps
—
—
30
µs
tCLK_OUT_DLY Input clock to CLK_OUT delay
tφ
Input clock to external feedback delta
tLOCK
Time to acquire phase lock after input stable
tPLL_DELAY
Delay increment
—
+/- 0.35
+/- 0.65
ns
tRANGE
Total output delay range
—
+/- 2.45
+/- 4.55
ns
tPLL_RSTR
Reset recovery time of the M-divider
—
11.0
—
ns
tPLL_RSTW
Minimum reset pulse width
—
6.0
—
ns
1. This condition assures that the output phase jitter (tJIT(φ)) will remain within specification.
2. Accumulated jitter measured over 10,000 waveform samples.
Boundary Scan Timing Specifications
Min.
Max.
Units
tBTCP
Symbol
TCK [BSCAN test] clock cycle
Parameter
40
—
ns
tBTCH
TCK [BSCAN test] pulse width high
20
—
ns
tBTCL
TCK [BSCAN test] pulse width low
20
—
ns
tBTSU
TCK [BSCAN test] setup time
8
—
ns
tBTH
TCK [BSCAN test] hold time
10
—
ns
tBRF
TCK [BSCAN test] rise and fall time
50
—
mV/ns
tBTCO
TAP controller falling edge of clock to valid output
—
10
ns
tBTOZ
TAP controller falling edge of clock to data output disable
—
10
ns
tBTVO
TAP controller falling edge of clock to data output enable
—
10
ns
tBVTCPSU
BSCAN test Capture register setup time
8
—
ns
tBTCPH
BSCAN test Capture register hold time
10
—
ns
tBTUCO
BSCAN test Update reg, falling edge of clock to valid output
—
25
ns
tBTUOZ
BSCAN test Update reg, falling edge of clock to output disable
—
25
ns
tBTUOV
BSCAN test Update reg, falling edge of clock to output enable
—
25
ns
27
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Power Consumption
ispMACH 5000VG Typical Power vs. Frequency
ispMACH 5000VG ICC Curves
at High Power Mode
ispMACH 5000VG ICC Curves
at Low Power Mode
700
600
700
51024VG High Power Mode
600
500
400
ICC (mA)
ICC (mA)
500
5768VG High Power Mode
300
400
300
200
200
100
100
0
0
60
120
150
0
0
180
51024VG Low Power Mode
5768VG Low Power Mode
60
fMAX (MHz)
120
150
180
fMAX (MHz)
Note: The devices are configured with maximum number of 16-bit counters, no PLL, typical current at 3.3V, 25° C.
Power Estimation Coefficients
Device
K0
K1
K2
K3
K4
K5
K6
IDC (mA) IDCO (mA)
ispMACH 5768VG
0.0014
0.0014
0.054
1.5
0.152
0.105
5.0
65
20
ispMACH 51024VG
0.0014
0.0014
0.054
1.5
0.152
0.105
5.0
80
20
Note: For further information about the use of these coefficients, refer to Technical Note TN1002, Power Estimation in ispMACH 5000VG
Devices.
K0 = average current per product term in high power/MHz
K1 = average current per product term in low power/MHz
K2 = average current per GRP line/MHz
K3 = average current per PLL/MHz
K4 = DC current per product terms in high power
K5 = DC current per product terms in low power
K6 = Static DC current per PLL
IDC = Static device current with all product terms powered off
IDCO = Static I/O bank current
Icc estimates are based on typical conditions (Vcc = 3.3V, room temperature) and an assumption of one GLB load on average exists. These
values are for estimates only. Since the value of Icc is sensitive to operating conditions and the program in the device, the actual Icc should be
verified.
28
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Switching Test Conditions
Figure 12 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Table 3.
Figure 12. Output Test Load, LVTTL and LVCMOS Standards
VCCO
R1
Test
Point
DUT
R2
CL*
*CL includes Test Fixture and Probe Capacitance.
0213A/ispm5kvg
Table 3. Test Fixture Required Components
R1
R2
CL
Default LVCMOS 3.3 I/O (L -> H, H -> L)
Test Condition
110
110
35pF
Timing Ref.
LVCMOS 3.3 = 1.5V
LVCMOS 3.3 = 3.0V
Other LVCMOS Settings, (L -> H, H -> L)
∞
∞
35pF
LVCMOS 2.5 = VCCO/2
LVCMOS 2.5 = 2.3V
LVCMOS 1.8 = VCCO/2
LVCMOS 1.8 = 1.65V
Default LVCMOS 3.3 I/O (Z -> H)
∞
110
35pF
1.5V
3.0V
Default LVCMOS 3.3 I/O (Z -> L)
110
∞
35pF
1.5V
3.0V
Default LVCMOS 3.3 I/O (H -> Z)
∞
110
5pF
VOH - 0.3
3.0V
Default LVCMOS 3.3 I/O (L -> Z)
110
∞
5pF
VOL + 0.3
3.0V
1.5
VCCO
3.0V
Output test conditions for all other interfaces are determined by the respective standards. For further details,
please refer to the following technical note:
• ispMACH 5000VG sysIO Design and Usage Guidelines (TN1000)
29
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Signal Descriptions
Signal Names
Description
TMS
Input - This pin is the Test Mode Select input, which is used to control the 1149.1 state machine.
TCK
Input - This pin is the Test Clock input pin, used to clock the 1149.1 state machine.
TDI
Input - This pin is the 1149.1 Test Data In pin, used to load data.
TDO
Output - This pin is the 1149.1 Test Data Out pin used to shift data out.
TOE
Input - Test Output Enable pin. TOE tristates all I/O pins when a logic low is driven.
GOE0, GOE1
Input - These two pins are the Global Output Enable input pins.
RESETB
Dedicated Reset Input - This pin resets all registers in the devices. The global polarity (active high or
low input) for this pin is selectable.
xyzz (e.g. 0A16)
Input/Output - These are the general purpose I/O used by the logic array. x is segment reference
(numeric), y is GLB reference (alpha) and z is macrocell reference (numeric).
x: 0-7 (1024)
x: 0-5 (768)
y: A-D
z: 0-31
GND
Ground
NC
No connect
VCC
Vcc - These are the power supply pins for the logic core.
GCLK0, GCLK3
Input - These pins are configured to be either dedicated CLK input or PLL input.
GCLK1, GCLK2
Input - These pins are dedicated CLK input.
CLK_OUT0,
CLK_OUT1
Output - These pins are the PLL output pins.
PLL_RST0,
PLL_RST1
Input - These pins are for resetting the PLL, input clock (M) divider.
VREF0, VREF1,
VREF2, VREF3
Input - These are the reference supplies for the I/O banks.
PLL_FBK0,
PLL_FBK1
Input - These PLL feedback inputs allow optional external PLL feedback.
VCCP0, VCCP1
VCC - These are the VCC supplies for the PLLs.
VCCO0, VCCO1, VCCO2, VCC - These are the VCC supplies for each I/O bank.
VCCO3
GNDP0, GNDP1
GND - These are the separate ground connections for the PLLs.
VCCJ
VCC - This pin is for the 1149.1 test access port.
Note: For above, signal CLK_OUT0 connects to PLL0, and signal CLK_OUT1 connects to PLL1.
30
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Power Supply and NC Connections1
256-Ball fpBGA2
Signal
484-Ball fpBGA2
F8, F9, H6, H11, J6, J11, L8, L9
B17, B2, B21, B6, C14, C9, E18, E5, F2, F21, J20,
J3, P20, P3, U2, U21, Y14, Y9, AA17, AA2, AA21,
AA6
VCCO0
C3, C7, G3
B5, D7, E2, E6, E9, F5, G4, J5
VCCO1
K3, P3, P7
P5, U5, V6, V9, Y3
VCCO2
K14, P10, P14
P18, U18, V14, V17, Y20
VCCO3
C10, C14, G14
B18, D16, E14, E17, E21, F18, G19, J18
VCCP0
H1
L7
VCCP1
H16
N18
VCCJ
J1
P4
VREF0
E7
A9
VREF1
M7
AA10
VREF2
R13
AA13
VREF3
A8
A15
GND PLL 0
H7
L6
GND PLL 1
J10
L16
GND
A1, C5, C12, E3, E14, G7, G8, G9, G10, H8, H9,
A1, A22, C3, C20, D4, D19, E7, E16, G5, G7, G8,
H10, J7, J8, J9, K7, K8, K9, K10, M3, M14, P5, P12 G9, G10, G11, G12, G13, G14, G15, G16, G18, H7,
H8, H9, H10, H11, H12, H13, H14, H15, H16, J7, J8,
J9, J10, J11, J12, J13, J14, J15, J16, K7, K8, K9,
K10, K11, K12, K13, K14, K15, K16, L8, L9, L10,
L11, L12, L13, L14, L15, M7, M8, M9, M10, M11,
M12, M13, M14, M15, M16, N7, N8, N9, N10, N11,
N12, N13, N14, N15, N16, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, R7, R8, R9, R10, R11,
R12, R13, R14, R15, R16, T4, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T19, W7, W16, AB1, AB22
NC3
—
VCC
AA1
1. All grounds must be electrically connected at the board level.
2. Not all grounds internally connected within the device.
3. NC pins are not to be connected to any active signals, VCC or GND.
31
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024 Power Supply and NC Connections1
484-Ball fpBGA2
Signal
676-Ball fpBGA2
VCC
B17, B2, B21, B6, C14, C9, E18, E5, F2, F21, J20,
J3, P20, P3, U2, U21, Y14, Y9, AA17, AA2, AA21,
AA6
B29, D6, D10, D12, D19, D21, D25, F4, F27, K4, K27,
M4, M27, W4, W27, AA4, AA27, AE4, AE27, AG6, AG10,
AG12, AG19, AG21,AG25, AJ2
VCCO0
B5, D7, E2, E6, E9, F5, G4, J5
E5, E7, E9, E11, F10, G5, J5, K6, L5
VCCO1
P5, U5, V6, V9, Y3
Y5, AA6, AB5, AD5, AE10, AF5, AF7, AF9, AF11
P18, U18, V14, V17, Y20
Y26, AA25, AB26, AD26, AE21, AF20, AF22, AF24,
AF26
VCCO3
B18, D16, E14, E17, E21, F18, G19, J18
E20, E22, E24, E26, F21, G26, J26, K25, L26
VCCP0
L7
P5
VCCP1
N18
N26
VCCJ
P4
U6
VREF0
A9
C11
VREF1
AA10
AK10
VREF2
AA13
AJ21
VCCO2
VREF3
A15
E19
GND PLL 0
L6
R6
GND PLL 1
L16
P25
A1, A22, C3, C20, D4, D19, E7, E16, G5, G7, G8,
G9, G10, G11, G12, G13, G14, G15, G16, G18, H7,
H8, H9, H10, H11, H12, H13, H14, H15, H16, J7, J8,
J9, J10, J11, J12, J13, J14, J15, J16, K7, K8, K9,
K10, K11, K12, K13, K14, K15, K16, L8, L9, L10,
L11, L12, L13, L14, L15, M7, M8, M9, M10, M11,
M12, M13, M14, M15, M16, N7, N8, N9, N10, N11,
N12, N13, N14, N15, N16, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, R7, R8, R9, R10, R11,
R12, R13, R14, R15, R16, T4, T7, T8, T9, T10, T11,
T12, T13, T14, T15, T16, T19, W7, W16, AB1, AB22
A1, A30, B2,C3, C28, D8, D23, F7, F9, F11, F12, F19,
F20, F22, F24, G6, G25, H4, H27, J6, J25, L6, L11, L12,
L13, L14, L15, L16, L17, L18, L19, L20, L25, M6, M11,
M12, M13, M14, M15, M16, M17, M18, M19, M20, M25,
N11, N12, N13, N14, N15, N16, N17, N18, N19, N20,
P11, P12, P13, P14, P15, P16, P17, P18, P19, P20, R11,
R12, R13, R14, R15, R16, R17, R18, R19, R20, T11,
T12, T13, T14, T15, T16, T17, T18, T19, T20, U11, U12,
U13, U14,U15, U16, U17, U18, U19, U20, V11, V12, V13,
V14, V15, V16, V17, V18, V19, V20, W6, W11, W12, W13,
W14, W15, W16, W17, W18, W19, W20, W25, Y6, Y11,
Y12, Y13, Y14, Y15, Y16, Y17, Y18, Y19, Y20, Y25, AB6,
AB25, AC4, AC27, AD6, AD25, AE7, AE9, AE11, AE12,
AE19, AE20, AE22, AE24, AG8, AG23, AH3, AH28, AK1,
AK30
AA1
A14, A15, A16, A17, B14, B15, B16, B17, C13, C14,
C15, C16, C17, C18, D13, D14, D15, D16, D17, D18,
E13, E14, E15, E16, E17, E18, F13, F14, F15, F16, F17,
F18, AE13, AE14, AE15, AE16, AE17, AE18, AF13,
AF14, AF15, AF16, AF17, AF18, AG13, AG14, AG15,
AG16, AG17, AG18, AH14, AH15, AH16, AH17, AH18,
AJ14, AJ15, AJ16, AJ17, AJ18, AK14, AK15, AK16,
AK17
GND
NC3
1. All grounds must be electrically connected at the board level.
2. Not all grounds internally connected within the device.
3. NC pins are not to be connected to any active signals, VCC or GND.
32
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Logic Signal Connections
Bank
No.
Signal
256
fpBGA
484
fpBGA
Bank
No.
Signal
256
fpBGA
484
fpBGA
0
0C-30
C8
D11
0
0A-14
NC
NC
0
0C-28
B6
B11
0
0A-16
NC
B4
0
0C-26
A5
E12
0
0A-18
NC
D5
0
0C-24
D8
C11
0
0A-20
NC
B1
0
0C-22
E8
F12
0
0A-22
NC
D6
0
0C-20
B5
B10
0
0A-24
NC
C4
0
GNDIO0
GND
GND
0
0A-26
NC
E4
0
0C-18
A4
A10
0
GNDIO0
GND
GND
0
0C-16
D7
D10
0
0A-28
B2
C2
0
0C-14/VREF0
E7
A9
0
0A-30
B1
C1
0
0C-12
C6
E11
0
0B-30
C2
D1
0
0C-10
B4
B9
0
0B-28
C1
D2
0
0C-8
A3
F11
0
0B-26
NC
D3
0
0C-6
NC
A8
0
0B-24
NC
E1
0
0C-4
NC
C10
0
0B-22
NC
E3
0
0C-2
NC
A7
0
0B-20
NC
F4
0
0C-0
NC
E10
0
0B-18
NC
F1
0
0D-30
NC
B8
0
0B-16
NC
F3
0
0D-28
NC
C8
0
0B-14
NC
G6
0
GNDIO0
GND
GND
0
0B-12
NC
G1
0
0D-26
NC
F10
0
GNDIO0
GND
GND
0
0D-24
NC
A6
0
0B-10
NC
G2
0
0D-22
NC
F9
0
0B-8
NC
H1
0
0D-20
NC
C7
0
0B-6
NC
G3
0
0D-18
NC
D9
0
0B-4
NC
H2
0
0D-16
NC
B7
0
0B-2
NC
H5
0
0D-14
D6
E8
0
0B-0
NC
H6
0
0D-12
E6
A5
0
1A-0
F7
J1
0
0D-10
A2
F8
0
1A-2
F6
K1
0
0D-8
B3
C6
0
1A-4
E5
H3
0
0D-6
C4
D8
0
1A-6
D4
J2
0
0D-4
D5
A3
0
1A-8
D3
H4
0
GNDIO0
GND
GND
0
1A-10
D2
K2
0
0D-2
NC
A2
0
GNDIO0
GND
GND
0
0D-0
NC
A4
0
1A-12
D1
J6
0
0A-0
NC
F7
0
1A-14
E4
L1
0
0A-2
NC
C5
0
1A-16
NC
K3
0
0A-4
NC
F6
0
1A-18
NC
J4
0
0A-6
NC
B3
0
1A-20
NC
L2
0
0A-8
NC
NC
0
1A-22
NC
M1
0
0A-10
NC
NC
0
1A-24
NC
K6
0
GNDIO0
GND
GND
0
1A-26
NC
K4
0
0A-12
NC
NC
0
1A-28
NC
L3
33
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Logic Signal Connections (Continued)
Bank
No.
Signal
256
fpBGA
484
fpBGA
Bank
No.
Signal
256
fpBGA
484
fpBGA
0
1A-30
NC
K5
1
2A-18
NC
U6
0
GNDIO0
GND
GND
1
2A-16
R1
AA4
0
1B-30/CLK_OUT0
G6
N1
1
2A-14
NC
NC
0
1B-28
NC
M2
1
2A-12
NC
NC
0
1B-26
NC
P1
1
GNDIO1
GND
GND
0
1B-24
NC
L4
1
2A-10
NC
NC
0
1B-22
F5
N2
1
2A-8
NC
NC
0
1B-20
E2
M3
1
2A-6
T1
W6
0
1B-18
E1
L5
1
2A-4
T2
V4
0
1B-16
F4
R1
1
2A-2
R2
U7
0
1B-14
F3
P2
1
2A-0
T3
AB2
0
1B-12
F2
N3
1
2D-0
R3
V7
0
GNDIO0
GND
GND
1
2D-2
P4
AA5
0
1B-10
G5
M6
1
GNDIO1
GND
GND
0
1B-8
G4
M5
1
2D-4
T4
AB3
0
1B-6/PLL_RST0
F1
M4
1
2D-6
N4
Y6
0
1B-4/PLL_FBK0
G2
N4
1
2D-8
M4
AB4
0
1B-2
G1
N6
1
2D-10
N5
Y7
0
1B-0
H5
N5
1
2D-12
R5
AB5
1
2B-0
K1
R5
1
2D-14
T5
V8
1
2B-2
K2
T2
1
2D-16
NC
AA7
1
2B-4
L1
T5
1
2D-18
NC
Y8
1
2B-6
J5
T3
1
2D-20
NC
AB6
1
2B-8
L2
U1
1
2D-22
T6
W8
1
2B-10
K4
U4
1
2D-24
R6
AA8
1
GNDIO1
GND
GND
1
2D-26
P6
Y10
1
2B-12
M1
V1
1
GNDIO1
GND
GND
1
2B-14
L3
U3
1
2D-28
M5
U8
1
2B-16
L4
V5
1
2D-30
T7
AB7
1
2B-18
K5
V2
1
2C-0
T8
U9
1
2B-20
M2
W1
1
2C-2
R8
AA9
1
2B-22
N1
V3
1
2C-4
M6
W9
1
2B-24
NC
W2
1
2C-6
N6
AB8
1
2B-26
K6
Y1
1
2C-8
R7
U10
1
2B-28
L5
Y2
1
2C-10
T9
AB9
1
2B-30
N2
W3
1
2C-12
T10
V11
1
2A-30
L6
AA3
1
2C-14/VREF1
M7
AA10
1
2A-28
L7
W4
1
2C-16
N7
V10
1
GNDIO1
GND
GND
1
2C-18
P8
AB10
1
2A-26
P1
W5
1
GNDIO1
GND
GND
1
2A-24
P2
Y4
1
2C-20
R9
W10
1
2A-22
N3
T6
1
2C-22
N8
W11
1
2A-20
R4
Y5
1
2C-24
M8
U11
34
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Logic Signal Connections (Continued)
Bank
No.
Signal
256
fpBGA
484
fpBGA
Bank
No.
Signal
256
fpBGA
484
fpBGA
1
2C-26
T11
AA11
2
3A-10
NC
NC
1
2C-28
T12
V12
2
GNDIO2
GND
GND
1
2C-30
R10
AB11
2
3A-12
NC
NC
2
3C-30
P9
W12
2
3A-14
NC
NC
2
3C-28
R11
Y11
2
3A-16
NC
Y18
2
3C-26
T13
Y12
2
3A-18
P15
W18
2
3C-24
N9
AB12
2
3A-20
R16
AA20
2
3C-22
M9
U12
2
3A-22
P16
W19
2
3C-20
R12
AA12
2
3A-24
N14
Y19
2
GNDIO2
GND
GND
2
3A-26
N13
V19
2
3C-18
P11
Y13
2
GNDIO2
GND
GND
2
3C-16
N10
AB13
2
3A-28
N15
Y21
2
3C-14
M10
W13
2
3A-30
N16
W20
2
3C-12/VREF2
R13
AA13
2
3B-30
M16
AA22
2
3C-10
T14
U13
2
3B-28
M12
W21
2
3C-8
R14
AB14
2
3B-26
NC
Y22
2
3C-6
M11
V13
2
3B-24
NC
V20
2
3C-4
N11
AA14
2
3B-22
M13
V21
2
3C-2
P13
U14
2
3B-20
M15
W22
2
3C-0
T15
AB15
2
3B-18
L16
V18
2
3D-30
T16
Y15
2
3B-16
L15
U20
2
3D-28
N12
AB16
2
3B-14
L13
V22
2
GNDIO2
GND
GND
2
3B-12
L14
U19
2
3D-26
NC
AA15
2
GNDIO2
GND
GND
2
3D-24
NC
W14
2
3B-10
L12
U17
2
3D-22
NC
AB17
2
3B-8
K13
U22
2
3D-20
NC
Y16
2
3B-6
K15
T20
2
3D-18
NC
AA16
2
3B-4
K16
T21
2
3D-16
NC
Y17
2
3B-2
J16
T17
2
3D-14
NC
AB18
2
3B-0
K12
R20
2
3D-12
NC
V15
3
4B-0
J12
R21
2
3D-10
NC
AB19
3
4B-2
G16
T22
2
3D-8
NC
W15
3
4B-4/PLL_FBK1
G15
P21
2
3D-6
NC
AB20
3
4B-6/PLL_RST1
H12
N20
2
3D-4
NC
AA18
3
4B-8
G12
R22
2
GNDIO2
GND
GND
3
4B-10
G13
N21
2
3D-2
L10
U15
3
GNDIO3
GND
GND
2
3D-0
L11
W17
3
4B-12
F16
M18
2
3A-0
K11
U16
3
4B-14
F15
N19
2
3A-2
R15
AA19
3
4B-16
F13
P22
2
3A-4
NC
V16
3
4B-18
F14
M20
2
3A-6
NC
AB21
3
4B-20
F12
N22
2
3A-8
NC
NC
3
4B-22
E16
N17
35
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Logic Signal Connections (Continued)
Bank
No.
Signal
256
fpBGA
484
fpBGA
Bank
No.
Signal
256
fpBGA
484
fpBGA
3
4B-24
G11
M19
3
5A-24
C15
C22
3
4B-26
F11
M21
3
5A-22
D14
C18
3
4B-28
F10
L19
3
5A-20
A14
C19
3
4B-30/CLK_OUT1
B11
L20
3
5A-18
C13
D17
3
GNDIO3
GND
GND
3
5A-16
B13
C21
3
4A-30
NC
M17
3
5A-14
NC
NC
3
4A-28
NC
M22
3
5A-12
NC
NC
3
4A-26
NC
K20
3
GNDIO3
GND
GND
3
4A-24
NC
L18
3
5A-10
NC
NC
3
4A-22
NC
L21
3
5A-8
NC
NC
3
4A-20
NC
K19
3
5A-6
NC
B22
3
4A-18
NC
L22
3
5A-4
NC
D18
3
4A-16
NC
K17
3
5A-2
NC
B20
3
4A-14
E13
K22
3
5A-0
NC
F17
3
4A-12
B12
L17
3
5D-0
NC
B19
3
GNDIO3
GND
GND
3
5D-2
NC
C17
3
4A-10
E15
K21
3
GNDIO3
GND
GND
3
4A-8
D15
K18
3
5D-4
NC
A21
3
4A-6
NC
J17
3
5D-6
NC
D15
3
4A-4
NC
J19
3
5D-8
NC
A20
3
4A-2
D16
J22
3
5D-10
NC
C16
3
4A-0
E12
J21
3
5D-12
NC
A19
3
5B-0
NC
H19
3
5D-14
NC
F16
3
5B-2
NC
H20
3
5D-16
NC
B16
3
5B-4
NC
H17
3
5D-18
NC
D14
3
5B-6
NC
H18
3
5D-20
NC
A18
3
5B-8
NC
H22
3
5D-22
A13
F15
3
5B-10
NC
H21
3
5D-24
A12
A17
3
GNDIO3
GND
GND
3
5D-26
A11
B15
3
5B-12
NC
G20
3
GNDIO3
GND
GND
3
5B-14
NC
G22
3
5D-28
A10
A16
3
5B-16
NC
G17
3
5D-30
C11
F14
3
5B-18
NC
G21
3
5C-0
A9
C15
3
5B-20
NC
F19
3
5C-2
D12
D13
3
5B-22
NC
F20
3
5C-4
D11
E15
3
5B-24
A16
F22
3
5C-6
B10
F13
3
5B-26
B15
E22
3
5C-8
B9
B14
3
5B-28
A15
E19
3
5C-10
E11
E13
3
5B-30
D13
E20
3
5C-12/VREF3
A8
A15
3
5A-30
B14
D22
3
5C-14
D10
D12
3
5A-28
B16
D21
3
5C-16
E10
A14
3
GNDIO3
GND
GND
3
5C-18
A7
B13
3
5A-26
C16
D20
3
GNDIO3
GND
GND
36
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 5768VG Logic Signal Connections (Continued)
Bank
No.
Signal
256
fpBGA
484
fpBGA
3
5C-20
C9
A13
3
5C-22
E9
B12
3
5C-24
D9
C13
3
5C-26
B8
A12
3
5C-28
A6
C12
3
5C-30
B7
A11
—
GCLK0
H4
P6
—
GCLK1
J4
R6
—
GCLK2
H14
P17
—
GCLK3
H13
P19
—
GOE0
J15
R18
—
GOE1
H15
R17
—
RESETB
J14
R19
—
TCK
J3
R3
—
TDI
H3
R2
—
TDO
J2
R4
—
TMS
H2
T1
—
TOE
J13
T18
37
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Logic Signal Connections
Bank
No.
Signal
484
fpBGA
676
fpBGA
Bank
No.
Signal
484
fpBGA
676
fpBGA
0
0C-30
D11
A13
0
0A-14
NC
D5
0
0C-28
B11
B13
0
0A-16
B4
E6
0
0C-26
E12
A12
0
0A-18
D5
D4
0
0C-24
C11
B12
0
0A-20
B1
B1
0
0C-22
F12
C12
0
0A-22
D6
C2
0
0C-20
B10
A11
0
0A-24
C4
F6
0
GNDIO0
GND
GND
0
0A-26
E4
D3
0
0C-18
A10
B11
0
GNDIO0
GND
GND
0
0C-16
D10
A10
0
0A-28
C2
E4
0
0C-14/VREF0
A9
C11
0
0A-30
C1
F5
0
0C-12
E11
E12
0
0B-30
D1
C1
0
0C-10
B9
B10
0
0B-28
D2
D2
0
0C-8
F11
D11
0
0B-26
D3
E3
0
0C-6
A8
A9
0
0B-24
E1
D1
0
0C-4
C10
C10
0
0B-22
E3
E2
0
0C-2
A7
B9
0
0B-20
F4
H6
0
0C-0
E10
A8
0
0B-18
F1
F3
0
0D-30
B8
C9
0
0B-16
F3
E1
0
0D-28
C8
B8
0
0B-14
G6
G4
0
GNDIO0
GND
GND
0
0B-12
G1
F2
0
0D-26
F10
E10
0
GNDIO0
GND
GND
0
0D-24
A6
A7
0
0B-10
G2
H5
0
0D-22
F9
D9
0
0B-8
H1
G3
0
0D-20
C7
C8
0
0B-6
G3
F1
0
0D-18
D9
B7
0
0B-4
H2
G2
0
0D-16
B7
A6
0
0B-2
H5
H3
0
0D-14
E8
C7
0
0B-0
H6
G1
0
0D-12
A5
B6
0
1A-0
J1
H2
0
0D-10
F8
A5
0
1A-2
K1
J4
0
0D-8
C6
C6
0
1A-4
H3
H1
0
0D-6
D8
D7
0
1A-6
J2
J3
0
0D-4
A3
E8
0
1A-8
H4
K5
0
GNDIO0
GND
GND
0
1A-10
K2
J2
0
0D-2
A2
B5
0
GNDIO0
GND
GND
0
0D-0
A4
A4
0
1A-12
J6
J1
0
0A-0
F7
A3
0
1A-14
L1
K3
0
0A-2
C5
B4
0
1A-16
K3
K2
0
0A-4
F6
C5
0
1A-18
J4
K1
0
0A-6
B3
F8
0
1A-20
L2
L4
0
0A-8
NC
A2
0
1A-22
M1
L3
0
0A-10
NC
B3
0
1A-24
K6
L2
0
GNDIO0
GND
GND
0
1A-26
K4
M5
0
0A-12
NC
C4
0
1A-28
L3
L1
38
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Logic Signal Connections (Continued)
Bank
No.
Signal
484
fpBGA
676
fpBGA
Bank
No.
Signal
484
fpBGA
676
fpBGA
0
1A-30
K5
M3
1
2A-18
NC
AA2
0
GNDIO0
GND
GND
1
2A-16
NC
AA3
0
1B-30/CLK_OUT0
N1
M2
1
2A-14
NC
AB1
0
1B-28
M2
M1
1
2A-12
NC
AB2
0
1B-26
P1
N6
1
GNDIO1
GND
GND
0
1B-24
L4
N5
1
2A-10
NC
AA5
0
1B-22
N2
N4
1
2A-8
NC
AB3
0
1B-20
M3
N3
1
2A-6
NC
AC1
0
1B-18
L5
N2
1
2A-4
NC
AB4
0
1B-16
R1
N1
1
2A-2
NC
AC2
0
1B-14
P2
P6
1
2A-0
NC
AD1
0
1B-12
N3
P4
1
3B-0
R5
AC3
0
GNDIO0
GND
GND
1
3B-2
T2
AD2
0
1B-10
M6
P3
1
3B-4
T5
AE1
0
1B-8
M5
P2
1
3B-6
T3
AD3
0
1B-6/PLL_RST0
M4
P1
1
3B-8
U1
AE2
0
1B-4/PLL_FBK0
N4
R4
1
3B-10
U4
AC5
0
1B-2
N6
R3
1
GNDIO1
GND
GND
0
1B-0
N5
R2
1
3B-12
V1
AF1
1
2B-0
NC
R1
1
3B-14
U3
AD4
1
2B-2
NC
T1
1
3B-16
V5
AE3
1
2B-4
NC
T3
1
3B-18
V2
AC6
1
2B-6
NC
T2
1
3B-20
W1
AF2
1
2B-8
NC
U1
1
3B-22
V3
AG1
1
2B-10
NC
U2
1
3B-24
W2
AF3
1
GNDIO1
GND
GND
1
3B-26
Y1
AG2
1
2B-12
NC
U3
1
3B-28
Y2
AH1
1
2B-14
NC
U4
1
3B-30
W3
AE5
1
2B-16
NC
V1
1
3A-30
AA3
AF4
1
2B-18
NC
V2
1
3A-28
W4
AG3
1
2B-20
NC
V3
1
GNDIO1
GND
GND
1
2B-22
NC
V4
1
3A-26
W5
AE6
1
2B-24
NC
W1
1
3A-24
Y4
AH2
1
2B-26
NC
V6
1
3A-22
T6
AJ1
1
2B-28
NC
W2
1
3A-20
Y5
AG4
1
2B-30
NC
W3
1
3A-18
U6
AF6
1
GNDIO1
GND
GND
1
3A-16
AA4
AG5
1
2A-30
NC
Y1
1
3A-14
NC
AH4
1
2A-28
NC
W5
1
3A-12
NC
AJ3
1
2A-26
NC
Y2
1
GNDIO1
GND
GND
1
2A-24
NC
Y3
1
3A-10
NC
AK2
1
2A-22
NC
AA1
1
3A-8
NC
AE8
1
2A-20
NC
Y4
1
3A-6
W6
AH5
39
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Logic Signal Connections (Continued)
Bank
No.
Signal
1
3A-4
1
3A-2
1
3A-0
1
3D-0
484
fpBGA
676
fpBGA
Bank
No.
Signal
484
fpBGA
676
fpBGA
V4
AJ4
U7
AK3
2
4C-20
AA12
AJ20
2
GNDIO2
GND
GND
AB2
V7
AK4
2
4C-18
Y13
AK21
AJ5
2
4C-16
AB13
AH20
1
3D-2
AA5
AH6
2
4C-14
W13
AF19
1
GNDIO1
GND
GND
2
4C-12/VREF2
AA13
AJ21
1
3D-4
AB3
AF8
2
4C-10
U13
AG20
1
3D-6
Y6
AG7
2
4C-8
AB14
AK22
1
3D-8
AB4
AK5
2
4C-6
V13
AH21
1
3D-10
Y7
AJ6
2
4C-4
AA14
AJ22
1
3D-12
AB5
AH7
2
4C-2
U14
AK23
1
3D-14
V8
AK6
2
4C-0
AB15
AH22
1
3D-16
AA7
AJ7
2
4D-30
Y15
AJ23
1
3D-18
Y8
AH8
2
4D-28
AB16
AK24
1
3D-20
AB6
AG9
2
GNDIO2
GND
GND
1
3D-22
W8
AK7
2
4D-26
AA15
AF21
1
3D-24
AA8
AF10
2
4D-24
W14
AG22
1
3D-26
Y10
AJ8
2
4D-22
AB17
AH23
1
GNDIO1
GND
GND
2
4D-20
Y16
AJ24
1
3D-28
U8
AH9
2
4D-18
AA16
AK25
1
3D-30
AB7
AK8
2
4D-16
Y17
AH24
1
3C-0
U9
AJ9
2
4D-14
AB18
AJ25
1
3C-2
AA9
AH10
2
4D-12
V15
AK26
1
3C-4
W9
AK9
2
4D-10
AB19
AJ26
1
3C-6
AB8
AG11
2
4D-8
W15
AH25
1
3C-8
U10
AJ10
2
4D-6
AB20
AG24
1
3C-10
AB9
AF12
2
4D-4
AA18
AF23
1
3C-12
V11
AH11
2
GNDIO2
GND
GND
1
3C-14/VREF1
AA10
AK10
2
4D-2
U15
AK27
1
3C-16
V10
AJ11
2
4D-0
W17
AK28
1
3C-18
AB10
AK11
2
4A-0
U16
AJ27
1
GNDIO1
GND
GND
2
4A-2
AA19
AH26
1
3C-20
W10
AH12
2
4A-4
V16
AE23
1
3C-22
W11
AJ12
2
4A-6
AB21
AK29
1
3C-24
U11
AK12
2
4A-8
NC
AJ28
1
3C-26
AA11
AH13
2
4A-10
NC
AH27
1
3C-28
V12
AJ13
2
GNDIO2
GND
GND
1
3C-30
AB11
AK13
2
4A-12
NC
AG26
2
4C-30
W12
AK18
2
4A-14
NC
AF25
2
4C-28
Y11
AK19
2
4A-16
Y18
AJ29
2
4C-26
Y12
AJ19
2
4A-18
W18
AG27
2
4C-24
AB12
AH19
2
4A-20
AA20
AJ30
2
4C-22
U12
AK20
2
4A-22
W19
AH29
40
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Logic Signal Connections (Continued)
Bank
No.
Signal
484
fpBGA
676
fpBGA
Bank
No.
Signal
484
fpBGA
676
fpBGA
2
4A-24
Y19
AE25
2
5B-24
NC
V26
2
4A-26
V19
AG28
2
5B-22
NC
V27
2
GNDIO2
GND
GND
2
5B-20
NC
V28
2
4A-28
Y21
AF27
2
5B-18
NC
V29
2
4A-30
W20
AE26
2
5B-16
NC
V30
2
4B-30
AA22
AH30
2
5B-14
NC
U25
2
4B-28
W21
AG29
2
5B-12
NC
U27
2
4B-26
Y22
AF28
2
GNDIO2
GND
GND
2
4B-24
V20
AG30
2
5B-10
NC
U28
2
4B-22
V21
AF29
2
5B-8
NC
U29
2
4B-20
W22
AC25
2
5B-6
NC
U30
2
4B-18
V18
AE28
2
5B-4
NC
T27
2
4B-16
U20
AF30
2
5B-2
NC
T28
2
4B-14
V22
AD27
2
5B-0
NC
T29
2
4B-12
U19
AE29
3
6B-0
R21
T30
2
GNDIO2
GND
GND
3
6B-2
T22
R29
2
4B-10
U17
AC26
3
6B4/PLL_FBK1
P21
R27
2
4B-8
U22
AD28
3
6B6/PLL_RST1
N20
R28
2
4B-6
T20
AE30
3
6B-8
R22
R30
2
4B-4
T21
AD29
3
6B-10
N21
P30
2
4B-2
T17
AC28
3
GNDIO3
GND
GND
2
4B-0
R20
AD30
3
6B-12
M18
P29
2
5A-0
NC
AC29
3
6B-14
N19
P28
2
5A-2
NC
AB27
3
6B-16
P22
P27
2
5A-4
NC
AC30
3
6B-18
M20
N30
2
5A-6
NC
AB28
3
6B-20
N22
N29
2
5A-8
NC
AA26
3
6B-22
N17
N28
2
5A-10
NC
AB29
3
6B-24
M19
N27
2
GNDIO2
GND
GND
3
6B-26
M21
N25
2
5A-12
NC
AB30
3
6B-28
L19
M30
2
5A-14
NC
AA28
3
6B-30/CLK_OUT1
L20
M29
2
5A-16
NC
AA29
3
GNDIO3
GND
GND
2
5A-18
NC
AA30
3
6A-30
M17
M28
2
5A-20
NC
Y27
3
6A-28
M22
L30
2
5A-22
NC
Y28
3
6A-26
K20
M26
2
5A-24
NC
Y29
3
6A-24
L18
L29
2
5A-26
NC
W26
3
6A-22
L21
L28
2
5A-28
NC
Y30
3
6A-20
K19
L27
2
5A-30
NC
W28
3
6A-18
L22
K30
2
GNDIO2
GND
GND
3
6A-16
K17
K29
2
5B-30
NC
W29
3
6A-14
K22
K28
2
5B-28
NC
W30
3
6A-12
L17
J30
2
5B-26
NC
V25
3
GNDIO3
GND
GND
41
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Logic Signal Connections (Continued)
Bank
No.
Signal
484
fpBGA
676
fpBGA
Bank
No.
Signal
484
fpBGA
676
fpBGA
3
6A-10
K21
J29
3
GNDIO3
GND
GND
3
6A-8
K18
K26
3
7D-4
A21
E23
3
6A-6
J17
J28
3
7D-6
D15
D24
3
6A-4
J19
H30
3
7D-8
A20
C25
3
6A-2
J22
J27
3
7D-10
C16
A26
3
6A-0
J21
H29
3
7D-12
A19
B25
3
7B-0
H19
G30
3
7D-14
F16
C24
3
7B-2
H20
H28
3
7D-16
B16
A25
3
7B-4
H17
G29
3
7D-18
D14
B24
3
7B-6
H18
F30
3
7D-20
A18
C23
3
7B-8
H22
G28
3
7D-22
F15
D22
3
7B-10
H21
H26
3
7D-24
A17
A24
3
GNDIO3
GND
GND
3
7D-26
B15
E21
3
7B-12
G20
F29
3
GNDIO3
GND
GND
3
7B-14
G22
G27
3
7D-28
A16
B23
3
7B-16
G17
E30
3
7D-30
F14
C22
3
7B-18
G21
F28
3
7C-0
C15
A23
3
7B-20
F19
H25
3
7C-2
D13
B22
3
7B-22
F20
E29
3
7C-4
E15
C21
3
7B-24
F22
D30
3
7C-6
F13
A22
3
7B-26
E22
E28
3
7C-8
B14
D20
3
7B-28
E19
D29
3
7C-10
E13
B21
3
7B-30
E20
C30
3
7C-12/VREF3
A15
E19
3
7A-30
D22
F26
3
7C-14
D12
C20
3
7A-28
D21
E27
3
7C-16
A14
A21
3
GNDIO3
GND
GND
3
7C-18
B13
B20
3
7A-26
D20
D28
3
GNDIO3
GND
GND
3
7A-24
C22
F25
3
7C-20
A13
A20
3
7A-22
C18
C29
3
7C-22
B12
C19
3
7A-20
C19
B30
3
7C-24
C13
B19
3
7A-18
D17
D27
3
7C-26
A12
A19
3
7A-16
C21
E25
3
7C-28
C12
B18
3
7A-14
NC
D26
3
7C-30
A11
A18
3
7A-12
NC
C27
—
GCLK0
P6
R5
3
GNDIO3
GND
GND
—
GCLK1
R6
T6
3
7A-10
NC
B28
—
GCLK2
P17
R25
3
7A-8
NC
A29
—
GCLK3
P19
P26
3
7A-6
B22
F23
—
GOE0
R18
T26
3
7A-4
D18
C26
—
GOE1
R17
R26
3
7A-2
B20
B27
—
RESETB
R19
T25
3
7A-0
F17
A28
—
TCK
R3
U5
3
7D-0
B19
A27
—
TDI
R2
T5
3
7D-2
C17
B26
—
TDO
R4
V5
42
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
ispMACH 51024VG Logic Signal Connections (Continued)
Bank
No.
Signal
484
fpBGA
676
fpBGA
—
TMS
T1
T4
—
TOE
T18
U26
43
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Signal Configuration
ispMACH 5768VG 256-ball fpBGA
16
15
14
13
12
11
10
A
I/O
I/O
I/O
I/O
I/O
I/O
I/O
B
I/O
I/O
I/O
I/O
I/O
C
I/O
I/O
VCCO3
I/O
GND
D
I/O
I/O
I/O
I/O
E
I/O
I/O
GND
F
I/O
I/O
G
I/O
I/O/
PLL_FBK1
6
5
4
3
2
I/O/
I/O VREF3 I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
B
I/O
VCCO3
I/O
I/O
VCCO0
I/O
GND
I/O
VCCO0
I/O
I/O
C
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
D
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
E
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCCO3
I/O
I/O
I/O
I/O
I/O
VCCO0
H VCCP1 GOE1 GCLK2 GCLK3
I/O/
PLL_RST1
I/O/
CLK_OUT1
9
8
VCC VCC
I/O
I/O/
CLK_OUT0
I/O/
PLL_FBK0
1
GND A
I/O/
F
PLL_RST0
I/O
G
VCC GND GND GND GNDP0 VCC
I/O GCLK0 TDI
VCC GNDP1 GND GND GND VCC
I/O GCLK1 TCK TDO VCCJ J
I/O GOE0
RESETB
TOE
I/O
K
I/O
I/O
VCCO2
I/O
I/O
I/O
L
I/O
I/O
I/O
I/O
I/O
I/O
I/O
M
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
N
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
P
I/O
I/O
VCCO2
I/O
GND
I/O
VCCO2
R
I/O
I/O
I/O
I/O
I/O
T
I/O
I/O
I/O
I/O
I/O
16
15
14
13
12
I/O/
I/O/
VREF0
GND GND GND GND
J
VREF2
7
GND GND GND GND
TMS VCCP0 H
I/O
I/O
I/O
VCCO1
I/O
I/O
K
I/O
I/O
I/O
I/O
I/O
I/O
L
VREF1
I/O
I/O
I/O
GND
I/O
I/O
M
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
N
I/O
I/O
VCCO1
I/O
GND
I/O
VCCO1
I/O
I/O
P
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
R
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
T
11
10
9
8
7
6
5
4
3
2
1
VCC VCC
I/O
I/O/
ispMACH 5768VG
Bottom View
Note: Ball A1 indicator dot on top side of package.
44
256fpBGA/5768VG
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Signal Configuration
ispMACH 5768VG and 51024VG 484-ball fpBGA
22
21
20
19
18
17
16
15
I/O
I/O /
14
13
12
11
10
9
8
7
6
5
4
3
2
1
I/O/
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND
A
I/O
I/O
VCC
I/O
B
A
GND
I/O
I/O
I/O
B
I/O
VCC
I/O
I/O VCCO3 VCC
I/O
C
I/O
I/O
GND
I/O
I/O
I/O
I/O
D
I/O
I/O
I/O
GND
I/O
I/O VCCO3 I/O
E
I/O VCCO3
I/O
I/O
F
I/O
VCC
I/O
I/O VCCO3 I/O
G
I/O
I/O
I/O VCCO3 GND
I/O
GND GND GND GND GND GND GND GND GND GND
I/O
H
I/O
I/O
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
I/O
J
I/O
I/O
VCC
I/O VCCO3 I/O
GND GND GND GND GND GND GND GND GND GND
I/O VCCO0 I/O
K
I/O
I/O
I/O
I/O
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
I/O
I/O
L
I/O
I/O
I/O/
I/O
I/O
I/O GNDP1 GND GND GND GND GND GND GND GND VCCP0 GNDP0 I/O
M
I/O
I/O
I/O
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
N
I/O
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
P
I/O
R
I/O
I/O
I/O
T
I/O
I/O
I/O
U
I/O
VCC
I/O
I/O VCCO2 I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
V
I/O
I/O
I/O
I/O
I/O VCCO2
I/O
I/O VCCO2 I/O
I/O
I/O
I/O
VCCO1
I/O
W
I/O
I/O
I/O
I/O
I/O
I/O
GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
Y
I/O
I/O VCCO2 I/O
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O
VCC
AA
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O/
VREF2
I/O
I/O
I/O/
VREF1
AB GND I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
22
20
19
18
17
16
15
14
13
12
11
I/O
I/O
I/O
VCC VCCO3 GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O
VCC
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O VCCO3
I/O
I/O
I/O
I/O VCCO0 I/O
I/O
I/O
I/O
I/O
I/O
VREF3
I/O
VREF0
I/O
VCC VCCO0
I/O
I/O
I/O
GND
I/O
I/O
C
I/O VCCO0 I/O
I/O
GND
I/O
I/O
I/O
D
I/O VCCO0 I/O
E
I/O
I/O
GND VCCO0 VCC
I/O
I/O
VCC
I/O
F
I/O
I/O
G
I/O
I/O
I/O
H
VCC
I/O
I/O
J
I/O
I/O
I/O
I/O
K
I/O
I/O
I/O
I/O
L
I/O
I/O
I/O
M
I/O
I/O
I/O/
N
I/O VCCO0 I/O
GND VCCO0 I/O
I/O
I/O
CLK_OUT1
I/O
I/O/
PLL_RST1
I/O/ VCC
I/O VCCP1
GCLK3 VCCO2 GCLK2
I/O
I/O
I/O
I/O
I/O/
PLL_RST0
I/O/
PLL_FBK0
CLK_OUT0
I/O
I/O
P
TDO TCK
TDI
I/O
R
GND GND GND GND GND GND GND GND GND GND GCLK0 VCCO1 VCCJ VCC
PLL_FBK1
VCC
21
RESETB
GOE0 GOE1 GND GND GND GND GND GND GND GND GND GND GCLK1 I/O
GND TOE
I/O
I/O
GND
I/O
I/O
TMS
T
I/O
VCCO1
I/O
I/O
VCC
I/O
U
I/O VCCO1 I/O
I/O
I/O
I/O
I/O
V
GND
I/O
I/O
I/O
I/O
I/O
I/O
W
I/O
I/O
I/O
I/O
I/O
VCCO1
I/O
I/O
Y
I/O
I/O
I/O
VCC
I/O
I/O
I/O
VCC
NC1 AA
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GND AB
10
9
8
7
6
5
4
3
2
GND GND GND GND GND GND GND GND GND GND
I/O
I/O
ispMACH 5768VG and 51024VG
Bottom View
1. NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
45
1
484BGA/51024VG
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Signal Configuration
ispMACH 51024VG 676-ball fpBGA
30
A
B
C
D
29
28
27
26
25
24
23
22
21
20
19
18
GND I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O VCC I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O GND I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
13
12
11
10
9
8
7
6
5
4
3
I/O
NC1 NC1 NC1 NC1 I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
NC1 NC1 NC1 NC1 I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O GND I/O
I/O
NC1
NC1
NC1
NC1
NC1
NC1
I/O
I/O/
VREF0
I/O
I/O
I/O
I/O
I/O
I/O
I/O GND I/O
I/O
C
VCC
NC1
NC1
NC1
NC1
NC1
NC1
I/O
I/O
I/O
I/O
D
I/O/
VCCO3
VREF3
NC1
NC1
NC1
NC1
NC1
NC1
I/O
I/O
I/O
I/O
E
I/O VCC I/O
I/O
I/O
F
I/O
I/O
I/O
I/O
G
I/O GND I/O
I/O
I/O
H
I/O
I/O
I/O
I/O
J
I/O VCC I/O
I/O
I/O
K
I/O
I/O
I/O
I/O
L
GND I/O VCC I/O
I/O/
CLK_OUT0
I/O
M
I/O
N
I/O/
PLL_RST0
P
I/O
I/O VCC I/O GND I/O VCC I/O
E
I/O
I/O
I/O
F
I/O
I/O
I/O VCC I/O
G
I/O
I/O
I/O
H
I/O
I/O
I/O GND I/O
J
I/O
I/O
I/O
K
I/O
I/O
L
I/O
I/O
M
I/O
I/O/
CLK_OUT1
N
I/O
P
I/O
I/O
VCCO3
I/O
VCCO3
I/O
VCCO3
I/O GND I/O GND
I/O
VCCO3
17
16
15
14
VCC I/O
I/O
VCCO0
GND GND NC1 NC1 NC1 NC1 NC1 NC1 GND GND
VCC I/O GND I/O VCC I/O
I/O
VCCO0
VCCO0
I/O
VCCO0
I/O
GND I/O GND I/O
GND
GND
I/O
I/O
GND
GND
I/O VCC I/O
VCCO3
VCCO0
I/O
GND
I/O
I/O
VCCO3
VCCO3
VCCO3
GND GND GND GND GND GND GND GND GND GND
GND
VCCO0
VCCO0
VCCO0
VCCO0
2
1
I/O GND
A
B
I/O VCC I/O GND
GND GND GND GND GND GND GND GND GND GND
I/O
I/O
I/O
VCCP1
GND GND GND GND GND GND GND GND GND GND
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
GCLK3 GNDP1
GND GND GND GND GND GND GND GND GND GND
I/O
VCCP0
I/O
I/O
I/O
R
I/O
I/O
I/O/
I/O/
GOE1 GCLK2
GND GND GND GND GND GND GND GND GND GND
GNDP0 GCLK0
I/O/
I/O
I/O
I/O
R
T
I/O
I/O
I/O
I/O GOE0 RESETB
GND GND GND GND GND GND GND GND GND GND
GCLK1
I/O
I/O
I/O
T
U
I/O
I/O
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
VCCJ TCK
I/O
I/O
I/O
I/O
U
V
I/O
I/O
I/O
I/O
I/O TDO I/O
I/O
I/O
I/O
V
W
I/O
I/O
I/O VCC I/O GND
GND GND GND GND GND GND GND GND GND GND
GND I/O VCC I/O
I/O
I/O
W
Y
I/O
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
GND
I/O
I/O
I/O
Y
AA
I/O
I/O
I/O VCC I/O
VCCO2
I/O VCC I/O
I/O
I/O
AA
AB
I/O
I/O
I/O
GND
ispMACH 51024VG
GND
I/O
I/O
I/O
AB
AC
I/O
I/O
I/O GND I/O
I/O
Bottom View
I/O
I/O GND I/O
I/O
I/O
AC
AD
I/O
I/O
I/O
I/O
I/O
I/O
I/O
AD
AE
I/O
I/O
I/O VCC I/O
I/O GND I/O GND
I/O VCC I/O
I/O
I/O
AE
AF
I/O
I/O
I/O
I/O
VCCO2
I/O
I/O
I/O
I/O
I/O
AF
AG
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
AG
I/O
AH
AJ
AH
AJ
I/O
I/O
PLL_RST1 PLL_FBK1
I/O
I/O
I/O
I/O GND I/O
I/O
I/O
I/O
I/O
TOE I/O
I/O
VCCO2
VCCO2
VCCO2
I/O
I/O
GND GND GND GND GND GND GND GND GND GND
I/O
GND
VCCO1
GND
GND
VCCO2
VCC I/O
I/O
I/O
I/O
I/O
I/O
VCCO2
GND I/O
I/O
I/O
VCCO2
I/O
GND GND NC1 NC1 NC1 NC1 NC1 NC1 GND GND
VCCO1
NC1 NC1 NC1 NC1 NC1 NC1
I/O
VCCO2
I/O
VCCO1
VCC I/O VCC NC1 NC1 NC1 NC1 NC1 NC1 VCC I/O VCC
I/O
I/O
I/O
I/O/
VREF2
I/O
I/O
I/O
I/O
I/O
VCCO1
VCCO1
TDI TMS
VCCO1
VCCO1
VCCO1
VCCO1
I/O GND I/O VCC I/O
I/O
I/O
I/O
NC1
NC1
NC1
NC1
NC1
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O GND I/O
I/O
NC1
NC1
NC1
NC1
NC1
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O VCC I/O
I/O
I/O
I/O/
VREF1
I/O
I/O
I/O
I/O
I/O
I/O
I/O
12
11
10
9
8
7
6
5
4
AK GND I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
30
28
27
26
25
24
23
22
21
20
19
18
29
I/O
GND I/O GND
PLL_FBK0
NC1 NC1 NC1 NC1 I/O
17
16
15
14
13
3
I/O GND AK
2
1
676BGA/51024VG
1. NCs are not to be connected to any active signals, VCC or GND.
Note: Ball A1 indicator dot on top side of package.
46
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Part Number Description
LC XXXXXVG – XX FXXX X XX
Device Family
Device Status
Blank = Final production
ES = Engineering Samples
Device Number
5768 = 768 Macrocells
51024 = 1,024 Macrocells
Grade
C = Commercial
I = Industrial
Speed
5 = 5.0ns
75 = 7.5ns
10 = 10ns
12 = 12ns*
Package
F256 = 256-Ball fpBGA
F484 = 484-Ball fpBGA
F676 = 676-Ball fpBGA
*Industrial grade only.
0212/ispm5vg
Ordering Information
Commercial
Part Number
Package
Pin Count
Macrocells
Tpd
Voltage
LC51024VG-5F484C
fpBGA
484
1024
5
3.3
LC51024VG-75F484C
fpBGA
484
1024
7.5
3.3
LC51024VG-10F484C
fpBGA
484
1024
10
3.3
LC51024VG-5F676C
fpBGA
676
1024
5
3.3
LC51024VG-75F676C
fpBGA
676
1024
7.5
3.3
LC51024VG-10F676C
fpBGA
676
1024
10
3.3
LC5768VG-5F256C
fpBGA
256
768
5
3.3
LC5768VG-75F256C
fpBGA
256
768
7.5
3.3
LC5768VG-10F256C
fpBGA
256
768
10
3.3
LC5768VG-5F484C
fpBGA
484
768
5
3.3
LC5768VG-75F484C
fpBGA
484
768
7.5
3.3
LC5768VG-10F484C
fpBGA
484
768
10
3.3
Note: the ispMACH 5000VG family is dual-marked with both Commercial and Industrial grades. The Commercial speed grade
is one speed grade faster (i.e. LC51024VG-75F484C) than the Industrial speed grade (i.e. LC51024VG-10F484I).
47
Lattice Semiconductor
ispMACH 5000VG Family Data Sheet
Industrial
Package
Pin Count
Macrocells
Tpd
Voltage
LC51024VG-75F484I
Part Number
fpBGA
484
1024
7.5
3.3
LC51024VG-10F484I
fpBGA
484
1024
10
3.3
LC51024VG-12F484I
fpBGA
484
1024
12
3.3
LC51024VG-75F676I
fpBGA
676
1024
7.5
3.3
LC51024VG-10F676I
fpBGA
676
1024
10
3.3
LC51024VG-12F676I
fpBGA
676
1024
12
3.3
LC5768VG-75F256I
fpBGA
256
768
7.5
3.3
LC5768VG-10F256I
fpBGA
256
768
10
3.3
LC5768VG-12F256I
fpBGA
256
768
12
3.3
LC5768VG-75F484I
fpBGA
484
768
7.5
3.3
LC5768VG-10F484I
fpBGA
484
768
10
3.3
LC5768VG-12F484I
fpBGA
484
768
12
3.3
Note: the ispMACH 5000VG family is dual-marked with both Commercial and Industrial grades. The Commercial speed grade
is one speed grade faster (i.e. LC51024VG-75F484C) than the Industrial speed grade (i.e. LC51024VG-10F484I).
For Further Information
In addition to this data sheet, the following technical notes may be helpful when designing with the ispMACH
5000VG family:
•
•
•
•
ispMACH 5000VG sysIO Design and Usage Guidelines (TN1000)
ispMACH 5000VG Timing Model Design and Usage Guidelines (TN1001)
Power Estimation in ispMACH 5000VG Devices (TN1002)
ispMACH 5000VG PLL Usage Guidelines (TN1003)
48