0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LFE3-95EA-V-EVN

LFE3-95EA-V-EVN

  • 厂商:

    LATTICE(莱迪思半导体)

  • 封装:

    -

  • 描述:

    BOARD VIDEO LATTICEECP3-95EA

  • 数据手册
  • 价格&库存
LFE3-95EA-V-EVN 数据手册
 LatticeECP3™ Video Protocol Board – Revision C User’s Guide October 2012 Revision: EB52_01.3  LatticeECP3 Video Protocol Board – Revision C User’s Guide Introduction The LatticeECP3™ FPGA family includes many features for video applications. For example, DisplayPort, SMPTE standards (SD-SDI, HD-SDI and 3G-SDI), DVB-ASI, DVI and HDMI can be implemented with 16 channels of embedded SERDES/PCS. 7:1 LVDS video interfaces like ChannelLink and CameraLink can be supported by the generic DDRX2 mode on the I/O pins. When configuring to TRLVDS mode, the I/O pins on banks 0 and 1 can also be used to receive the TMDS signals of DVI or HDMI video standard. This user’s guide describes revision C of the LatticeECP3 Video Protocol Board featuring the LatticeECP3 LFE395E-7FN1156C FPGA device. The stand-alone evaluation PCB provides a functional platform for development and rapid prototyping of many different video applications. Figure 1. LatticeECP3 Video Protocol Board – Revision C Features • Video interfaces for interconnection to video standard equipment • Allow the demonstration of SD/HD/3G-SDI, DisplayPort and PCI Express (x4) interfaces using SERDES channels • High speed Mezzanine connector connected to SERDES channels for future expansion • Allows the demonstration of LVDS video standards – ChannelLink and CameraLink • Allows control of SERDES PCS registers using the Serial Client Interface (ORCAstra) • Allows the demonstration of receiving TMDS signals using the DVI interface • On-board Boot Flash with Serial SPI Flash memory device • Shows interoperation with high performance DDR2 memory components • Driver-based “run-time” device configuration capability via an ORCAstra or RS232 interface • SMAs for external high-speed clock / PLL inputs • Switches, LEDs and LCD display header for demo purposes • Mictor connector for using Logic Analyzer in the debugging phase 2 LatticeECP3 Video Protocol Board – Revision C User’s Guide • Input connection for lab-power supply • Power connections and power sources • ispVM™ programming support • On-board and external reference clock sources • Various high-speed layout structures • User-defined input and output points • Performance monitoring via test headers, LEDs and switches The contents of this user’s guide include top-level functional descriptions of the various portions of the evaluation board, descriptions of the on-board connectors, diodes and switches and a complete set of schematics of the board. Figure 2 shows the functional partitioning of the board. Figure 2. LatticeECP3 Video Protocol Board – Revision C Functional Partition PCI Express x4 Edge DDR2 Memory Tx Refclk Generation Circuitry 27MHz DDR2 Memory VCO Bank 6 GS4915 Ch3 Ch2 Ch1 DisplayPort Tx Bank 7 Quad C Refclk GS4911 Ch0 Bank 0 DisplayPort Rx Ch3 Ch2 Ch1 Quad B Refclk SERDES LatticeECP3-95 1156 fpBGA Ch0 3G-SDI Driver SDI Rx #1 3G-SDI Equalizer Bank 1 Refclk Ch3 Ch2 Ch1 DVI Tx Quad A SDI Tx #1 Bank 3 Ch0 3G-SDI Driver 3G-SDI Equalizer ChannelLink Tx SDI Tx #0 Bank 2 from internal PLL(s) ChannelLink Rx RJ45 Tx/Rx CameraLink Rx DVI Rx SDI Rx #0 Differences Between the Revision B and Revision C Boards The major changes in revision C are summarized below: 1. The Revision C board includes eight pull-up resistors, R362-R369, to the DVI Rx signals placed close to the LatticeECP3 device. These resistors are used for termination of the DVI’s TMDS signals and are not included on the Revision B board. 3 LatticeECP3 Video Protocol Board – Revision C User’s Guide 2. The Revision C board includes eight pull-up resistors, R370-R377, to the DDR2 memory’s DQS signals. These resistors are placed close to the LatticeECP3 device. These resistors are not included on the Revision B board. 3. The Revision C board includes R75 between the P and N reference clocks of SERDES Quad C (Mezzanine daughter board) for future use. No resistor is populated. This resistor is not included on the Revision B board. 4. On the Revision C board, the Gennum clock generators (GS4911) on U2 and U3 are not populated. LatticeECP3 Device This board features a LatticeECP3 FPGA with a 1.2V core supply. It can accommodate all pin compatible LatticeECP3 devices in the 1156-ball fpBGA (1mm pitch) package. A complete description of this device can be found in the LatticeECP3 Family Data Sheet. Applying Power to the Board The LatticeECP3 Video Protocol Board is ready to power on. This board can be supplied with power from an AC wall-type transformer power supply shipped with the board. Or it can be supplied from a bench top supply via terminal screw connections. It also has provisions to be supplied from the PCI Express edge fingers from a host board. To supply power from the factory-supplied wall transformer, simply connect the output connection of the power cord to J15 and plug wall-transformer into an AC wall outlet. Supply Power from Bench Power Supply The evaluation board incorporates an alternate scheme to provide power to the board. The board is equipped to accept a main supply via the TB1 connection. This connection is intended to be used with a bench top supply adjusted to provide a nominal 12V DC. All input power sources and on-board power supplies are fused with surface mounted fuses. Table 1 shows these fuses and the corresponding powers. Table 1. Board Power Supply Fuses Fuse # Rating Voltage F1 3A 2.5V F2 3A 1.8V Bank 6, Bank 7 I/Os, DDR2 regulator, DDR2 memory, Gennum clock chips 3A 5.0V Cable driver/equalizer power regulator, Gennum clock chips power regulators, DisplayPort power output regulators, Mezzanine connector, DVI power output for EDID, LCD module F4 3A 1.2V LatticeECP3 SERDES F5 10A 12V Main power supply F6 10A 1.2V LatticeECP3 Core 3.3V LatticeECP3 VCCAUX, PLL, JTAG, Bank 0 and 8 I/Os, SPI Flash memory, push-button debouncer, DVI transmitter, RS-232 driver/receiver, zero delay clock buffer, clock oscillators, MachXO™, cable driver/equalizer F3 F7 10A Usage EEPROM, DDR2 regulator, Bank 1, 2 and 3 I/Os, DIP switches The Lattice ispPAC® Power Manager II device, the ispPAC-POWR1220AT8, is used for monitoring various voltages on the board. There are six LEDs used to indicate the status of the monitoring voltages. If the monitoring voltage is not in the +/- 5% voltage window, the corresponding LED will flash; otherwise, the LED will stay ON. Table 2 shows these six voltages and the corresponding LEDs. 4 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 2. Board Power Supply Monitoring Indicators Power LED # Voltage Range In Range Out of Range LatticeECP3 SERDES D33 1.2V +/- 5% On Flash LatticeECP3 Core D32 1.2V +/- 5% On Flash 3.3V D31 3.3V +/- 5% On Flash 2.5V D29 2.5V +/- 5% On Flash 5.0V D28 5.0V +/- 5% On Flash 1.8V D27 1.8V +/- 5% On Flash External power can be alternatively connected through TB1 rather than the wall transformer power pack. Table 3. Board Supply Disconnects Screw terminal for 12V DC +12V: Pin1 (closer to the wall transformer power jack J15) 12V DC GND: Pin2 (closer to the LCD connector) TB1 PCI Express Power Interface Power can be sourced to the board via the PCB edge-finger (CN1). This interface allows the user to provide power from a PCI Express host board. Configuration/Programming Headers Two programming headers are provided on the board for accessing to the LatticeECP3 JTAG port and sysCONFIG™ port. The JTAG connector is a 1x10 header and the sysCONFIG connector is a 2x17 header. Table 4. sysCONFIG Connector Pinout (J37) Net Name LatticceECP3 Pin Header Pin Net Name CCLK SISPI LatticceECP3 Pin Header Pin C34 1 GND — 2 F33 3 D6 J34 4 CSSPI0N D34 5 3.3V — 6 CSSP1N E34 7 INITN C33 8 DONE G31 9 PROGRAMN B34 10 D7 F32 11 GND — 12 D6 J34 13 GND — 14 D5 H34 15 GND — 16 D4 G32 17 GND — 18 D3 G33 19 GND — 20 D2 H33 21 GND — 22 D1 G34 23 GND — 24 D0 E32 25 GND — 26 CSN F31 27 WRITE E31 28 CS1 G30 29 CFG0 B33 30 3.3V — 31 CFG1 F30 32 GND — 33 CFG2 D32 34 J28 is a 10-pin JTAG connector used in conjunction with the ispVM download cable to program and control the Lattice devices on this board. 5 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 5. ispVM JTAG Connector (J28) Pin # Description Pin 1 VCC Pin 2 TDO Pin 3 TDI Pin 4 PROGRAMN Pin 5 NC Pin 6 TMS Pin 7 GND Pin 8 TCK Pin 9 DONE Pin 10 INITN This board includes three Lattice programmable devices that can be programmed in a daisy chain (U30 = LatticeECP3-95, U1 = MachXO™ LCMXO256, and U36 = ispPAC-POWR1220AT8). Other than the LatticeECP395, the JTAG connector provides access to the JTAG ports of the ispPAC-POWR1220AT8 and the MachXO. With proper jumper selection, the JTAG ports of these devices can be chained together for programming. Table 6 shows the jumper settings of J32, J33 and J34 used to configure the JTAG connections. Table 6. JTAG Connection Settings (J32, J33, J34) Jumper Settings JTAG Connection J32 J33 J34 TDI ECP3 MachXO ispPAC 1 TDO J32 J33 J34 TDI ECP3 MachXO ispPAC 2 TDO J32 J33 J34 TDI TDO 3 ECP3 J32 J33 J34 MachXO ispPAC MachXO ispPAC TDI ECP3 4 TDO 6 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 6. JTAG Connection Settings (J32, J33, J34) (Continued) Jumper Settings JTAG Connection J32 J33 J34 TDI ECP3 MachXO ispPAC ECP3 MachXO ispPAC 5 TDO TDI J32 J33 J34 6 TDO J32 J33 J34 TDI ECP3 7 MachXO ispPAC TDO There are several LEDs on the board to indicate the LatticeECP3 programming status. They are listed in Table 7. Table 7. LED Indicators for Configuration Status LED # Color Function LED illuminated to indicate that the programming was aborted or reinitialized driving the INITN output low. D19 Red D18 Green D20 Red LED illuminated to indicate that PROGRAMN is low. D21 Red LED illuminated to indicate that GSRN is low. LED illuminated to indicate the successful completion of configuration by releasing the open collector DONE output pin. The PROGRAMN pin of the LatticeECP3-95 is connected to a push-button switch (SW5). Depressing this button drives a logic level “0” to the PROGRAMN pin. This will force the LatticeECP3 into the configuration mode and initiate the configuration sequence. The FPGA CFG pins are set on the board for a particular programming mode via the SW2 DIP switch. JTAG programming is independent of the MODE pins and is always available to the user. Pushing down the switch will turn it on and set the CFG value to 0. Table 8. CFG Mode Selections CFG2 (SW2-1) CFG1 (SW2-2) CFG0 (SW2-3) 0 (ON) 0 (ON) 0 (ON) SPI Flash Mode (available on-board) 0 (ON) 1 (OFF) 0 (ON) SPIm Selected Configuration Mode 1 (OFF) 0 (ON) 0 (ON) Master Serial 1 (OFF) 0 (ON) 1 (OFF) Slave Serial 1 (OFF) 1 (OFF) 0 (ON) Master Parallel 1 (OFF) 1 (OFF) 1 (OFF) Slave Parallel 7 LatticeECP3 Video Protocol Board – Revision C User’s Guide On-Board Flash Memory One SPI (16-pin TSSOP 64M) Flash memory device (U32) is on board for non-volatile configuration memory storage. The CFG [2:0] setting must be [000] for the LatticeECP3 to enable the SPI Flash mode. Video Clock Management and SDI Cable Driver/Equalizer Industry standard video clocks are generated and managed via Gennum chipsets. These chipsets are used to generate both transmit and receive reference clocks for LatticeECP3 SERDES. The GS4911 clock generator device produces multiple video standard reference clocks from an on-board 27MHz crystal. The GS4915 clock cleaner is used to reduce clock jitter to produce a clean clock for video signal quality using a high-performance VCO. The Gennum clock devices are used to generate clocks for SD/HD/3G-SDI applications. Since the PLL in LatticeECP3 FPGAs is designed to support all the frequencies required by SD/HD/3G-SDI, the GS4911 clock generator is no longer needed. The two GS4911 devices found on the Revision B board are included on the Revision C board but not populated. Two cable drivers and two cable equalizers are placed on-board for SD/HD/3G-SDI applications that require delivering video signal over 75 ohm coaxial cable. The control and status pins of the Gennum chipsets and the cable drivers/equalizers are connected to the MachXO I/O pins. By using the signals connected between the MachXO and LatticeECP3, the Gennum chipsets and cable drivers/equalizers can be controlled from the design in the LatticeECP3. Figure 3 shows the block diagram of the control/status buses of the connections between these devices. The MachXO pins connected to these devices are shown in Tables 9 to 12. Figure 3. Block Diagram of Gennum Chipsets and Cable Driver/Equalizer Controls RX_GS4911_RESETn SDI Tx #1 Cable Driver (U24) SDI Rx #1 Cable Equalizer (U21) Rx Refclk Generator GS4911 (U2) Rx Refclk Cleaner GS4915 (U6) MachXO SDI Tx #0 Cable Driver (U22) SDI Rx #0 Cable Equalizer (U25) Tx Refclk Generator GS4911 (U3) 12 Tx Refclk Cleaner GS4915 (U7) TX_GS4911_RESETn 8 LatticeECP3 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 9. MachXO Pin Connections to GS4911 Devices (GS4911 Devices are Not Populated on the Revision C Board) Signal Type Control GS4911 Pin Name U2 (for Rx Refclk) U3 (for Tx Refclk) Pull-low/high VID_STD0 K2 G13 High VID_STD1 L1 H13 Low VID_STD2 L2 J13 High VID_STD3 M1 J14 Low VID_STD4 M2 K13 High VID_STD5 N1 K14 Low /GENLOCK M3 M13 High ASR_SEL0 H2 — Low ASR_SEL1 G2 — Low ASR_SEL2 F2 — Low JTAG / HOSTn N11 N11 — SCLK_TCLK1 P13 P13 — 1 SDIN_TDI SDOUT_TDO CSn_TMS /RESET Status — N12 — P12 — — P11 P14 D17 (from LatticeECP3) D12 (from LatticeECP3) — Low LOCK_LOST — L14 — REF_LOST — L13 — TIMING_OUT_1 K1 F14 — TIMING_OUT_2 J2 F13 — TIMING_OUT_3 J1 E14 — TIMING_OUT_4 — E13 — 1. These are the signals controlled by the same MachXO I/O pins. Table 10. MachXO Pin Connections to GS4915 Devices Signal Type Control Status GS4915 Pin Name U6 (for Rx Refclk) U7 (for Tx Refclk) Pull-low/high /RESET F1 D14 High IPSEL E2 D13 Low BYPASS E1 C14 Low /AUTOBYPASS C2 C13 Low FCTRL0 D1 B14 Low FCTRL1 D2 C12 Low DOUBLE C1 A13 Low SKEW_EN B1 A12 Low LOCK B11 B12 — Table 11. MachXO Pin Connections to LMH0303 or GS2978 Cable Driver Devices Signal Type Control Status Driver Pin Name U22 (for Tx #0) U24 (for Tx #1) Pull-low/high SD / HDn N5 N14 Low ENABLE (/DISABLE) N6 M14 High /RSTI N7 — High /FAULT N13 N13 — 9 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 12. MachXO Pin Connections GS2974 Cable Equalizer Devices Signal Type Driver Pin Name Control Status U25 (for Rx #0) U21 (for Rx #1) Pull-low/high BYPASS P3 P8 Low MUTE P4 N8 Low MCLADJ Controlled by potentiometer VR3 Controlled by potentiometer VR2 — /CD N3 P9 — Table 13. MachXO Pin Connections to LatticeECP3 Net Name MachXO Pin LatticeECP3 Pin ECP3_XO_SIG0 B10 AM31 ECP3_XO_SIG1 A9 AL31 ECP3_XO_SIG2 A7 AN31 ECP3_XO_SIG3 A6 AP31 ECP3_XO_SIG4 A5 AM32 ECP3_XO_SIG5 B4 AN32 ECP3_XO_SIG6 A3 AB33 ECP3_XO_SIG7 B3 AB34 ECP3_XO_SIG8 A2 Y31 ECP3_XO_SIG9 C3 Y32 ECP3_XO_SIG10 A1 Y33 ECP3_XO_SIG11 B2 Y34 The status pins of these devices can also be observed from LED indicators. Table 13 shows the these LEDs with the associated signals. Table 14. LED Indicators for Video Clocking and Cable Equalizer Status LED # Color D4 D1 Rx GS4911 REF LOST Red D3 D6 D9 D8 Tx GS4911 REF LOST Description LED illuminates to indicate that no reference signal is applied or the FSYNC, VSYNC, HSYNC input reference signals do not meet the min/max timing requirement. Rx GS4911 LOCK LOST LED illuminates to indicate the GS4911 clock output is not genlocked to Tx GS4911 LOCK LOST the input reference signals. D2 D5 Function Green Orange Rx GS4915 LOCK Tx GS4915 LOCK LED illuminates to indicate that the GS4915 output clock is locked to the input clock selected by IPSEL. SDI Rx #0 Carrier Detect LED illuminates to indicate that the equalizer has detected the presence SDI Rx #1 Carrier Detect of a good input video signal. SERDES There are three SERDES quads available for the LatticeECP3-95. Each quad include four SERDES channels. These 12 SERDES channels are used for implementing high-speed serial link interfaces. Figure 4 shows the how these channels are used. 10 LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 4. Block Diagram of SERDES Usage PCI Express x4 Edge Si570 (U9) Mezzanine Connector (J19) SMA (J7, J8) Mezz 27MHz VCO GS4911 GS4915 Bank 6 Refclk Ch3 Ch2 DisplayPort Tx (J4) Quad C Tx Refclk Generation Circuitry Ch1 Ch0 3.3V Voltage Regulator Ch3 Ch2 3.3V Voltage Regulator Ch1 Quad B Refclk DisplayPort Rx (J3) SERDES LatticeECP3-95 1156 fpBGA Ch0 SDI Tx #1 (J2) Driver (U24) SDI Rx #1 (J1) Equalizer (U21) Ch3 Ch2 Ch1 Quad A Refclk Ch0 Driver (U22) Equalizer (U25) SDI Tx #0 (J5) SDI Rx #0 (J6) Bank 3 from internal PLL(s) The power supply of the input and output buffers of the SERDES quads can be individually set to either 1.2V or 1.5V. This is done by headers J18, J20~J24. Table 15 shows the jumper settings of these headers for applying either 1.2V or 1.5V power to the SERDES input and output buffers. Table 15. Jumper Settings for SERDES I/O Buffer (J18, J20~J24) Header J24 J20 J23 J21 J22 J18 Buffer Jumper Setting Function Quad A Input (SDI/DP) 1-2 Set PCSA_VCCIB (J24 pin 2) to 1.2V 2-3 Set PCSA_VCCIB (J24 pin 2) to 1.5V Quad A Output (SDI/DP) 1-2 Set PCSA_VCCOB (J20 pin 2) to 1.2V 2-3 Set PCSA_VCCOB (J20 pin 2) to 1.5V Quad B Input (PCI Express) 1-2 Set PCSB_VCCIB (J23 pin 2) to 1.2V 2-3 Set PCSB_VCCIB (J23 pin 2) to 1.5V Quad B Output (PCI Express) 1-2 Set PCSB_VCCOB (J21 pin 2) to 1.2V 2-3 Set PCSB_VCCOB (J21 pin 2) to 1.5V Quad C Input (Mezzanine) 1-2 Set PCSC_VCCIB (J22 pin 2) to 1.2V 2-3 Set PCSC_VCCIB (J22 pin 2) to 1.5V Quad C Output (Mezzanine) 1-2 Set PCSC_VCCOB (J18 pin 2) to 1.2V 2-3 Set PCSC_VCCOB (J18 pin 2) to 1.5V 11 LatticeECP3 Video Protocol Board – Revision C User’s Guide Quad A (3G-SDI and DisplayPort Video Interfaces) Quad 0 is used for SDI and DisplayPort video protocols. Channel 0 and 1 of quad 0 are used for SD/HD/3G-SDI. The SD/HD/3G-SDI video signal is a signal-ended video signal transmitting through 75-ohm coaxial cable connecting through BNC connectors. Two cable drivers and two cable equalizers are placed on board for using longer coaxial cable. Channels 2 and 3 are used for support Displayport up to two data lanes. Table 16 shows the ECP3 connections for the SD/HD/3G-SDI video interface connectors. Table 16. SD/HD/3G-SDI Connections (J1, J2, J5 and J6) Connector Description Cable Driver/Equalizer SERDES Pin Names LatticeECP3 Pin # J5 SDI Tx #0 Driver (U22) PCSA_HDOUT[P:N]0 AP21, AN21 J6 SDI Rx #0 Equalizer (U25) PCSA_HDIN[P:N]0 AL21, AK21 J2 SDI Tx #1 Driver (U24) PCSA_HDOUT[P:N]1 AP20, AN20 J1 SDI Rx #1 Equalizer (U21) PCSA_HDIN[P:N]1 AL20, AK20 There are two instances of Gennum clocking circuitry on this board, one for Rx side and the other for Tx side. Since the specification of the high-speed video output stream jitter is critical, it is important to have a clean reference clock for the Tx side serializer. The reference clock of the SERDES channel can come from different a path, but the clock coming in through the dedicated reference clock pins will have the lowest jitter. The dedicated reference clock pins of quad 0 can be sourcing from the following clocks: • Clock generated by the on-board Gennum clocking chipsets • Clock generated by the Silicon Labs Si570 • External differential clock coming through the two SMA connectors Other than generating from the Gennum chipsets, the transmit reference clock can also receive input clock from an external clock source via a pair of SMA connectors, or from the on-board Silicon Labs Si570. To avoid PCB trace stub and minimize the jitter of the Tx reference clock, two zero-ohm resistors are used for selecting the clock from one of the three clock sources. Figure 5 shows how these two zero-ohm resistors are installed to select a difference clock source. See the schematic in Appendix A (Figure 16) for the detailed clock multiplexing circuitry. Figure 5. Resistors for Quad 0 Reference Clock Selection Select clock from Gennum chipsets TP11 Select clock from SMA connectors Select clock from Silicon Labs Si570 TP13 R47 R48 TP12 TP14 On-board Default Figure 6 shows the block diagram of the DisplayPort circuitry on this board. Since only two channels in SERDES Quad 0 are used, the DisplayPort video interface on this board can only support up to two lanes. Two instances of 3.3V voltage regulators are used for providing power to the off-board DisplayPort devices when necessary. 12 LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 6. Block Diagram of the DisplayPort Video Interface DisplayPort Rx (J3) LatticeECP3 (U30) ML0_P_IN ML0_N_IN 0.1uF AL19 0.1uF AK19 ML1_P_IN ML1_N_IN 0.1uF AL18 0.1uF AK18 0.1uF 3.3V 1M Quad 0 CH2 AP19 0.1uF AN19 0.1uF Quad 0 CH3 AP18 0.1uF AN18 0.1uF N27 AUX_P 49.9 DisplayPort Tx (J4) 1M 49.9 0.1uF 49.9 0.1uF C32 HPD_OUT 100K CONFIG1 CONFIG2 100K AUX_N 100 C31 100K 3.3V R25 100 HPD_OUT 49.9 0.01uF N28 AUX_N AUX_P 100 0.01uF 100K 1K CONFIG1 CONFIG2 1K 1K 1K 5.0V 5.0V 3.3V Voltage Regulator (U19) PWR_OUT ML1_P_OUT ML1_N_OUT 0.1uF R26 100 ML0_P_OUT ML0_N_OUT J16 G17 enable enable 3.3V Voltage Regulator (U23) PWR_OUT Table 17 shows the pin connections of the DisplayPort video interface. Table 17. DisplayPort Connections (J3 and J4) Connector DisplayPort Tx (J4) DisplayPort Rx (J3) Pin Name Pin # ML0_[P:N]_OUT 1 and 2 LatticeECP3 Pin Name LatticeECP3 Pin # PCSA_HDOUT[P:N]2 AP19, AN19 ML1_[P:N]_OUT 4 and 6 PCSA_HDOUT[P:N]3 AL18, AK18 AUX_[P:N] 15 and 17 PR31[A:B] R26, R25 HPD_IN 18 PT143B C32 ML0_[P:N]_IN 10 and 12 PCSA_HDIN[P:N]2 AL19, AK19 ML1_[P:N]_IN 7 and 8 PCSA_HDIN[P:N]3 AL18, AK18 AUX_[P:N] 15 and 17 PR22[A:B] N27, N28 HPD_OUT 18 PT145B C31 Quad B (PCI Express x4) This board is equipped to communicate directly as an add-on card to a PCI Express host. It is designed with edgefingers (CN1) to fit directly into a x1 host receptacle. Power can be supplied directly from the PCI Express host via the edge-finger connections. All channels of Quad 1 are connected to the PCI Express Edge connector (CN1) for implementing a PCI Express x4 interface. The dedicated reference clock input pins and a reset control signal are also connected to the PCI Express edge connector. Table 18. SERDES PCI Express Interconnections PCI Express Name PCI Express Pin # LatticeECP3 Pin Name LatticeECP3 Pin # AC Coupling PERp0 A16 PCSB_HDOUTP0 AP17 C365 PERn0 A17 PCSB_HDOUTN0 AN17 C366 13 PCI Express Pin Description Receiver differential pair, Lane 0 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 18. SERDES PCI Express Interconnections (Continued) PCI Express Name PCI Express Pin # LatticeECP3 Pin Name LatticeECP3 Pin # AC Coupling PERp1 A21 PCSB_HDOUTP1 AP16 C372 PERn1 A22 PCSB_HDOUTN1 AN16 C375 PERp2 A25 PCSB_HDOUTP2 AP15 C376 PERn2 A26 PCSB_HDOUTN2 AN15 C379 PERp3 A29 PCSB_HDOUTP3 AP14 C382 PERn3 A30 PCSB_HDOUTN3 AN14 C383 PETp0 B14 PCSB_HDINP0 AL17 None PETn0 B15 PCSB_HDINN0 AK17 None PETp1 B19 PCSB_HDINP1 AL16 None PETn1 B20 PCSB_HDINN1 AK16 None PETp2 B23 PCSB_HDINP2 AL15 None PETn2 B24 PCSB_HDINN2 AK15 None PETp3 B27 PCSB_HDINP3 AL14 None PETn3 B28 PCSB_HDINN3 AK14 None REFCLK+ A13 PCSB_REFCLKP AH15 None REFCLK- A14 PCSB_REFCLKN AH16 None PERST# A11 PT109A J21 None PCI Express Pin Description Receiver differential pair, Lane 1 Receiver differential pair, Lane 2 Receiver differential pair, Lane 3 Transmitter differential pair, Lane 0 Transmitter differential pair, Lane 1 Transmitter differential pair, Lane 2 Transmitter differential pair, Lane 3 Reference clock (differential pair) Fundamental reset Quad C (Daughter Board Expansion) All channels of Quad 2 are connected to a high-speed Molex Mezzanine connector for working with a 3.2 x 2.5” daughter board. Users can design a daughter board for implementing anything that requires the SERDES quad, such as the high-speed HDMI/DVI video interface. Figure 7. Daughter Board Connection Daughter Board Control Connector (J47) 3.2" x 2.5" Lattice ECP3 DVI MDR MDR MDR MDR R x T x Mezzanine Connector (J19) Power Hole for standoffs to secure the Daughter Board R x T x D P D P Daughter Board Power Connector (J17) Other than the four input/output Quad 2 SERDES channels and the differential reference clock pair, there are three differential pairs of general purpose I/Os connected between the Mezzanine connector and the LatticeECP3 device. These signals can be used for the control or status signals of the daughter board. A 4-pin power connector is used to provide power to the daughter board. Tables 19 and 20 show the pin connections of the Mezzanine and the power connectors. Table 21 shows the pin connections between the LatticeECP3 and the daughter board con- 14 LatticeECP3 Video Protocol Board – Revision C User’s Guide trol connector. Table 19. Mezzanine Connections (J19) J19 Pin # LatticeECP3 Pin Name LatticeECP3 Pin # 1 PCSC_HDINP3 AL22 2 PCSC_HDINN3 AK22 3 PCSC_HDINP2 AL23 4 PCSC_HDINN2 AK23 5 PCSC_HDINP1 AL24 6 PCSC_HDINN1 AK24 7 PCSC_HDINP0 AL25 8 PCSC_HDINN0 AK25 9 PR25A P28 10 PR25B P27 11 PR28A R28 12 PR28B R27 13 PCSC_HDOUTP3 AL22 14 PCSC_HDOUTN3 AK22 15 PCSC_HDOUTP2 AL23 16 PCSC_HDOUTN2 AK23 17 PCSC_HDOUTP1 AL24 18 PCSC_HDOUTN1 AK24 19 PCSC_HDOUTP0 AL25 20 PCSC_HDOUTN0 AK25 21 PCSC_REFCLKP AH22 22 PCSC_REFCLKN AH23 23 PR19A N26 24 PR19B P26 Description SERDES Quad 2 Channel 3 Input SERDES Quad 2 Channel 2 Input SERDES Quad 2 Channel 1 Input SERDES Quad 2 Channel 0 Input User-defined Differential Signal Pair 1 User-defined Differential Signal Pair 2 SERDES Quad 2 Channel 3 Output SERDES Quad 2 Channel 2 Output SERDES Quad 2 Channel 1 Output SERDES Quad 2 Channel 0 Output SERDES Quad 2 Reference Clock User-defined Differential Signal Pair 0 Table 20. Daughter Board Power Connections (J17) J17 Pin Number Voltage Maximum Current 2, 4 5.0V ~8A 6, 8 3.3V ~8A 10 1.8V ~2A 1, 3, 5, 7, 9 GND 15 LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 21. Daughter Board Control Signals Connections (J47) J47 Pin Number LatticeECP3 Pin Number Signal Name J47 Pin Number LatticeECP3 Pin Number Signal Name 1 AM8 MZ_CTRL0 2 AM7 MZ_CTRL1 3 AK8 MZ_CTRL2 4 AK7 MZ_CTRL3 5 AG9 MZ_CTRL4 6 AF9 MZ_CTRL5 7 AK6 MZ_CTRL6 8 AE9 MZ_CTRL7 9 AH7 MZ_CTRL8 10 AL3 MZ_CTRL9 11 AJ3 MZ_CTRL10 12 AJ2 MZ_CTRL11 13 AN8 MZ_CTRL12 14 AN7 MZ_CTRL13 15 AH9 MZ_CTRL14 16 AE3 MZ_CTRL15 17 AE4 MZ_CTRL16 18 AD3 MZ_CTRL17 19 AD4 MZ_CTRL18 20 AA8 MZ_CTRL19 Figure 8 shows the mechanical dimensions required for designing a daughter board. Figure 8. Mechanical Drawing of the Daughter Board Connection 1.4" 0.4" 1.2" 0.45" 0.68" J47 Circuit #1 J17 Circuit #2 Circuit #1 Circuit #2 Circuit #10 1.9" Daughter Board (Size 3.2" x 2.5") 0.2" 0.0689" 0.3" LatticeECP3 Circuit #1 J19 0.937" Circuit #12 Circuit #13 Circuit #24 2.20" 2.50" ChannelLink and CameraLink Video Interfaces There are two LVDS video interfaces on the board, ChannelLink and CameraLink. Both interfaces include a receive channel, but only the ChannelLink interface includes a transmit channel. All of these channels use the same onboard 3M MDR-26 (p/n 10226-1210VE) connectors. However, since the pinouts of these two interfaces are different, different 3M Mini D Ribbon (MDR) cables must be used. The cables are listed below. They look the same but have different pinouts. 16 LatticeECP3 Video Protocol Board – Revision C User’s Guide • 3M ChannelLink Cable: 14526-EZ8B-XXX-07C • 3M CameraLink Cable: 14X26-SZLB-XXX-0LC Other than the ChannelLink and CameraLink LVDS signals, some of the LVDS signals are also connected to the two RJ45 connectors on J44 and J45. Tables 22 to 25 show the connections of these LVDS connectors. Table 22. ChannelLink Tx Connections (J9) Signal Name J9 Pin # LatticeECP3 Pin # TX OUT0+ 15 AM29 TX OUT0- 14 AN29 TX OUT1+ 5 AL30 TX OUT1- 4 AM30 TX OUT2+ 7 AJ31 TX OUT2- 6 AK31 TX OUT3+ 13 AA28 TX OUT3- 12 AA27 TX CLKOUT+ 23 AH33 TX CLKOUT- 22 AJ33 LatticeECP3 Pin Type External Resistor True LVDS Output None True LVDS Output None True LVDS Output None True LVDS Output None True LVDS Output None Table 23. ChannelLink Rx Connections (J10) J10 Pin # LatticeECP3 Pin# RX IN0+ Signal Names 12 V31 RX IN0- 13 V30 RX IN1+ 22 W34 RX IN1- 23 W33 RX IN2+ 20 W32 RX IN2- 21 W31 RX IN3+ 14 W29 RX IN3- 15 W28 RX CLKIN+ 4 U28 RX CLKIN- 5 V28 LatticeECP3 Pin Type External Resistor LVDS Input R65 (100 ) LVDS Input R63 (100 ) LVDS Input R60 (100 ) LVDS Input R58 (100 ) LVDS Input R61 (100 ) Table 24. RJ45 Connections (J44 and J45) Signal Name Pin# LatticeECP3 Pin# RJ45_OUT_P0 1 (J44) W27 RJ45_OUT_N0 2 (J44) W26 RJ45_OUT_P1 3 (J44) AA25 RJ45_OUT_N1 6 (J44) AA26 RJ45_OUT_P2 4 (J44) W30 RJ45_OUT_N2 5 (J44) W29 RJ45_OUT_P3 7 (J44) Y26 RJ45_OUT_N3 8 (J44) Y25 RJ45_IN_P0 1 (J45) AM34 RJ45_IN_N0 2 (J45) AM33 RJ45_IN_P1 3 (J45) AC32 RJ45_IN_N1 6 (J45) AC31 17 LatticeECP3 Pin Type External Resistor True LVDS Output None True LVDS Output None Emulated LVDS Output None True LVDS Output None LVDS Input R65 (100 ) LVDS Input R63 (100 ) LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 24. RJ45 Connections (J44 and J45) (Continued) Signal Name Pin# LatticeECP3 Pin# RJ45_IN_P2 4 (J45) AA34 RJ45_IN_N2 5 (J45) AA33 RJ45_IN_P3 7 (J45) P30 RJ45_IN_N3 8 (J45) R29 LatticeECP3 Pin Type External Resistor LVDS Input R60 (100 ) LVDS Input R58 (100 ) Table 25. CameraLink Rx Connections (J12) Signal Name J12 Pin # LatticeECP3 Pin# X0+ 12 U32 X0- 25 U31 X1+ 11 U34 X1- 24 U33 X2+ 10 T34 X2- 23 T33 X3+ 8 T32 X3- 21 T31 XCLK+ 9 U26 XCLK- 22 U27 SerTC+ 20 N30 SerTC- 7 N29 LatticeECP3 Pin Type External Resistor LVDS Input R80 (100 ) LVDS Input R76 (100 ) LVDS Input R71 (100 ) LVDS Input R68 (100 ) LVDS Input R70 (100 ) RN33A Emulated LVDS Output ECP3 165 140 165 SerTFG+ 6 P32 SerTFG- 19 P31 CC1+ 5 R34 CC1- 18 R33 LVDS Input R206 (100 ) RN32A Emulated LVDS Output ECP3 165 140 165 CC2+ 17 R31 CC2- 4 R30 RN32B Emulated LVDS Output ECP3 165 140 165 CC3+ 3 P34 CC3- 16 P33 RN31A Emulated LVDS Output ECP3 165 140 165 CC4+ 15 N34 CC4- 2 N33 RN31B Emulated LVDS Output ECP3 165 140 165 DVI Video Interface There are two DVI video connectors on this board, one for DVI receive and the other for DVI transmit. The I/Os on the banks 0 and 1 of LatticeECP3 support the TRLVDS (Transition Reduced LVDS) I/O standard and can be used to receive video signals with TMDS standard such as DVI and HDMI. These I/Os can support a maximum band18 LatticeECP3 Video Protocol Board – Revision C User’s Guide width of up to 1Gbps. The TMDS signals of DVI Rx connector (J16). For DVI Tx, the TMDS transmitter TFP410 from TI is used to convert and encode the parallel R, G, B pixel data to TMDS signals. These TMDS signals are then connected to J14. Tables 26 and 27 show the LatticeECP3 pin connections to these two DVI connectors. Table 26. DVI Rx Connections (J16) J16 Pin # Pin Name LatticeECP3 Pin # Description 18 TMDS_Data0+ C16 17 TMDS_Data0- D16 10 TMDS_Data1+ A16 9 TMDS_Data1- B16 2 TMDS_Data2+ C17 1 TMDS_Data2- D17 23 TMDS_Clock0+ J17 24 TMDS_Clock0- H17 6 DDC_Clock D14 DVI Rx DDC Clock 7 DDC_Data J15 DVI Rx DDC Data 16 Hot Plug Detect F13 DVI Rx Hot Plug Detect TMDS Blue Data Channel TMDS Green Data Channel TMDS Red Data Channel TMDS Clock Channel Table 27. DVI Tx Connections (J14) J14 Pin # J14 Pin Name 18 and 17 TMDS_Data0+TMDS_Data0- 10 and 9 TMDS_Data1+TMDS_Data1- 2 and 1 6 TMDS_Data2+TMDS_Data2- DDC_Clock TFP410 Pin TFP410 Pin # LatticeECP3 Pin # DATA7 54 DATA6 55 A5 DATA5 58 G12 DATA4 59 G13 DATA3 60 A12 DATA2 61 B12 DATA1 62 J14 DATA0 63 H13 (LSB) DATA15 44 B3 (MSB) DATA14 45 A2 DATA13 46 D5 DATA12 47 C6 DATA11 50 B4 DATA10 51 A3 DATA9 52 D6 DATA8 53 C5 (LSB) DATA23 36 C3 (MSB) DATA22 37 C4 DATA21 38 D3 DATA20 39 C2 DATA19 40 B1 DATA18 41 B2 DATA17 42 E4 DATA16 43 D4 (LSB) — — C14 19 Description A4 (MSB) TMDS Blue Data Channel TMDS Green Data Channel TMDS Red Data Channel DVI Tx DDC Clock LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 27. DVI Tx Connections (J14) (Continued) J14 Pin # J14 Pin Name TFP410 Pin TFP410 Pin # LatticeECP3 Pin # Description 7 DDC_Data — — G15 DVI Tx DDC Data — — IDCKP 57 K14 — — — DE 2 D13 — — — — VSYNC 5 J13 — — HSYNC 4 H14 — — — ISEL/RSTN 13 G21 — — — BSEL/SCL 15 B13 — — — DSEL/SDA 14 A13 — RS-232 Interface A 2x5 header (J38) provides a RS-232 port connection to the LatticeECP3 device via a RS-232 transceiver MAX232. Either the DB25 or DB9 cable can be connected to this header for providing a RS-232 pot with industrial standard pinout. Table 28 shows the pin connections of this header. Table 28. RS-232 Interface Header Pin Connections (J38) J38 Pin # Pin Name Net Name LatticeECP3 Pin # J38 Pin # Pin Name Net Name LatticeECP3 Pin # 1 N.C. — — 2 N.C. — — 3 TXD RS232_TXD F12 (Input) 4 N.C. — — 5 RXD RS232_RXD E11 (Output) 6 N.C. — — 7 N.C. — — 8 N.C. — — 9 N.C. GND — 10 N.C. — — LCD Interface A 2x9 header (J43) provides a connection to LCD modules such as the 20-character x 2 line LCD module LCMS02002DSR or LCM-S02002DSR (with backlight LED) from Lumex. The board includes two variable resistors for LCD adjustments. VR6 adjusts the backlight and VR5 provides contrast adjustment. A user design must be included in the FPGA to drive this feature. This header can also be used for probe points for observing FPGA pins. Pin 1 and Pin 2 of header J43 are dummy pins that connect to nothing. When installing the Lumex LCD module, these two pins should be skipped. Table 29 shows the pin connections of this header. Table 29. LCD Interface Header Pin Connections (J43) J43 Pin# LatticeECP3 Pin # LCM-S02002 Pin # 1 — — N.C. (Dummy) 2 — — N.C. (Dummy) 3 — 1 GND 4 — 2 5V 5 — 3 VO (Contrast) 6 H15 4 LCD5 / LCD_RS 7 A8 5 LCD0 / LCD_R/W 8 E17 6 LCD6 / LCD_E 9 A9 7 LCD1 / LCD_DB0 10 B14 8 LCD7 / LCD_DB1 11 A7 9 LCD2 / LCD_DB2 12 A14 10 LCD8 / LCD_DB3 13 E15 11 LCD3 / LCD_DB4 14 E13 12 LCD9 / LCD_DB5 15 D15 13 LCD4 / LCD_DB6 16 E12 14 LCD10 / LCD_DB7 17 — 15 ANODE (Backlight) 18 — 16 GND Net Names J43 Pin# 20 LatticeECP3 LCM-S02002 Pin # Pin# Net Names LatticeECP3 Video Protocol Board – Revision C User’s Guide Switches and LEDs There are many on-board DIP switches, push-button switches, discrete LEDs and a 16-segment LED display that can be used to provide static inputs and outputs for a design. Figure 9 shows the locations of these components. Figure 9. Switch and LED Locations SW1 SW3 SW4 SW10 SW9 SW8 SW7 D10 D11 D12 D13 D22 D23 D24 D26 D14 D15 D16 D17 SW6 D30 DIP Switches (SW1, SW3 and SW4) There are three SPDT toggle-DIP switches on this board. Each of these switches includes four positions to make a total number of 12 static input signals to a design. Table 30 shows the pin connections and colors of these LEDs. Table 30. DIP Switch Connections Switch # SW1 SW3 SW4 Position # Signal LatticeECP3 Pin # 1 SWITCH1 Y5 2 SWITCH2 Y4 3 SWITCH3 Y9 4 SWITCH4 Y10 1 SWITCH5 AD2 2 SWITCH6 AD1 3 SWITCH7 AC6 4 SWITCH8 AC7 1 SWITCH9 AM1 2 SWITCH10 AM2 3 SWITCH11 AE1 4 SWITCH12 AE2 21 LatticeECP3 I/O Bank (Voltage) Bank 6 (1.8V) LatticeECP3 Video Protocol Board – Revision C User’s Guide Push-button Switches (SW6, SW7, SW8, SW9 and SW10) Five push-buttons can also be used to provide inputs that require pulses. There are de-bouncers between the push-buttons and the LatticeECP3 to remove the glitches of the push-button signals. When pressing these pushbuttons, logic 0 will be sent to the connected LatticeECP3 pins. Table 31 shows the corresponding pin connections between the push-buttons and the LatticeECP3 pins. Table 31. Push-button Switch Connections Signal Switch # LatticeECP3 Pin # LatticeECP3 I/O Bank (Voltage) GSRN SW6 J20 Bank 1 (2.5V) PB4 SW7 U4 PB3 SW8 U5 PB2 SW9 P1 PB1 SW10 P2 Bank 7 (1.8V) Discrete LEDs (D10~D17, D22~D24, and D26) There are 12 discrete LEDs for use as status indicators. These 12 LEDs are divided into three groups, (D10, D11, D12, D13), (D14, D15, D16, D17) and (D22, D23, D24, D26). Each group has four LEDs and each LED is in a different color. Table 32 shows the pin connections and colors of these LEDs. Table 32. Discrete LED Connections Signal LED # LatticeECP3 Pin # ECP3 I/O Bank (Voltage) Color LED12 D10 AA31 Blue LED11 D11 AN34 Green LED10 D12 AN33 LED9 D13 AP33 LED8 D14 AP32 Blue LED7 D15 AL32 Green LED6 D16 AK32 Orange LED5 D17 N32 Red LED4 D22 N31 LED3 D23 T29 Orange Bank 3 (2.5V) Red Blue Bank 2 (2.5V) Green LED2 D24 T28 Orange LED1 D26 T27 Red 22 LatticeECP3 Video Protocol Board – Revision C User’s Guide 16-Segment LED Display (D30) The LatticeECP3 general-purpose I/O pins are connected to a 16-segment display, as shown in Table 33. These pins can be driven low to illuminate the display segments. Table 33. 16-Segment LED Display Connections Segment LatticeECP3 Pin A H20 B A18 C G18 D D18 DP B18 E L19 F C19 G J19 H K19 K G19 M H19 N K20 P F19 R H18 S J18 T D19 U E18 A H B K M N U G P T S F C R E D DP Logic Analyzer Connector and Test Points For debugging purposes, all unused LatticeECP3 I/Os are connected to connectors/headers for debugging a design using test equipment such as logic analyzers or scopes. Logic Analyzer Connector An on-board Mictor connector is connected to many LatticeECP3 I/Os to make it easy to use a logic analyzer for debugging the FPGA design. The Mictor connector pins are connected to different I/O banks with different Vccio voltages. Users may need to configure the threshold voltage of the logic analyzer pod to match the signals being monitored. Other than connecting to the Mictor connector, these LatticeECP3 pins are also connected to two standard 100-mil pitch headers for use with logic analyzers or scopes that do not support Mictor connection. Table 34 shows the LatticeECP3 pin connections to the Mictor connector and the two headers. Table 34. Logic Analyzer Connections (J29, J35 and J36) J29 Pin # Signal J35 Pin # J36 Pin # LatticeECP3 Pin # LatticeECP3 I/O Bank (Voltage) 1 — — — — — 2 — — — — — 3 — — — GND — 4 — — — — — 5 LA1 — 1 D33 6 LA2 1 — D31 7 LA3 — 2 K15 8 LA4 2 — C13 23 Bank 8 (3.3V) Bank 0 (3.3V) LatticeECP3 Video Protocol Board – Revision C User’s Guide Table 34. Logic Analyzer Connections (J29, J35 and J36) (Continued) J29 Pin # Signal J35 Pin # J36 Pin # LatticeECP3 Pin # LatticeECP3 I/O Bank (Voltage) 9 LA5 — 3 J22 10 LA6 3 — J23 11 LA7 — 4 F22 12 LA8 4 — G23 13 LA9 — 5 A24 14 LA10 5 — B24 15 LA11 — 6 H22 16 LA12 6 — H23 17 LA13 — 7 K23 18 LA14 7 — K24 19 LA15 — 8 C28 20 LA16 8 — D28 21 LA17 — 9 G26 22 LA18 9 — AA2 23 LA19 — 10 AJ6 24 LA20 10 — AL8 25 LA21 — 11 AM5 26 LA22 11 — AM6 27 LA23 — 12 AN6 28 LA24 12 — AL7 29 LA25 — 13 AM4 30 LA26 13 — AP5 31 LA27 — 14 AP6 32 LA28 14 — — — 33 LA29 — 15 — — 34 LA30 15 — — — 35 LA31 — 16 — — 36 LA32 16 — — — 37 LA33 — 17 — — 38 LA34 17 — — — Bank 1 (2.5V) Bank 6 (1.8V) Known Issues 1. DDR2 Reference Voltage There are two DDR2 devices on the board – U29 and U31. When the design is using only one DDR2 device, the DDR2_REF signal for the unused DDR2 device will be pulled up by the unused LatticeECP3 pin. This pulls the Vref voltage away from the 0.9V generated by the LP2997 voltage regulator to around 1.6~1.7V. The DDR2 will not work with the wrong reference voltage; the DDR2 accesses will fail. The DDR2_REF generated by LP2997 is connected to LatticeECP3 pin-V7(VREF1 of Bank 6 for the DDR2 device on U29) and pin-R9 (VREF1 of Bank 7 for the DDR2 device on U31). To avoid being pulled up to the wrong voltage, the unused VREF1 pin cannot be left unused because all unused pins will be pulled up by default. The easiest workaround is adding dummy logic with one input and one output, and then assigning this input pin to the unused VREF1 pin. 24 LatticeECP3 Video Protocol Board – Revision C User’s Guide 2. DDR2 Bandwidth This board does not include the recommended DDR2 termination resistors. Because of this, DDR2 may not work correctly on this board at all frequencies. Performance on individual boards may vary, but testing shows the best results at 125MHz, 150 MHz and 250MHz. 200MHz operation may be compromised due to this termination issue. It has also been found that U31 tends to have such issue more likely than U29. Based on the above findings, the following is strongly recommended when using the on-board DDR2 memory: – If only one memory device is needed, U29 is recommended over U31. – DDR2 memory operating frequency around 200 MHz on this board should be avoided if possible. If the operating frequency around 200 MHz cannot be avoided, the following may help work around or mitigate the issue: – Set the DDR2 memory interface related pins on FPGA DRIVE = 8 and SLEWRATE = SLOW in Design Planner. – Change the on-die-termination (ODT) of the DDR2 memory device. This can be done by setting the desired value for the extended mode register. ODT = 50 appears to be better than the others on the board tested, but this may vary from board to board. Users may wish to experiment with different ODT options to determine the best ODT value. Ordering Information Description Ordering Part Number China RoHS Environment-Friendly Use Period (EFUP) LFE3-95EA-V-EVN1 LatticeECP3 Video Protocol Board 1. Some early revision C LatticeECP3 Video Protocol Boards have the LatticeECP3 “E” device installed (LFE3-95E-V-EVN). For these boards, see TN1180, LatticeECP3 High-Speed I/O Interface, for information on the differences between the LatticeECP3 “E” and “EA” devices. Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: techsupport@latticesemi.com Internet: www.latticesemi.com Revision History Date Version March 2010 01.0 Initial release. Change Summary March 2011 01.1 Added Known Issues text section. May 2011 01.2 Updated Ordering Information table for LFE3-95EA-V-EVN part number. October 2012 01.3 Updated document with new corporate logo. Updated LatticeECP3 pin numbers in the Push-button Switch Connections table. FPGA Configuration schematic – Updated name of PR5A in the ECP3 Configuration I/Os section. © 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 25 26 A B C D (Sheet 4) (Sheet 3) 5 (Sheet 5) 3 PCIe x4 4 3 (Sheet 13) Quad A (Sheet 7) SerDes (1156fpBGA) (Sheet 15, Sheet 16) Quad B (Sheet 8) Bank6 ECP3 FPGA SDI Cable Drivers & Cable Equalizers (Sheet 7) Bank7 (Sheet 12) 16-Seg LED (Sheet 7) DisplayPort Quad C (Sheet 10) Bank3 (Sheet 10) Bank2 (Sheet 6) Bank8 Bank1 (Sheet 11) Bank0 (Sheet 11) TI ADC (Sheet 9) (Sheet 9) RS232 (Sheet 8) (Sheet 9) LCD SDI Rx Reference Clock & Tx Reference Clock (Sheet 14) SDI Reference Clock Control (Sheet 12) Switches (Sheet 8) DDR2 Memory (Sheet 12) Push Buttons (Sheet 9) DVI Other Devices Power Management FPGA Power 4 2 2 (Sheet 7) Mezzanine Connector (Sheet 10) Date: Size C Title Channel-Link Tx/Rx (Sheet 10) RJ45 Tx/Rx (Sheet 12) LEDs (Sheet 11) Clocks (Sheet 10) Tuesday, March 09, 2010 1 Sheet 1 of ECP3 Video Protocol Board Schematic Project 1 16 C Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 Block Diagram Camera-Link Rx (Sheet 6) FPGA Config ECP3 Video Protocol Board Power Generation 5 A B C D LatticeECP3 Video Protocol Board – Revision C User’s Guide Appendix A. Schematic Figure 10. Block Diagram Title 1 27 5 4 3 2 Date: Friday, March 19, 2010 1 Sheet 2 of ECP3 Video Protocol Board Schematic Project Assembly Drawing 16 C Rev A A Size C B B Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 C 2 C 3 D 4 D 5 LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 11. Assembly Drawing A B C 1 U12 VOUT SENSE [4] 2_5_TRIM [4] R120 10K [4] 5 GP13 GP15 C324 0.01uF S1 S2 S3 G Q28 1 2 3 4 NTMS4503NR2G SOIC-8 D4 D3 D2 D1 + C264 100uF, Tant EIA3528 2_5V 2.5V R176 169, 1% R178 390, 1% C316 22uF, X5R, 6.3V 0805 3_3V_SDI_DE 1 + SERDES_PWR_EN C418 330uF, Tant 3_3V U4 C64 NS 0.01uF, NPO LP3878MR-ADJ/NOPB 1206 1 BYPASS SHDN 8 2 2 NC1 NC2 7 3 GND3 ADJ 6 4 IN OUT 5 4 fz = 1 / (2*3.1416*390*0.01uF) = 40KHz fz is within the recommanded 20KHz to 100KHz range Vout = 1 + (390/169) = 3.3078V C56 22uF, X5R, 6.3V 0805 5_0V GP2 GP7 GP17 3.3V GP12 GP3 GP16 Vout = 1.21 * ( 1 + 191/180 ) + 0.000003 * 191 = 2.4945V C266 33uF, Tant 0805 F1 FUSEBLOCK W/3A FUSE SMD 0154003.DR C415 0.01uF 8 7 6 5 + C416 10uF, Tant 0805 GP22 GP1 GP18 GP8 J39 HEADER 2x1 GP11 GP4 GP5 GP24 3.3V for SD/HD/3G-SDI Cable Drivers and Equalizers R114 180, 1% + + C419 10uF, Tant 0805 3_3V_GATE R115 191, 1% R328 0R fz = 1 / (2*3.1416*390*0.01uF) = 40KHz fz is within the recommanded 20KHz to 100KHz range Vout = 1 + (390/169) = 3.3078V GP9 GP14 GP6 GP19 GP21 2 1 GP20 F7 3_3VIN FUSEBLOCK W/10A FUSE SMD 0154010.DR SERDES_PWR_EN LT LT1764AEQ#PBF 1 2 3 4 5 5 6 3_3VIN 3_3_TRIM 2_5V_EN R321 2K R325 0R SHDN IN GND6 GND OUT ADJ [4] PTH12060W 8 U20 C289 NS 0.01uF, NPO LP3878MR-ADJ/NOPB 1206 1 BYPASS SHDN 8 2 2 NC1 NC2 7 3 GND3 ADJ 6 4 IN OUT 5 6 GND1 R331OPEN 1 VIN INHIBIT# 3 2 10 MUP 9 MDWN ADJUST 4 TRACK GND7 7 U18 C298 22uF, X5R, 6.3V 0805 5_0V 12_0V 1 2 GND9 9 1 2 U17 GND1 VIN C286 330uF, Tant U14 1 2 3 4 5 1_8_TRIM LT LT1764AEQ#PBF SHDN IN GND6 GND OUT ADJ [4] C34 0.01uF R17 169, 1% R16 390, 1% SENSE 3_3VIN C41 22uF, X5R, 6.3V 0805 3_3V_SDI_CLK VOUT 3 R124 10K 0R 1 + + C413 330uF, Tant C268 33uF, Tant 0805 F2 FUSEBLOCK W/3A FUSE SMD 0154003.DR + C267 100uF, Tant EIA3528 1_8V 1.8V Voltage adjustment range : 1.0V to 1.2V Turn clockwise to increase the voltage SERDES_PWR_EN U26 NS C380 0.01uF, NPO LP3878MR-ADJ/NOPB 1206 1 BYPASS SHDN 8 2 2 NC1 NC2 7 3 GND3 ADJ 6 4 IN OUT 5 fz = 1 / (2*3.1416*113*0.01uF) = 140KHz fz is within the recommanded 50KHz to 200KHz range Vout = 1 + (113/560) = 1.2018V C378 22uF, X5R, 6.3V 0805 3_3VIN R121 390, 1% R122 191, 1% 2 VR4 20K Copal ST32ETB203 + C412 10uF, Tant 0805 C368 0.01uF [4] [4] R190 560, 1% R188 113, 1% 2 OPEN GND1 VIN 6 [4] 1 2 3 4 5 PTH12060W VCCA_TRIM SENSE [4] R132 390, 1% C285 33uF, Tant 0805 Date: Size C Title C367 0.01uF Power Generation C282 100uF, Tant EIA3528 R191 226, 1% R189 113, 1% C373 22uF, X5R, 6.3V 0805 1_5V_IO 1.5V for SerDes I/O Buffer 1 Wednesday, November 04, 2009 Sheet 3 of ECP3 Video Protocol Board Schematic Project + 1_2V_A 16 C Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 fz = 1 / (2*3.1416*113*0.01uF) = 140KHz fz is within the recommanded 50KHz to 200KHz range Vout = 1 + (113/226) = 1.5000V C273 100uF, Tant EIA3528 Vout = 1.21 * ( 1 + 0/390 ) + 0.000003 * 0 = 1.21V + + 5_0V 1.2V J15 Power Jack Male Power Jack 2.1mm 2.5A 16V PJ-002A 12_0VIN 1 3 5.0V 1 F4 FUSEBLOCK W/3A FUSE SMD 0154003.DR + C422 10uF, Tant 0805 SERDES_PWR_EN R340 0R F3 FUSEBLOCK W/10A FUSE SMD 0154010.DR D7 SCHOTTKY Vishay V12P10-E3/87A U27 C381 NS 0.01uF, NPO LP3878MR-ADJ/NOPB 1206 1 BYPASS SHDN 8 2 2 NC1 NC2 7 3 GND3 ADJ 6 4 IN OUT 5 C377 22uF, X5R, 6.3V 0805 1 R134 10K 5_0_TRIM 5 6 12_0V F5 FUSEBLOCK W/10A FUSE SMD 0154010.DR 12_0VIN VOUT 3_3VIN R342 280 R341 0R 3_3VIN LT LT1764AEQ#PBF SHDN IN GND6 GND OUT ADJ U16 SERDES_PWR_EN 5_0V_EN R339 1 2 U40 C374 22uF, X5R, 6.3V 0805 1_2V_IO GND +12VDC Terminal Block ED120/2DS TB1 12_0V 2 1 12_0VIN POWER INPUT 1.2V for SerDes I/O Buffer Vout = 1.21 * ( 1 + 191/390 ) + 0.000003 * 191 = 1.8032V R318 0R VCC_CORE 1.2V Core 12VIN GOOD D35 LED-SMT1206_GREEN R334 680 PCB Footprint = 1206 12_0V F6 FUSEBLOCK W/10A FUSE SMD 0154010.DR R323 OPEN R324 5 6 C421 330uF, Tant R322 12.1K 3.3V for SD/HD/3G-SDI Clocking Circuitry 6 + 12_0V PTH12060L 1_8V_EN VCC_TRIM [4] [4] CORE_EN [4] R326OPEN 12_0V + 12_0V INHIBIT# 3 D 2 1 1 2 ADJUST 4 GP23 1 2 1 2 GND9 9 10 MUP 9 MDWN 8 TRACK GND7 7 GP10 2 1 1 3 Distributed around the board as GND reference for test equipments. 1 2 1 2 GND9 9 INHIBIT# 3 GND Vias (40-mil) for soldering pins. 2 1 ADJUST 4 2 1 2 10 MUP 9 MDWN 8 TRACK GND7 7 1 2 GND9 9 2 3 2 1 4 1 28 2 5 A B C D LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 12. Power Generation A B C + R262 1K R261 1K BAV74LT1 Monolithic Dual Switching Diode 3_3VIN 5 8 7 6 [6] [6] TP22 TP21 TP20 TP17 OPEN TRIM6 OPEN 5 OPEN R281 R285 TRIM1 TRIM2 TRIM4 R263 R269 OPEN R307 R308 C397 2200pF 226, 1% C400 0.1uF 2_5V OPEN VMON1+ VMON1GS VMON2+ VMON2GS VMON3+ VMON3GS VMON4+ VMON4GS VMON5+ VMON5GS VMON6+ VMON6GS VMON7+ VMON7GS VMON8+ VMON8GS VMON9+ VMON9GS VMON10+ VMON10GS VMON11+ VMON11GS VMON12+ VMON12GS OPEN OPEN OPEN R274 R277 OPEN R282 R284 TRIM3 OPEN OPEN R273 R276 TRIM5 50 48 3_3V OPEN 52 51 1_2V_A R267 54 53 47 46 56 55 5_0V 62 61 64 63 66 65 68 67 70 69 72 71 GSRN DONE_ECP3 1_8V VCC_CORE R258 INITN_ECP3 C278 0.01uF [6,11] [6] [6] C277 0.1uF TEMP_GND TEMP 3_3V 58 57 R265 C398 0.1uF C399 0.1uF WP VCC GND SCL SDA A2 C275 0.01uF D25 BAV74/SOT C271 0.1uF A0 A1 EEPROM 4 3 2 1 2_5V 2(Anode) 1(Anode) Top View SOT-23 3(Cathode) R260 3K 12_0VIN 0R 2_5V 1 R272 C276 1uF, X5R, 6.3V R259 3K 12_0V C269 22uF, Tant 0805 1 3_3VIN 0R 3 1 2 1 2 2 1 2 1 2 R266 1 0R 0R TP36 TP32 TP37 C396 0.1uF 3 2 1 DXN DXP VCC U34 MAX6692 SDA OVERT ALERT SCLK 3_3VIN 4 TP16 TP15 7 4 6 8 U36 POWR1220AT8 TQFP100 Lattice ispPAC 3_3VIN TP26 TP 4 [9,13,14] [9,13,14] PLDCLK TRIM8 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 HVOUT4 HVOUT3 HVOUT2 HVOUT1 OUT20 OUT19 OUT18 OUT17 OUT16 OUT15 OUT14 OUT13 OUT12 OUT11 OUT10 OUT9 OUT8 OUT7 OUT6 SMBA/OUT5 PLDCLK TRIM8 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 73 74 75 79 80 82 83 84 95 HVOUT4 HVOUT3 HVOUT2 HVOUT1 40 42 85 86 R292 10K R315 PWR_GOOD_VCCA PWR_GOOD_VCC PWR_GOOD_3_3V PWR_GOOD_2_5V PWR_GOOD_5_0V PWR_GOOD_1_8V PAC_OUT9 PAC_OUT8 PAC_OUT7 PAC_OUT6 PAC_OUT5 1 2_5V_EN [6] [6] 100 3 8 7 6 5 10K OPEN 1 R264 OPEN R268 OPEN R275 OPEN R278 OPEN R283 OPEN R286 OPEN TP19 TP18 3_3V_GATE R125 10K 3_3VIN R131 10K 1 EXB28V102JV 3_3VIN R291 R295 1K [3] 2_5_TRIM 1_8_TRIM 5_0_TRIM VCCA_TRIM 3_3_TRIM VCC_TRIM [3] [3] [3] [3] [3] [3] Q8 2N2222 MMBT2222ALT1G 1_8V_EN Q9 2N2222 MMBT2222ALT1G 5_0V_EN 3_3VIN 3_3V [3] [3] ispPAC PCIe Edge 12V Wall Adapter 12V Input Terminal 12V INPUT TP24 TP23 TP28 TP35 TP39 TP34 TP38 TP33 [3] RN26 1 2 3 4 3 Q7 2N2222 MMBT2222ALT1G TMS_PAC TCK_PAC TDO_PAC [6] TDI_PAC [6] TCK_PAC TDO_PAC TDI_PAC TMS_PAC 25 24 23 21 20 19 18 17 16 15 14 12 11 10 9 8 R123 10K 3_3VIN TDO_PAC TDI_PAC ATDI_PAC TMS_PAC TCK_PAC TDISEL_PAC I2C_SDA I2C_SCL NC1 NC2 NC3 NC4 NC5 D 3_3VIN VCCPROG 26 27 29 35 41 U35 EEPROM Microchip 24AA1025-I/SM PAC_IN3 PAC_IN4 PAC_IN5 GND 5 39 2 TP27 TP25 5 97 1 2 4 6 7 VCCINP IN1 IN2 IN3 IN4 IN5 IN6 VCCD13 VCCD38 VCCD94 13 38 94 2 PAC_VMON9 PAC_VMON10 PAC_VMON11 PAC_VMON12 10K R290 GNDD3 GNDD22 GNDD36 GNDD43 GNDD88 GNDD98 3 22 36 43 88 98 3 2 10K R298 89 90 PAC_VPS0 PAC_VPS1 96 VPS0 VPS1 PAC_MCLK 91 MCLK PAC_RESETn 93 92 SDA SCL RESETb VCCA 60 1 2 44 59 100 99 GNDA87 GNDA45 3 2 3 2 RES1 RES2 NC12 NC11 87 45 PWR_GOOD_VCC VCC CORE PWR_GOOD_1_8V 1.8V PWR_GOOD_5_0V 5.0V PWR_GOOD_2_5V 2.5V PWR_GOOD_3_3V 3.3V CORE_EN 2 2 D27 D28 D29 D31 D32 D33 [3] LED-SMT1206_GREEN LED-SMT1206_GREEN LED-SMT1206_GREEN LED-SMT1206_GREEN LED-SMT1206_GREEN R271 150 R280 150 R288 150 R297 150 R306 150 R314 150 Project 1 Wednesday, November 04, 2009 Sheet 4 of ECP3 Video Protocol Board Schematic 16 C Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 PWR_GOOD_1_8V PWR_GOOD_5_0V PWR_GOOD_2_5V PWR_GOOD_3_3V PWR_GOOD_VCC Power Management R270 10K R279 10K R287 10K R296 10K R305 10K [3] PWR_GOOD_VCCA Q11 2N2222 MMBT2222ALT1G R313 10K Date: Size C Title 3_3VIN 1 R135 10K SERDES_PWR_EN 1_2V_IO, SerDes I/O Buffer (+1.2V, 0.8A) LDO LP3878 3_3VIN 1_5V_IO, SerDes I/O Buffer (+1.5V, 0.8A) 1_2V_A, SerDes (+1.2V, 3A) LDO LT1764 3_3V_SDI_CLK, SDI Clock (+3.3V, 0.8A) 3_3V_SDI_DE, SerDes VCCAUX Drivers/Equalizers (+3.3V, 0.8A) DP_TX_PWR_OUT, DisplayPort Tx (+3.3V, 0.8A) DP_RX_PWR_OUT, DisplayPort Rx (+3.3V, 0.8A) 1 LDO LP3878 1_8V, DDR2 (+1.8V, 3A) 2_5V, LVDS (+2.5V, 3A) 3_3V, (+3.3V, 3.2A) LDO LP3878 LDO LP3878 LDO LP3878 LDO LP3878 LDO LT1764 LDO LT1764 MOSFET NTR4501N 3_3VIN, (+3.3V, 10A) VCC_CORE, (+1.2v, 10A) 5_0V, LCD (+5V,10A) LED-SMT1206_GREEN Q10 2N2222 MMBT2222ALT1G VCCA 1 PWR_GOOD_VCCA R133 10K 3_3VIN POL PTH12060W POL PTH12060L POL PTH12060W 3 2 33 34 31 30 28 37 32 VCCJ TDO TDI ATDI TMS TCK TDISEL NC6 NC7 NC8 NC9 NC10 49 76 77 78 81 3 29 2 5 A B C D LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 13. Power Management A B C D M12 M23 Y3 Y29 Y24 Y21 Y20 Y19 Y18 Y17 Y16 Y15 Y14 Y11 W21 W20 W19 W18 W17 W16 W15 W14 W12 V6 V32 V25 V21 V20 V19 V18 V17 V16 V15 V14 V10 U3 U29 U25 U21 U20 U19 U18 U17 U16 U15 U14 U10 T23 T21 T20 T19 T18 T17 T16 T15 T14 T12 R6 R32 R24 R21 R20 R19 R18 R17 R16 R15 R14 R11 P3 P29 P24 P21 P20 P19 P18 P17 P16 P15 P14 P11 M6 M32 M24 M19 M16 M11 L3 L29 L24 L23 L21 L20 L15 L14 L12 L11 K18 K17 J5 J33 J30 J2 H8 H27 F23 F20 F17 F14 F11 E9 E5 E33 E30 E26 E2 AP10 AP11 AP12 AP13 NC164 NC165 NC166 NC167 NC159 NC158 NC157 NC156 5 ECP3-95 GND401 GND402 GND1 GND2 GND3 GND4 GND5 GND6 GND7 GND8 GND9 GND10 GND11 GND12 GND13 GND14 GND15 GND16 GND17 GND18 GND19 GND20 GND21 GND22 GND23 GND24 GND25 GND26 GND27 GND28 GND29 GND30 GND31 GND32 GND33 GND34 GND35 GND36 GND37 GND38 GND39 GND40 GND41 GND42 GND43 GND44 GND45 GND46 GND47 GND48 GND49 GND50 GND51 GND52 GND53 GND54 GND55 GND56 GND57 GND58 GND59 GND60 GND61 GND62 GND63 GND64 GND65 GND66 GND67 GND68 GND69 GND70 GND71 GND72 GND73 GND74 GND75 GND76 GND77 GND78 GND79 GND80 GND81 GND82 GND83 GND84 GND85 GND86 GND87 GND88 GND89 GND90 GND91 GND92 GND93 GND94 GND95 GND96 GND97 GND98 GND99 GND100 GND101 GND102 GND103 GND104 GND105 GND106 GND107 GND108 GND109 GND110 GND111 GND112 GND113 GND114 VSS U30L GND403 GND404 GND115 GND116 GND117 GND118 GND119 GND120 GND121 GND122 GND123 GND124 GND125 GND126 GND127 GND128 GND129 GND130 GND131 GND132 GND133 GND134 GND135 GND136 GND137 GND138 GND139 GND140 GND141 GND142 GND143 GND144 GND145 GND146 GND147 GND148 GND149 GND150 GND151 GND152 GND153 GND154 GND155 GND156 GND157 GND158 GND159 GND160 GND161 GND162 GND163 GND164 GND165 GND166 GND167 GND168 GND169 GND170 GND171 GND172 GND173 GND174 GND175 GND176 GND177 GND178 GND179 GND180 GND181 GND182 GND183 GND184 GND185 GND186 GND187 GND188 GND189 GND190 GND191 GND192 GND193 GND194 GND195 GND196 GND197 GND198 GND199 GND200 GND201 GND202 GND203 GND204 GND205 GND206 GND207 GND208 GND209 GND210 GND211 GND212 GND213 GND214 GND215 GND216 GND217 GND218 GND219 GND220 GND221 GND222 GND223 GND224 GND225 GND226 GND227 GND228 GND229 AC12 AC23 A1 A34 AA11 AA14 AA15 AA16 AA17 AA18 AA19 AA20 AA21 AA24 AA32 AA6 AC11 AC16 AC19 AC24 AC29 AC3 AD11 AD12 AD14 AD15 AD20 AD21 AD23 AD24 AD32 AD6 AE10 AE11 AE17 AE18 AE24 AE25 AF10 AF2 AF25 AF30 AF33 AF5 AG10 AG25 AG27 AG8 AH10 AH11 AH14 AH17 AH18 AH21 AH24 AH25 AJ10 AJ11 AJ12 AJ13 AJ14 AJ15 AJ16 AJ17 AJ18 AJ19 AJ20 AJ21 AJ22 AJ23 AJ24 AJ25 AJ26 AJ9 AK2 AK26 AK30 AK33 AK5 AK9 AL26 AL9 AM10 AM11 AM12 AM13 AM14 AM15 AM16 AM17 AM18 AM19 AM20 AM21 AM22 AM23 AM24 AM25 AM26 AM9 AN26 AN30 AN5 AN9 AP1 AP26 AP34 AP9 B26 B30 B5 B9 C12 C15 C18 C21 C24 B27 B29 B8 NC175 NC176 NC177 C201 0.1uF VCCPLL C152 0.1uF 3_3V C148 0.1uF 2_5V C151 0.1uF 1_8V C175 0.01uF C233 0.1uF C230 0.1uF C214 0.1uF C188 1000pF C145 0.01uF C150 0.1uF C222 0.01uF C167 1000pF C166 0.01uF C189 0.01uF C153 0.01uF 4 C234 1000pF C220 0.01uF C187 1000pF C177 0.01uF C163 1000pF C226 0.01uF ALL CAPS PLACED UNDER BGA 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 AN13 AN12 AN11 AN10 C26 C27 C7 C8 C9 NC181 NC182 NC183 NC184 NC185 NC145 NC144 NC143 NC142 AL13 AL12 AL11 AL10 E14 NC195 D26 D27 D7 D8 D9 NC135 NC134 NC133 NC132 AK13 AK12 AK11 AK10 4 NC123 AH8 NC189 NC190 NC191 NC192 NC193 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 C181 1000pF C223 1000pF C154 1000pF 1 NC129 NC128 NC127 AJ32 AJ30 AJ29 E25 E27 E28 E29 E6 E7 E8 NC121 NC120 NC119 NC118 NC117 NC116 NC115 NC114 NC113 AH6 AH5 AH4 AH34 AH32 AH31 AH30 AH3 AH29 NC200 NC201 NC202 NC203 NC204 NC205 NC206 3 C217 1000pF 3 VCCA1 VCCA2 VCCA3 VCCA4 VCCA5 VCCA6 VCCA7 VCCA8 VCCA9 VCCA10 VCCA11 VCCA12 VCCA13 VCCA14 VCCA15 VCCA16 VCCAUX1 VCCAUX2 VCCAUX3 VCCAUX4 VCCAUX5 VCCAUX6 VCCAUX7 VCCAUX8 VCCAUX9 VCCAUX10 VCCAUX11 VCCAUX12 VCCAUX13 VCCAUX14 VCCAUX15 VCCAUX16 VCCPLL_L_1 VCCPLL_L_2 VCCPLL_R_1 VCCPLL_R_2 VCC1 VCC2 VCC3 VCC4 VCC5 VCC6 VCC7 VCC8 VCC9 VCC10 VCC11 VCC12 VCC13 VCC14 VCC15 VCC16 VCC17 VCC18 VCC19 VCC20 VCC21 VCC22 VCC23 VCC24 VCC25 VCC26 VCC27 VCC28 VCC29 VCC30 VCC31 VCC32 C232 22uF, Tant 0805 VCC CORE ECP3-95 U30I C237 + 1uF, X5R, 6.3V ECP3-95 OTHER SUPPLIES U30J AA13 AA22 AB13 AB14 AB15 AB16 AB17 AB18 AB19 AB20 AB21 AB22 N13 N14 N15 N16 N17 N18 N19 N20 N21 N22 P13 P22 R13 R22 U13 U22 V13 V22 Y13 Y22 AD16 AD18 AE19 AC17 AC18 AD13 AE16 AD17 AC22 AE23 AE12 AD22 AE22 AC13 AE13 AD19 Y23 AA23 P12 AC20 AC14 M20 AA12 Y12 R12 AC15 AC21 M21 R23 M15 M14 P23 T13 W13 T22 W22 2 VCC_CORE 3_3V 1_2V_A C146 0.01uF C261 1uF, X5R, 6.3V C228 1uF, X5R, 6.3V C133 0.1uF C225 0.1uF C131 0.01uF + C262 22uF, Tant 0805 BLM21AG601SN1D FB40 3_3V C227 0.1uF C134 0.1uF C224 0.1uF + C219 0.1uF C141 1uF, X5R, 6.3V C204 0.01uF C127 22uF, Tant 0805 C208 1000pF VCC_CORE C185 0.01uF VCC_CORE C184 0.1uF C209 1000pF C197 0.01uF C168 0.1uF 2 C211 1000pF C199 0.01uF C164 0.1uF C205 1000pF C196 0.01uF C156 0.1uF C198 1000pF C171 0.01uF C157 0.1uF C212 1000pF C195 0.01uF C158 0.1uF C218 1000pF C170 0.01uF C162 0.1uF 1 C210 1000pF C207 1000pF C229 0.01uF U30K ECP3-95 1 Wednesday, November 04, 2009 Sheet 5 of 16 C Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 C173 1000pF C213 0.01uF C206 0.01uF NO CONNECT ECP3 Video Protocol Board Schematic Project C215 0.01uF C161 0.1uF FPGA Power C182 1000pF C169 0.01uF C160 0.1uF Date: Size C Title C200 1000pF C172 0.01uF C159 0.1uF ALL CAPS PLACED UNDER BGA C260 0.1uF C144 0.01uF VCCPLL C240 22uF, Tant 0805 VCC_CORE + 3_3V C149 0.1uF 1_2V_A ALL CAPS PLACED UNDER BGA NC109 NC108 NC107 NC106 AH2 AH13 AH12 AH1 F24 F25 F26 F27 F28 F29 F4 F5 F6 F7 F8 F9 G10 NC104 NC103 NC102 NC101 NC100 NC99 NC98 NC97 NC96 NC95 NC94 NC93 AG7 AG6 AG5 AG4 AG34 AG33 AG32 AG31 AG30 AG3 AG29 AG28 NC210 NC211 NC212 NC213 NC214 NC215 NC216 NC217 NC218 NC219 NC220 NC221 NC222 NC91 NC90 NC89 NC88 NC87 AG2 AG13 AG12 AG11 AG1 G24 G27 G28 G29 NC85 NC84 NC83 NC82 NC81 AF8 AF7 AF6 AF4 AF34 NC226 NC227 NC228 NC229 NC78 NC77 NC76 NC75 AF3 AF29 AF28 AF27 1 NC73 NC72 NC71 NC70 AF13 AF12 AF11 AF1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 NC68 NC67 NC66 NC65 AE8 AE7 AE6 AE5 G6 G7 G8 G9 H10 H11 H12 H24 H28 H29 H30 H31 H32 NC63 NC62 AE34 AE33 NC232 NC233 NC234 NC235 NC236 NC237 NC238 NC239 NC240 NC241 NC242 NC243 NC244 NC56 NC55 AE28 AE27 H6 H7 H9 J10 J11 NC52 NC51 AE15 AE14 NC247 NC248 NC249 NC250 NC251 NC47 NC46 AD7 AD5 1 2 1 2 1 2 1 2 1 2 J24 J25 J26 J27 J28 J29 J31 J32 J4 J6 J7 J8 J9 K1 K11 NC44 NC43 NC42 NC41 AD34 AD33 AD31 AD30 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 NC254 NC255 NC256 NC257 NC258 NC259 NC260 NC261 NC262 NC263 NC264 NC265 NC266 NC267 NC268 NC39 NC38 NC37 NC36 NC35 AD29 AD28 AD27 AD26 AD25 2 NC26 NC25 NC24 NC23 NC22 NC21 NC20 NC19 NC18 NC17 NC16 NC15 NC14 NC13 AC28 AC27 AC26 AC25 AC2 AC10 AC1 AB8 AB7 AB6 AB4 AB32 AB31 AB3 K2 K25 K26 K27 K28 K29 K3 K30 K31 K32 K33 K34 K4 K5 K6 K7 NC33 NC32 NC31 NC30 AC9 AC8 AC5 AC4 2 NC11 NC10 NC9 NC8 NC7 1 2 1 2 1 2 1 2 AB27 AB26 AB25 AB10 AA9 1 2 1 2 1 2 1 NC271 NC272 NC273 NC274 NC275 NC276 NC277 NC278 NC279 NC280 NC281 NC282 NC283 NC284 NC285 NC286 L1 L10 L2 L25 L26 L27 L28 L30 L31 L32 L33 L34 L4 L5 L6 L7 L8 L9 M1 M2 M25 M26 M27 M28 M29 M3 M30 M31 M33 M34 M4 M7 M8 M9 N9 NC289 NC290 NC291 NC292 NC293 NC294 NC295 NC296 NC297 NC298 NC299 NC300 NC301 NC302 NC303 NC304 NC305 NC306 NC307 NC308 NC309 NC310 NC311 NC312 NC313 NC314 NC315 NC316 NC317 NC318 NC319 NC320 NC321 NC322 NC323 1 2 1 2 1 2 NC401 NC402 NC403 NC404 NC405 NC406 NC407 NC408 NC409 1 1 2 G14 G15 F15 E16 F16 H21 G22 AJ1 AK1 2 30 2 5 A B C D LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 14. FPGA Power A B C D FPGA_CSSPI0N_DI FPGA_D7 SPI0_Q FLASH_DIS R226 10K 3(D) 2(S) D19 LED-SMT1206_RED Q22 MOSFET N GSD 1 BSS138LT1G 3 4 1 4 2 11 8 4Y 3Y 3_3V 5 74LVC125 4A 4OE_N 3A 3OE_N U11B 12 13 9 10 Tactile Switch TL3301SPF160QG 3 1 SW5 PROGRAMN Tactile Switch TL3301SPF160QG 2 SW6 FPGA GSRN 6 3 2Y 1Y R116 4.7K R118 4.7K R239 10K D18 LED-SMT1206_GREEN PROGRAMN_ECP3 GSRN (J20) INITN_ECP3 74LVC125 2A 2OE_N 1A 1OE_N U11A 5 4 2 1 3 1 C265 0.1uF 3_3V DONE_ECP3 PROGRAMN_ECP3 R107 100 4 6 U13 MAX6817 GSRN [4,11] D21 LED-SMT1206_RED R244 150 3_3V OUT2 R223 10K D20 LED-SMT1206_RED R242 150 3_3V SPI_CLK FPGA_SISPI OUT1 R111 100 IN2 IN1 U32 Flash STMicroelectronics M25P64-VMF6TP HOLD# CK 16 VCC D 15 DU1 DU8 14 DU2 DU7 13 DU3 DU6 12 DU4 DU5 11 VSS 10 S# Q W# 9 DONE indicator will light when configuration is successfully completed PROGRAMN & GSRN Pushbuttons 1(G) Top View SOT-23 R240 150 1 2 3 4 5 6 7 8 INITN indicator will light if an error occurs during configuration programming R241 150 3_3V CONFIG Status LEDs R214 10K 3 SPI FLASH 5 VCC R225 10K R119 OPEN C389 0.01uF R117 OPEN C390 0.1uF 4 ECP3-95 R113 10K E1 D1 D2 C1 K10 P25 N25 F33 F32 J34 H34 G32 G33 H33 G34 E32 F34 E31 E34 D34 F31 G30 D33 G31 C34 C33 B34 B33 F30 D32 C31 D31 C32 B32 D29 D30 A33 A32 W23 AN4 AP4 R98 R97 R96 CFG0 CFG1 CFG2 X X 0(ON) 1(OFF) 1(OFF) 1(OFF) 0(ON) CFG1 10K 10K 10K ON TDO_ECP3 TMS_ECP3 TCK_ECP3 TDI_ECP3 TDI_ECP3 TCK_ECP3 TMS_ECP3 TDO_ECP3 3_3V X 1(OFF) 1(OFF) 0(ON) 0(ON) CFG0 LA2 LA1 S P I0 _ Q 8 7 6 5 EXB28V102JV Configuration Mode ispJTAG 3 Slave Parallel Slave Serial SPIm SPI Flash 3_3V [7] [7] DP_RX_HPD_OUT [8,9,11,12] DP_TX_HPD_OUT [11] LA[1..33] SW2 SW DIP-3 CTS 194-3MST 1K 3_3V 3 10K, 1% TI_ADC[0..4] R59 [4] RN12 1 2 3 4 TEMP [4] TEMP_GND TI_ADC0 TI_ADC1 TI_ADC2 TI_ADC3 TI_ADC4 FPGA_XRES DONE_ECP3 FPGA_CCLK INITN_ECP3 PROGRAMN_ECP3 CFG0 CFG1 CFG2 FPGA_SISPI FP G A _ D7 FPGA_D6 FPGA_D5 FPGA_D4 FPGA_D3 FPGA_D2 FPGA_D1 FPGA_D0 SPI_CLK FPGA_WRITEN FPGA_CSSPI1N_DOUT FPGA_CSSPI0N_DI FPGA_CSN FPGA_CS1N 1(OFF) 0(ON) 0(ON) CFG2 3_3V CONFIG CFG Switches R103 10K TDI TCK TMS TDO VCCJ R110 10K 3_3V BANK 8/CONFIG VCCIO8_1 VCCIO8_2 PR16B/BUSY/SISPI/AVDN PR16A/D7/SPID0 PR14B/D6/SPID1 PR14A/D5 PR13B/D4/SO PR13A/D3/SI PR11B/D2 PR11A/D1 PR10B/D0/SPIFASTN PR8B/MCLK PR10A/WRITEN PR8A/DOUT/CSON/CSSPI1N PR5B/DI/CSSPI0N/CEN PR7B/CSN/SN/CONT1N/OEN PR7A/CS1N/HOLD/CONT2N/RDY PR5A DONE CCLK INITN PROGRAMN CFG0 CFG1 CFG2 PT145B/XD15 PT145A/XD14 PT143B/XD13 PT143A/XD12 PT142B/XD11 PT142A/XD10 PT140B/XD9 PT140A/XD8 XRES TEMPSENSE TEMPVSS U30G ECP3 Configuration I/Os INITN_ECP3 3_3V 4 PROGRAMN_ECP3 3_3V GND 2 DONE_ECP3 2 14 VCC GND 7 6 5 4 31 1 2 3 5 1 2 1 2 3 [4] [4] TCK_PAC TCK_XO TCK_ECP3 TMS_PAC TMS_XO INITN_ECP3 DONE_ECP3 [4] [14] [4] [14] TMS_ECP3 10K R112 R109 R108 R245 R106 R105 R243 R104 R102 J32 J33 J34 J32 J33 J34 J32 J33 J34 J32 J33 J34 FPGA_CS1N R101 10K PROGRAMN_ECP3 HEADER 3x1 J31 SPIFASTN R100 3_3V HEADER 2x1 J30 OPEN OPEN 0R 0R 0R 0R 0R 0R 0R TDO TDI TDO TDI TDO TDI TDO TDI 1 2 3 2 ECP3 ECP3 ECP3 ECP3 HEADER 3x1 J27 FPGA_D0 2 PAC PAC PAC PAC 1 2 3 4 TMS TCK TDO TDI PROGRAMN HEADER 4x1 J32 DONE INITN XO XO XO XO FPGA_CSN R99 10K TDO_PAC TDI_ECP3 [4] TDO TDI TDO TDI TDO TDI 1 2 3 4 VCC INITN GND DONE TCK TMS NC ispEN_N TDI TDO 7 1 TDI_XO XO XO XO [14] PAC PAC PAC 1 2 3 4 TMS GND TCK DONE INITn +3.3V TDO TDI PROGRAMn HEADER 4x1 J34 FPGA_WRITEN CFG0 CFG1 CFG2 Date: Size C Title 1 Wednesday, November 04, 2009 Sheet 6 of ECP3 Video Protocol Board Schematic Project FPGA Configuration 16 C Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 (From ispVM Download Cable) TDI_PAC [4] TDO_XO [14] sysCONFIG Connector FPGA_D6 3_3V INITN_ECP3 PROGRAMN_ECP3 C263 0.1uF 3_3VIN TDO_ECP3 ECP3 ECP3 ECP3 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 JTAG CONNECTOR HEADER 10x1 2 3 4 5 6 8 9 10 J28 J37 HEADER 17x2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 HEADER 4x1 J33 J32 J33 J34 J32 J33 J34 J32 J33 J34 FPGA_CCLK FPGA_SISPI FPGA_CSSPI0N_DI FPGA_CSSPI1N_DOUT DONE_ECP3 FPGA_D7 FPGA_D6 FPGA_D5 FPGA_D4 FPGA_D3 FPGA_D2 FPGA_D1 FPGA_D0 FPGA_CSN FPGA_CS1N 3_3V 1 A B C D LatticeECP3 Video Protocol Board – Revision C User’s Guide Figure 15. FPGA Configuration A B C ECP3-95 AL21 AK21 AL20 AK20 AL19 AK19 AL18 AK18 AP21 AN21 AP20 AN20 AP19 AN19 AP18 AN18 AH19 AH20 AF21 AF20 AF19 AF18 AG21 AG20 AG19 AG18 AL17 AK17 AL16 AK16 AL15 AK15 AL14 AK14 AP17 AN17 AP16 AN16 AP15 AN15 AP14 AN14 AH15 AH16 AF17 AF16 AF15 AF14 AG17 AG16 AG15 AG14 AL25 AK25 AL24 AK24 AL23 AK23 AL22 AK22 AP25 AN25 AP24 AN24 AP23 AN23 AP22 AN22 AH22 AH23 AF24 AF23 AF22 AE20 AG24 AG23 AG22 AE21 PCSC_VCCOB PCSC_VCCIB MZ_HDINP0 MZ_HDINN0 MZ_HDINP1 MZ_HDINN1 MZ_HDINP2 MZ_HDINN2 MZ_HDINP3 MZ_HDINN3 MZ_HDOUTP0 MZ_HDOUTN0 MZ_HDOUTP1 MZ_HDOUTN1 MZ_HDOUTP2 MZ_HDOUTN2 MZ_HDOUTP3 MZ_HDOUTN3 MZ_REFCLKP MZ_REFCLKN PCSB_VCCOB PCSB_VCCIB x4_PETp0 x4_PETn0 x4_PETp1 x4_PETn1 x4_PETp2 x4_PETn2 x4_PETp3 x4_PETn3 PCSB_HDOUTP0 PCSB_HDOUTN0 PCSB_HDOUTP1 PCSB_HDOUTN1 PCSB_HDOUTP2 PCSB_HDOUTN2 PCSB_HDOUTP3 PCSB_HDOUTN3 x4_PCIE_CLKP x4_PCIE_CLKN [13] [13] [13] [13] [13] [13] [13] [13] 1 2 3 1 2 3 1 2 3 HEADER 3x1 1 2 3 HEADER 3x1 J22 C363 0.01uF R50 OPEN SI570_SCL [11] 5 SI570_SDA C362 0.1uF [11] C364 0.01uF PCSA_REFCLKN PCSA_REFCLKP TP14 [8,11] SI570_EN 6 7 8 1 2 VDD SDA SCL NC OE GND CLK+ CLK- 3 4 5 [16] [16] C97 22uF, Tant 0805 TX_GC4915_CLKOUTN U9 Si570 Silicon Labs 570QAC000215DG SI570_CLK_N PCSA_SMA_N 0R TP12 + C103 22uF, Tant 0805 R350 C99 22uF, Tant 0805 C105 22uF, Tant 0805 C98 22uF, Tant 0805 C104 22uF, Tant 0805 TX_GC4915_CLKOUTP 1_5V_IO SI570_CLK_P 0R FB34 + BLM21AG601SN1D 1_2V_IO PCSA_SMA_P FB35 470 + BLM21AG601SN1D 1_5V_IO R349 1_2V_IO 1_5V_IO TP13 3_3V_SDI_CLK R48 R47 TP11 FB33 + BLM21AG601SN1D 1_2V_IO HEADER 3x1 FB37 + BLM21AG601SN1D 1_2V_IO 1_5V_IO J21 1 2 3 FB32 + BLM21AG601SN1D 1_2V_IO 1_5V_IO 1 2 3 FB36 BLM21AG601SN1D 1_5V_IO 4 C115 0.01uF PCSC_VCCOB C138 0.01uF PCSC_VCCIB C118 0.01uF PCSB_VCCOB C142 0.01uF PCSB_VCCIB C112 0.01uF PCSA_VCCOB C140 0.01uF PCSA_VCCIB C120 1uF, X5R, 6.3V C122 1uF, X5R, 6.3V C137 0.1uF C111 0.1uF C110 1uF, X5R, 6.3V C124 1uF, X5R, 6.3V C132 0.1uF C116 0.1uF C119 1uF, X5R, 6.3V C135 1uF, X5R, 6.3V C117 0.1uF C130 0.1uF 1 1 J8 SMA 73391-0060 J7 SMA 73391-0060 Place under ECP3 device C121 0.1uF C136 0.1uF C114 0.1uF C128 0.1uF C123 0.1uF C125 0.1uF Quad A Reference Clock Options: (1) Gennum Clock Chips (2) Silicon Labs Si570 (3) SMA Connectors C102 1uF, X5R, 6.3V PCSC_VCCOB C108 1uF, X5R, 6.3V PCSC_VCCIB 470 C101 1uF, X5R, 6.3V PCSB_VCCOB C107 1uF, X5R, 6.3V PCSB_VCCIB C100 1uF, X5R, 6.3V PCSA_VCCOB C106 1uF, X5R, 6.3V PCSA_VCCIB 4 1 1_2V_IO HEADER 3x1 J23 HEADER 3x1 J20 HEADER 3x1 MZ_REFCLKN J18 R75 OPEN MZ_REFCLKP PCSA_HDOUTP0 PCSA_HDOUTN0 PCSA_HDOUTP1 PCSA_HDOUTN1 PCSA_HDINP0 PCSA_HDINN0 PCSA_HDINP1 PCSA_HDINN1 PCSA_VCCOB PCSA_VCCIB PCSA_HDOUTP2 PCSA_HDOUTN2 PCSA_HDOUTP3 PCSA_HDOUTN3 PCSA_REFCLKP PCSA_REFCLKN PCSA_HDINP2 PCSA_HDINN2 PCSA_HDINP3 PCSA_HDINN3 J24 Quad A Reference Clock PCS/SERDES 1 2 1 2 1 2 D PCSA_HDINP0 PCSA_HDINN0 PCSA_HDINP1 PCSA_HDINN1 PCSA_HDINP2 PCSA_HDINN2 PCSA_HDINP3 PCSA_HDINN3 PCSA_HDOUTP0 PCSA_HDOUTN0 PCSA_HDOUTP1 PCSA_HDOUTN1 PCSA_HDOUTP2 PCSA_HDOUTN2 PCSA_HDOUTP3 PCSA_HDOUTN3 PCSA_REFCLKP PCSA_REFCLKN PCSA_VCCIB0 PCSA_VCCIB1 PCSA_VCCIB2 PCSA_VCCIB3 PCSA_VCCOB0 PCSA_VCCOB1 PCSA_VCCOB2 PCSA_VCCOB3 PCSB_HDINP0 PCSB_HDINN0 PCSB_HDINP1 PCSB_HDINN1 PCSB_HDINP2 PCSB_HDINN2 PCSB_HDINP3 PCSB_HDINN3 PCSB_HDOUTP0 PCSB_HDOUTN0 PCSB_HDOUTP1 PCSB_HDOUTN1 PCSB_HDOUTP2 PCSB_HDOUTN2 PCSB_HDOUTP3 PCSB_HDOUTN3 PCSB_REFCLKP PCSB_REFCLKN PCSB_VCCIB0 PCSB_VCCIB1 PCSB_VCCIB2 PCSB_VCCIB3 PCSB_VCCOB0 PCSB_VCCOB1 PCSB_VCCOB2 PCSB_VCCOB3 PCSC_HDINP0 PCSC_HDINN0 PCSC_HDINP1 PCSC_HDINN1 PCSC_HDINP2 PCSC_HDINN2 PCSC_HDINP3 PCSC_HDINN3 PCSC_HDOUTP0 PCSC_HDOUTN0 PCSC_HDOUTP1 PCSC_HDOUTN1 PCSC_HDOUTP2 PCSC_HDOUTN2 PCSC_HDOUTP3 PCSC_HDOUTN3 PCSC_REFCLKP PCSC_REFCLKN PCSC_VCCIB0 PCSC_VCCIB1 PCSC_VCCIB2 PCSC_VCCIB3 PCSC_VCCOB0 PCSC_VCCOB1 PCSC_VCCOB2 PCSC_VCCOB3 1K R358 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 U23 C328 NS 0.01uF, NPO LP3878MR-ADJ/NOPB 1206 2 1 BYPASS SHDN 8 2 NC1 NC2 7 3 GND3 ADJ 6 4 IN OUT 5 R51 OPEN Place near ECP3 x4_PERp3 x4_PERn3 x4_PERp2 x4_PERn2 x4_PERp1 x4_PERn1 x4_PERp0 x4_PERn0 R154 169, 1% x4_PCIE_CLKN C383 0.1uF, X5R, 10V C382 0.1uF, X5R, 10V C379 0.1uF, X5R, 10V C376 0.1uF, X5R, 10V C375 0.1uF, X5R, 10V C372 0.1uF, X5R, 10V C366 0.1uF, X5R, 10V C365 0.1uF, X5R, 10V C296 0.01uF R149 390, 1% DP_TX_PWR_OUT_EN 3_3V R162 169, 1% R160 390, 1% 3 1 3 5 7 9 5_0V 3_3V 1_8V DW-05-08-F-D-275 2 4 6 8 10 HEADER_5X2 Samtec J17 [10] [10] 2 1 3 5 7 9 11 13 15 17 19 J47 0.1uF, X5R, 10V 0.1uF, X5R, 10V R352 1K 0.1uF, X5R, 10V C10 x4_PERp3 x4_PERn3 x4_PERp2 x4_PERn2 x4_PERp1 x4_PERn1 x4_PERp0 x4_PERn0 x4_PCIE_CLKP x4_PCIE_CLKN PCIE_3V3 3_3V 0.1uF, X5R, 10V C11 R145 1K R351 1K A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 9 7 GND2 ML3_P_IN ML2_N_IN ML3_N_IN J4 20 18 16 14 12 10 8 20 18 16 14 12 10 8 6 4 2 PRSNT1# +12V_B1 +12V_A2 +12V_B2 +12V_A3 RSVD_B3 GND_A4 GND_B4 SMCLK JTAG2 JTAG3 SMDAT JTAG4 GND_B7 JTAG5 +3.3V_B8 JTAG1 +3.3V_A9 +3.3V_A10 3.3Vaux WAKE# PERST# GND_A12 RSVD_B12 GND_B13 REFCLK+ PETp0 REFCLKGND_A15 PETn0 GND_B16 PERp0 PERn0 PRSNT3# GND_A18 GND_B18 RSVD_A19 PETp1 PETn1 GND_A20 PERp1 GND_B21 PERn1 GND_B22 GND_A23 PETp2 GND_A24 PETn2 PERp2 GND_B25 PERn2 GND_B26 GND_A27 PETp3 GND_A28 PETn3 PERp3 GND_B29 PERn3 RSVD_B30 GND_A31 PRSNT4# RSVD_A32 GND_B32 PCIe x4 Finger B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 DP-CON Molex 47272-0001 GND2 ML0_N_out ML1_P_out GND5 ML1_N_out ML2_P_out GND8 ML2_N_out ML3_P_out GND11 ML3_N_out CONFIG1 CONFIG2 AUX_P GND16 AUX_N HPD_IN RTN PWR_OUT ML0_P_out Tx 19 17 15 13 11 9 7 5 3 1 2 4 6 DP-CON Molex 47272-0001 ML2_P_IN ML1_N_IN GND8 ML1_P_IN ML0_N_IN GND11 ML0_P_IN CONFIG1 CONFIG2 AUX_P GND16 AUX_N HPD_OUT RTN PWR_OUT GND5 Rx 19 17 15 13 11 CN1 3_3V 3 1 5 J3 1 PCSA_HDINN2 PCSA_HDINP2 0.1uF, X5R, 10V 0.1uF, X5R, 10V R54 x4_PETp3 x4_PETn3 x4_PETp2 x4_PETn2 x4_PETp1 x4_PETn1 R49 x4_PETp0 x4_PETn0 PCIE_3V3 MZ_CTRL1 MZ_CTRL3 MZ_CTRL5 MZ_CTRL7 MZ_CTRL9 MZ_CTRL11 MZ_CTRL13 MZ_CTRL15 MZ_CTRL17 MZ_CTRL19 DW-10-08-F-D-275 2 4 6 8 10 12 14 16 18 20 HEADER 10X2 Date: Size C Title 1 2 3 4 5 6 7 8 9 10 11 12 J19 Mez MZ_SIG0_P MZ_SIG0_N MZ_HDOUTP3 MZ_HDOUTN3 MZ_HDOUTP2 MZ_HDOUTN2 MZ_HDOUTP1 MZ_HDOUTN1 MZ_HDOUTP0 MZ_HDOUTN0 MZ_HDINP0 MZ_HDINN0 Molex 75005-0006 [6] [6] 1 Tuesday, January 12, 2010 Sheet 7 of 16 C Rev Lattice Semiconductor Corporation 5555 N.E. Moore Court Hillsboro, Oregon. 97124 13 14 15 16 17 18 19 20 21 22 23 24 ECP3 Video Protocol Board Schematic Project SERDES [8] MZ_SE_SIG0 MZ_SE_SIG1 MZ_SIG1_P MZ_SIG1_N MZ_CTRL[0..19] [10] [10] [10] [10] MZ_HDINP3 MZ_HDINN3 MZ_HDINP2 MZ_HDINN2 MZ_HDINP1 MZ_HDINN1 MZ_REFCLKP MZ_REFCLKN X4 PCIe Board Fingers [10] [10] 0R OPEN TP10 DP_TX_HPD_OUT R146 1K R354 1K R353 1K PCSA_HDOUTP3 PCSA_HDOUTN3 DP_RX_HPD_OUT R141 1K C6 C7 B side = PRIMARY Component Side(TOP) A side = SECONDARY Component Side(BOTTOM) PCIE_PERSTN Samtec [11] 12_0VIN DP_TX_AUX_N DP_TX_AUX_P PCSA_HDOUTN2 PCSA_HDOUTP2 DP_RX_AUX_N C8 C9 0.1uF, X5R, 10V R138 1K 0.1uF, X5R, 10V PCSA_HDINN3 C4 PCSA_HDINP3 C5 DP_RX_AUX_P C309 22uF, X5R, 6.3V 0805 [9] MZ_CTRL0 MZ_CTRL2 MZ_CTRL4 MZ_CTRL6 MZ_CTRL8 MZ_CTRL10 MZ_CTRL12 MZ_CTRL14 MZ_CTRL16 MZ_CTRL18 [10] [10] 2 C292 22uF, X5R, 6.3V 0805 [9] Mezzanine Board Connection (Quad C) All Nets are 100-ohm differential pairs. The P and N traces shall be
LFE3-95EA-V-EVN 价格&库存

很抱歉,暂时无法提供与“LFE3-95EA-V-EVN”相匹配的价格&库存,您可以联系我们找货

免费人工找货