LatticeECP/EC Family Data Sheet
DS1000 Version 02.8, September 2012
LatticeECP/EC Family Data Sheet
Introduction
September 2012
Data Sheet
Features
Extensive Density and Package Options
• 1.5K to 32.8K LUT4s
• 65 to 496 I/Os
• Density migration supported
sysDSP™ Block (LatticeECP™ Versions)
• High performance multiply and accumulate
• 4 to 8 blocks
4 to 8 36x36 multipliers or
– 16 to 32 18x18 multipliers or
32 to 64 9x9 multipliers
Embedded and Distributed Memory
• 18 Kbits to 498 Kbits sysMEM™ Embedded
Block RAM (EBR)
• Up to 131 Kbits distributed RAM
• Flexible memory resources:
Distributed and block memory
Dedicated DDR Memory Support
• Implements interface up to DDR400 (200MHz)
sysCLOCK™ PLLs
• Up to four analog PLLs per device
• Clock multiply, divide and phase shifting
System Level Support
• IEEE Standard 1149.1 Boundary Scan, plus
ispTRACY™ internal logic analyzer capability
• SPI boot flash interface
• 1.2V power supply
Low Cost FPGA
• Features optimized for mainstream applications
• Low cost TQFP and PQFP packaging
Flexible I/O Buffer
• Programmable sysI/O™ buffer supports wide
range of interfaces:
Table 1-1. LatticeECP/EC Family Selection Guide
Device
LVCMOS 3.3/2.5/1.8/1.5/1.2
LVTTL
SSTL 3/2 Class I, II, SSTL18 Class I
HSTL 18 Class I, II, III, HSTL15 Class I, III
PCI
LVDS, Bus-LVDS, LVPECL, RSDS
LFEC1
LFEC3
LFEC6/
LFECP6
LFEC10/
LFECP10
LFEC15/
LFECP15
LFEC20/
LFECP20
LFEC33/
LFECP33
12
16
24
32
40
44
64
PFU/PFF Rows
PFU/PFF Columns
16
24
32
40
48
56
64
PFUs/PFFs
192
384
768
1280
1920
2464
4096
LUTs (K)
1.5
3.1
6.1
10.2
15.4
19.7
32.8
Distributed RAM (Kbits)
6
12
25
41
61
79
131
EBR SRAM (Kbits)
18
55
92
276
350
424
498
EBR SRAM Blocks
2
6
10
30
38
46
54
sysDSP Blocks
1
—
—
4
5
6
7
8
18x18 Multipliers1
—
—
16
20
24
28
32
VCC Voltage (V)
1.2
1.2
1.2
1.2
1.2
1.2
1.2
Number of PLLs
2
2
2
4
4
4
4
67
67
360
360
400
496
Packages and I/O Combinations:
100-pin TQFP (14 x 14 mm)
144-pin TQFP (20 x 20 mm)
97
97
97
208-pin PQFP (28 x 28 mm)
112
145
147
256-ball fpBGA (17 x 17 mm)
484-ball fpBGA (23 x 23 mm)
160
147
195
195
195
224
288
352
672-ball fpBGA (27 x 27 mm)
1. LatticeECP devices only.
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1-1
Introduction_01.4
Introduction
LatticeECP/EC Family Data Sheet
Introduction
The LatticeECP/EC family of FPGA devices is optimized to deliver mainstream FPGA features at low cost. For
maximum performance and value, the LatticeECP™ (EConomy Plus) FPGA concept combines an efficient FPGA
fabric with high-speed dedicated functions. Lattice’s first family to implement this approach is the LatticeECPDSP™ (EConomy Plus DSP) family, providing dedicated high-performance DSP blocks on-chip. The LatticeEC™
(EConomy) family supports all the general purpose features of LatticeECP devices without dedicated function
blocks to achieve lower cost solutions.
The LatticeECP/EC FPGA fabric, which was designed from the outset with low cost in mind, contains all the critical
FPGA elements: LUT-based logic, distributed and embedded memory, PLLs and support for mainstream I/Os.
Dedicated DDR memory interface logic is also included to support this memory that is becoming increasingly prevalent in cost-sensitive applications.
The ispLEVER® design tool suite from Lattice allows large complex designs to be efficiently implemented using the
LatticeECP/EC FPGA family. Synthesis library support for LatticeECP/EC is available for popular logic synthesis
tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to
place and route the design in the LatticeECP/EC device. The ispLEVER tool extracts the timing from the routing
and back-annotates it into the design for timing verification.
Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE™ modules for the LatticeECP/EC
family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their
design, increasing their productivity.
1-2
LatticeECP/EC Family Data Sheet
Architecture
September 2012
Data Sheet
Architecture Overview
The LatticeECP-DSP and LatticeEC architectures contain an array of logic blocks surrounded by Programmable I/
O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR), as
shown in Figures 2-1 and 2-2. In addition, LatticeECP-DSP supports an additional row of DSP blocks, as shown in
Figure 2-2.
There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional unit
without RAM/ROM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM, ROM and register functions. The PFF block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks
are optimized for flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are
arranged in a two-dimensional array. Only one type of block is used per row. The PFU blocks are used on the outside rows. The rest of the core consists of rows of PFF blocks interspersed with rows of PFU blocks. For every
three rows of PFF blocks there is a row of PFU blocks.
Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O interfaces. PIO pairs on the left and
right edges of the device can be configured as LVDS transmit/receive pairs. sysMEM EBRs are large dedicated fast
memory blocks. They can be configured as RAM or ROM.
The PFU, PFF, PIC and EBR Blocks are arranged in a two-dimensional grid with rows and columns as shown in
Figure 2-1. The blocks are connected with many vertical and horizontal routing channel resources. The place and
route software tool automatically allocates these routing resources.
At the end of the rows containing the sysMEM Blocks are the sysCLOCK Phase Locked Loop (PLL) Blocks. These
PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the
clocks. The LatticeECP/EC architecture provides up to four PLLs per device.
Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG™
port which allows for serial or parallel device configuration. The LatticeECP/EC devices use 1.2V as their core voltage.
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
2-1
Architecture_02.0
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-1. Simplified Block Diagram, LatticeEC Device (Top Level)
Programmable I/O Cell
(PIC) includes sysIO
Interface
sysMEM Embedded
Block RAM (EBR)
JTAG Port
sysCONFIG Programming
Port (includes dedicated
and dual use pins)
PFF (PFU without
RAM)
sysCLOCK PLL
Programmable
Functional Unit (PFU)
Figure 2-2. Simplified Block Diagram, LatticeECP-DSP Device (Top Level)
Programmable I/O Cell
(PIC) includes sysIO
Interface
sysMEM Embedded
Block RAM (EBR)
JTAG Port
sysCONFIG Programming
Port (includes dedicated
and dual use pins)
PFF (Fast PFU
without RAM/ROM)
sysDSP Block
sysCLOCK PLL
Programmable
Functional Unit (PFU)
2-2
Architecture
LatticeECP/EC Family Data Sheet
PFU and PFF Blocks
The core of the LatticeECP/EC devices consists of PFU and PFF blocks. The PFUs can be programmed to perform
Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF blocks can be programmed to perform
Logic, Arithmetic and ROM functions. Except where necessary, the remainder of the data sheet will use the term
PFU to refer to both PFU and PFF blocks.
Each PFU block consists of four interconnected slices, numbered 0-3 as shown in Figure 2-3. All the interconnections to and from PFU blocks are from routing. There are 53 inputs and 25 outputs associated with each PFU block.
Figure 2-3. PFU Diagram
From
Routing
LUT4 &
CARRY
LUT4 &
CARRY
LUT4 &
CARRY
Slice 0
D
FF/
Latch
D
FF/
Latch
LUT4 &
CARRY
LUT4 &
CARRY
Slice 1
D
FF/
Latch
LUT4 &
CARRY
LUT4 &
CARRY
Slice 3
Slice 2
D
FF/
Latch
D
FF/
Latch
LUT4 &
CARRY
D
FF/
Latch
D
FF/
Latch
D
FF/
Latch
To
Routing
Slice
Each slice contains two LUT4 lookup tables feeding two registers (programmed to be in FF or Latch mode), and
some associated logic that allows the LUTs to be combined to perform functions such as LUT5, LUT6, LUT7 and
LUT8. There is control logic to perform set/reset functions (programmable as synchronous/asynchronous), clock
select, chip-select and wider RAM/ROM functions. Figure 2-4 shows an overview of the internal logic of the slice.
The registers in the slice can be configured for positive/negative and edge/level clocks.
There are 14 input signals: 13 signals from routing and one from the carry-chain (from adjacent slice or PFU).
There are 7 outputs: 6 to routing and one to carry-chain (to adjacent PFU). Table 2-1 lists the signals associated
with each slice.
2-3
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-4. Slice Diagram
To / From
Different slice / PFU
Slice
OFX1
A1
B1
C1
D1
From
Routing
CO
LUT4 &
CARRY
F1
F
D
SUM
Q1
FF/
Latch
CI
To
Routing
M1
M0
CO
A0
OFX0
LUT
Expansion
Mux
B0
C0
D0
LUT4 &
CARRY
F0
F
SUM
OFX0
CI
D
Q0
FF/
Latch
Control Signals CE
selected and
CLK
inverted per
LSR
slice in routing
Interslice signals
are not shown
To / From
Different slice / PFU
Table 2-1. Slice Signal Descriptions
Function
Type
Input
Data signal
A0, B0, C0, D0 Inputs to LUT4
Signal Names
Description
Input
Data signal
A1, B1, C1, D1 Inputs to LUT4
Input
Multi-purpose
M0
Multipurpose Input
Input
Multi-purpose
M1
Multipurpose Input
Input
Control signal
CE
Clock Enable
Input
Control signal
LSR
Local Set/Reset
Input
Control signal
CLK
System Clock
Input
Inter-PFU signal
FCIN
Fast Carry In1
Output
Data signals
F0, F1
LUT4 output register bypass signals
Output
Data signals
Q0, Q1
Register Outputs
Output
Data signals
OFX0
Output of a LUT5 MUX
Output
Data signals
OFX1
Output of a LUT6, LUT7, LUT82 MUX depending on the slice
Output
Inter-PFU signal
FCO
For the right most PFU the fast carry chain output1
1. See Figure 2-3 for connection details.
2. Requires two PFUs.
2-4
Architecture
LatticeECP/EC Family Data Sheet
Modes of Operation
Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. The Slice in the PFF is capable of
all modes except RAM. Table 2-2 lists the modes and the capability of the Slice blocks.
Table 2-2. Slice Modes
Logic
Ripple
RAM
ROM
PFU Slice
LUT 4x2 or LUT 5x1
2-bit Arithmetic Unit
SPR16x2
ROM16x1 x 2
PFF Slice
LUT 4x2 or LUT 5x1
2-bit Arithmetic Unit
N/A
ROM16x1 x 2
Logic Mode: In this mode, the LUTs in each Slice are configured as 4-input combinatorial lookup tables. A LUT4
can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this
lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup
tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices.
Ripple Mode: Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:
•
•
•
•
•
•
•
Addition 2-bit
Subtraction 2-bit
Add/Subtract 2-bit using dynamic control
Up counter 2-bit
Down counter 2-bit
Ripple mode multiplier building block
Comparator functions of A and B inputs
- A greater-than-or-equal-to B
- A not-equal-to B
- A less-than-or-equal-to B
Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this
configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are
generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.
RAM Mode: In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory.
Through the combination of LUTs and Slices, a variety of different memories can be constructed.
The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3
shows the number of Slices required to implement different distributed RAM primitives. Figure 2-5 shows the distributed memory primitive block diagrams. Dual port memories involve the pairing of two Slices, one Slice functions
as the read-write port. The other companion Slice supports the read-only port. For more information about using
RAM in LatticeECP/EC devices, please see the list of technical documentation at the end of this data sheet.
Table 2-3. Number of Slices Required For Implementing Distributed RAM
SPR16x2
DPR16x2
1
2
Number of slices
Note: SPR = Single Port RAM, DPR = Dual Port RAM
2-5
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-5. Distributed Memory Primitives
SPR16x2
DPR16x2
AD0
AD1
AD2
AD3
WAD0
WAD1
WAD2
WAD3
DO0
DO1
DI0
DI1
WRE
DI0
DI1
WCK
WRE
CK
RAD0
RAD1
RAD2
RAD3
RDO0
RDO1
WDO0
WDO1
ROM16x1
AD0
AD1
AD2
AD3
DO0
ROM Mode: The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is
accomplished through the programming interface during configuration.
PFU Modes of Operation
Slices can be combined within a PFU to form larger functions. Table 2-4 tabulates these modes and documents the
functionality possible at the PFU level.
Table 2-4. PFU Modes of Operation
Logic
Ripple
RAM1
ROM
LUT 4x8 or
MUX 2x1 x 8
2-bit Add x 4
SPR16x2 x 4
DPR16x2 x 2
ROM16x1 x 8
LUT 5x4 or
MUX 4x1 x 4
2-bit Sub x 4
SPR16x4 x 2
DPR16x4 x 1
ROM16x2 x 4
LUT 6x 2 or
MUX 8x1 x 2
2-bit Counter x 4
SPR16x8 x 1
ROM16x4 x 2
LUT 7x1 or
MUX 16x1 x 1
2-bit Comp x 4
ROM16x8 x 1
1. These modes are not available in PFF blocks
2-6
Architecture
LatticeECP/EC Family Data Sheet
Routing
There are many resources provided in the LatticeECP/EC devices to route signals individually or as busses with
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing)
segments.
The inter-PFU connections are made with x1 (spans two PFU), x2 (spans three PFU) and x6 (spans seven PFU).
The x1 and x2 connections provide fast and efficient connections in horizontal and vertical directions. The x2 and
x6 resources are buffered, the routing of both short and long connections between PFUs.
The ispLEVER design tool suite takes the output of the synthesis tool and places and routes the design. Generally,
the place and route tool is completely automatic, although an interactive routing editor is available to optimize the
design.
Clock Distribution Network
The clock inputs are selected from external I/O, the sysCLOCK™ PLLs or routing. These clock inputs are fed
through the chip via a clock distribution system.
Primary Clock Sources
LatticeECP/EC devices derive clocks from three primary sources: PLL outputs, dedicated clock inputs and routing.
LatticeECP/EC devices have two to four sysCLOCK PLLs, located on the left and right sides of the device. There
are four dedicated clock inputs, one on each side of the device. Figure 2-6 shows the 20 primary clock sources.
Figure 2-6. Primary Clock Sources
From Routing
PLL Input
From Routing
PLL
PLL
20 Primary Clock Sources
To Quadrant Clock Selection
Clock Input
PLL Input
Clock Input
PLL
Clock Input
PLL
From Routing
Clock Input
Note: Smaller devices have two PLLs.
2-7
From Routing
PLL Input
PLL Input
Architecture
LatticeECP/EC Family Data Sheet
Secondary Clock Sources
LatticeECP/EC devices have four secondary clock resources per quadrant. The secondary clock branches are
tapped at every PFU. These secondary clock networks can also be used for controls and high fanout data. These
secondary clocks are derived from four clock input pads and 16 routing signals as shown in Figure 2-7.
Figure 2-7. Secondary Clock Sources
From
Routing
From
Routing
From
Routing
From
Routing
From Routing
From Routing
From Routing
From Routing
20 Secondary Clock Sources
To Quadrant Clock Selection
From Routing
From Routing
From Routing
From Routing
From
Routing
From
Routing
From
Routing
From
Routing
Clock Routing
The clock routing structure in LatticeECP/EC devices consists of four Primary Clock lines and a Secondary Clock
network per quadrant. The primary clocks are generated from MUXs located in each quadrant. Figure 2-8 shows
this clock routing. The four secondary clocks are generated from MUXs located in each quadrant as shown in
Figure 2-9. Each slice derives its clock from the primary clock lines, secondary clock lines and routing as shown in
Figure 2-10.
2-8
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-8. Per Quadrant Primary Clock Selection
20 Primary Clock Sources: 12 PLLs + 4 PIOs + 4 Routing1
DCS
DCS
4 Primary Clocks (CLK0, CLK1, CLK2, CLK3) per Quadrant
1. Smaller devices have fewer PLL related lines.
Figure 2-9. Per Quadrant Secondary Clock Selection
20 Secondary Clock Feedlines : 4 Clock Input Pads + 16 Routing Signals
4 Secondary Clocks per Quadrant
Figure 2-10. Slice Clock Selection
Primary Clock
Secondary Clock
Clock to
each slice
Routing
GND
sysCLOCK Phase Locked Loops (PLLs)
The PLL clock input, from pin or routing, feeds into an input clock divider. There are three sources of feedback signal to the feedback divider: from CLKOP (PLL Internal), from clock net (CLKOP) or from a user clock (PIN or logic).
There is a PLL_LOCK signal to indicate that VCO has locked on to the input clock signal. Figure 2-11 shows the
sysCLOCK PLL diagram.
The setup and hold times of the device can be improved by programming a delay in the feedback or input path of
the PLL which will advance or delay the output clock with reference to the input clock. This delay can be either pro-
2-9
Architecture
LatticeECP/EC Family Data Sheet
grammed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after
adjustment and not relock until the tLOCK parameter has been satisfied. Additionally, the phase and duty cycle block
allows the user to adjust the phase and duty cycle of the CLKOS output.
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. Each PLL has four dividers associated
with it: input clock divider, feedback divider, post scalar divider and secondary clock divider. The input clock divider
is used to divide the input clock signal, while the feedback divider is used to multiply the input clock signal. The post
scalar divider allows the VCO to operate at higher frequencies than the clock output, thereby increasing the frequency range. The secondary divider is used to derive lower frequency outputs.
Figure 2-11. PLL Diagram
Dynamic Delay Adjustment
LOCK
CLKI
(from routing or
external pin)
Input Clock
Divider
(CLKI)
Delay
Adjust
Voltage
Controlled
VCO
Oscillator
Post Scalar
Divider
(CLKOP)
Phase/Duty
Select
CLKOS
CLKOP
RST
Secondary
Clock
Divider
(CLKOK)
Feedback
Divider
(CLKFB)
CLKFB
from CLKOP
(PLL internal),
from clock net
(CLKOP) or
from a user
clock (PIN or logic)
CLKOK
Figure 2-12 shows the available macros for the PLL. Table 2-5 provides signal description of the PLL Block.
Figure 2-12. PLL Primitive
CLKI
CLKFB
EPLLB
CLKOP
LOCK
RST
CLKOP
CLKI
CLKOS
CLKFB
CLKOK
DDA MODE
DDAIZR
DDAILAG
DDAIDEL[2:0]
2-10
EHXPLLB
LOCK
DDAOZR
DDAOLAG
DDAODEL[2:0]
Architecture
LatticeECP/EC Family Data Sheet
Table 2-5. PLL Signal Descriptions
Signal
CLKI
I/O
Description
I
Clock input from external pin or routing
I
PLL feedback input from CLKOP (PLL internal), from clock net (CLKOP) or from a user clock
(PIN or logic)
RST
I
“1” to reset PLL
CLKOS
O
PLL output clock to clock tree (phase shifted/duty cycle changed)
CLKOP
O
PLL output clock to clock tree (No phase shift)
CLKFB
CLKOK
O
PLL output to clock tree through secondary clock divider
LOCK
O
“1” indicates PLL LOCK to CLKI
DDAMODE
I
Dynamic Delay Enable. “1”: Pin control (dynamic), “0”: Fuse Control (static)
DDAIZR
I
Dynamic Delay Zero. “1”: delay = 0, “0”: delay = on
DDAILAG
I
Dynamic Delay Lag/Lead. “1”: Lead, “0”: Lag
DDAIDEL[2:0]
I
Dynamic Delay Input
DDAOZR
O
Dynamic Delay Zero Output
DDAOLAG
O
Dynamic Delay Lag/Lead Output
DDAODEL[2:0]
O
Dynamic Delay Output
For more information about the PLL, please see the list of technical documentation at the end of this data sheet.
Dynamic Clock Select (DCS)
The DCS is a global clock buffer with smart multiplexer functions. It takes two independent input clock sources and
outputs a clock signal without any glitches or runt pulses. This is achieved regardless of where the select signal is
toggled. There are eight DCS blocks per device, located in pairs at the center of each side. Figure 2-13 illustrates
the DCS Block Macro.
Figure 2-13. DCS Block Primitive
CLK0
CLK1
DCS
DCSOUT
SEL
Figure 2-14 shows timing waveforms of the default DCS operating mode. The DCS block can be programmed to
other modes. For more information about the DCS, please see the list of technical documentation at the end of this
data sheet.
2-11
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-14. DCS Waveforms
CLK0
CLK1
SEL
DCSOUT
sysMEM Memory
The LatticeECP/EC devices contain a number of sysMEM Embedded Block RAM (EBR). The EBR consists of a 9Kbit RAM, with dedicated input and output registers.
sysMEM Memory Block
The sysMEM block can implement single port, dual port or pseudo dual port memories. Each block can be used in
a variety of depths and widths as shown in Table 2-6.
Table 2-6. sysMEM Block Configurations
Memory Mode
Configurations
Single Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
True Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
Pseudo Dual Port
8,192 x 1
4,096 x 2
2,048 x 4
1,024 x 9
512 x 18
256 x 36
Bus Size Matching
All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB
word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for
each port varies, this mapping scheme applies to each port.
RAM Initialization and ROM Operation
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block
during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a
ROM.
2-12
Architecture
LatticeECP/EC Family Data Sheet
Memory Cascading
Larger and deeper blocks of RAM can be created using EBR sysMEM Blocks. Typically, the Lattice design tools
cascade memory transparently, based on specific design inputs.
Single, Dual and Pseudo-Dual Port Modes
Figure 2-15 shows the four basic memory configurations and their input/output names. In all the sysMEM RAM
modes the input data and address for the ports are registered at the input of the memory array. The output data of
the memory is optionally registered at the output.
Figure 2-15. sysMEM EBR Primitives
AD[12:0]
DI[35:0]
CLK
CE
RST
WE
CS[2:0]
EBR
ADA[12:0]
DIA[17:0]
CLKA
CEA
DO[35:0]
RSTA
WEA
CSA[2:0]
DOA[17:0]
True Dual Port RAM
Single Port RAM
AD[12:0]
CLK
CE
RST
CS[2:0]
EBR
EBR
ADB[12:0]
DIB[17:0]
CEB
CLKB
RSTB
WEB
CSB[2:0]
DOB[17:0]
ADW[12:0]
DI[35:0]
CLKW
CEW
DO[35:0]
WE
RST
CS[2:0]
ROM
ADR[12:0]
EBR
DO[35:0]
CER
CLKR
Pseudo-Dual Port RAM
The EBR memory supports three forms of write behavior for single port or dual port operation:
1. Normal – data on the output appears only during read cycle. During a write cycle, the data (at the current
address) does not appear on the output. This mode is supported for all data widths.
2. Write Through – a copy of the input data appears at the output of the same port during a write cycle. This
mode is supported for all data widths.
3. Read-Before-Write – when new data is being written, the old content of the address appears at the output.
This mode is supported for x9, x18 and x36 data widths.
Memory Core Reset
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchronously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A
and Port B, respectively. The Global Reset (GSRN) signal resets both ports. The output data latches and associated resets for both ports are as shown in Figure 2-16.
2-13
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-16. Memory Core Reset
Memory Core
D
SET
Q
Port A[17:0]
LCLR
Output Data
Latches
D
SET
Q
Port B[17:0]
LCLR
RSTA
RSTB
GSRN
Programmable Disable
For further information about sysMEM EBR block, please see the the list of technical documentation at the end of
this data sheet.
EBR Asynchronous Reset
EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the
reset is applied and released a clock cycle after the reset is released, as shown in Figure 2-17. The GSR input to the
EBR is always asynchronous.
Figure 2-17. EBR Asynchronous Reset (Including GSR) Timing Diagram
Reset
Clock
Clock
Enable
If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after
the EBR read and write clock inputs are in a steady state condition for a minimum of 1/fMAX (EBR clock). The reset
release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.
If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during
device Wake Up must occur before the release of the device I/Os becomes active.
These instructions apply to all EBR RAM and ROM implementations.
Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled.
sysDSP Block
The LatticeECP-DSP family provides a sysDSP block, making it ideally suited for low cost, high performance Digital
Signal Processing (DSP) applications. Typical functions used in these applications are Finite Impulse Response
(FIR) filters; Fast Fourier Transforms (FFT) functions, correlators, Reed-Solomon/Turbo/Convolution encoders and
2-14
Architecture
LatticeECP/EC Family Data Sheet
decoders. These complex signal processing functions use similar building blocks such as multiply-adders and multiply-accumulators.
sysDSP Block Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by
higher clock speeds. The LatticeECP, on the other hand, has many DSP blocks that support different data-widths.
This allows the designer to use highly parallel implementations of DSP functions. The designer can optimize the
DSP performance vs. area by choosing an appropriate level of parallelism. Figure 2-18 compares the serial and the
parallel implementations.
Figure 2-18. Comparison of General DSP and LatticeECP-DSP Approaches
Operand
A
Operand
A
Operand
A
Operand
B
Operand
A
Operand
B
Operand
B
Operand
B
x
Single
Multiplier
x
Accumulator
Σ
M loops
x
x
Multiplier 0
Multiplier 1
Accumulator
Function implemented in
General purpose DSP
Multiplier
(k-1)
m/k
loops
Σ
Output
Function implemented
in LatticeECP
sysDSP Block Capabilities
The sysDSP block in the LatticeECP-DSP family supports four functional elements in three 9, 18 and 36 data path
widths. The user selects a function element for a DSP block and then selects the width and type (signed/unsigned)
of its operands. The operands in the LatticeECP-DSP family sysDSP Blocks can be either signed or unsigned but
not mixed within a function element. Similarly, the operand widths cannot be mixed within a block.
The resources in each sysDSP block can be configured to support the following four elements:
•
•
•
•
MULT
MAC
MULTADD
MULTADDSUM
(Multiply)
(Multiply, Accumulate)
(Multiply, Addition/Subtraction)
(Multiply, Addition/Subtraction, Accumulate)
The number of elements available in each block depends on the width selected from the three available options x9,
x18, and x36. A number of these elements are concatenated for highly parallel implementations of DSP functions.
Table 2-1 shows the capabilities of the block.
2-15
Architecture
LatticeECP/EC Family Data Sheet
Table 2-7. Maximum Number of Elements in a Block
Width of Multiply
x9
x18
x36
MULT
8
4
1
MAC
2
2
—
MULTADD
4
2
—
MULTADDSUM
2
1
—
Some options are available in four elements. The input register in all the elements can be directly loaded or can be
loaded as shift registers from previous operand registers. In addition by selecting “dynamic operation” in the
‘Signed/Unsigned’ options the operands can be switched between signed and unsigned on every cycle. Similarly
by selecting ‘Dynamic operation’ in the ‘Add/Sub’ option the Accumulator can be switched between addition and
subtraction on every cycle.
MULT sysDSP Element
This multiplier element implements a multiply with no addition or accumulator nodes. The two operands, A and B,
are multiplied and the result is available at the output. The user can enable the input/output and pipeline registers.
Figure 2-19 shows the MULT sysDSP element.
Figure 2-19. MULT sysDSP Element
Shift Register B In
Shift Register A In
Multiplier
m
m
n
n
m
Input Data
Register A
n
m
Multiplier
n
Input Data
Register B
x
m+n
(default)
Output
Register
Multiplicand
m+n
Output
Pipeline
Register
m
n
Signed
Input
Register
To
Multiplier
CLK (CLK0,CLK1,CLK2,CLK3)
CE (CE0,CE1,CE2,CE3)
RST(RST0,RST1,RST2,RST3)
Shift Register B Out
Shift Register A Out
MAC sysDSP Element
In this case the two operands, A and B, are multiplied and the result is added with the previous accumulated value.
This accumulated value is available at the output. The user can enable the input and pipeline registers but the output register is always enabled. The output register is used to store the accumulated value. A registered overflow
signal is also available. The overflow conditions are provided later in this document. Figure 2-20 shows the MAC
sysDSP element.
2-16
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-20. MAC sysDSP Element
Shift Register B In
Shift Register A In
m
n
Accumulator
m
n
n
Multiplier
m
Input Data
Register A
Input Data
Register B
x
n
n
Addn
Accumsload
m+n+16 bits
(default)
Pipeline
Register
n
SignedAB
m+n
(default)
Input
Register
Pipeline
Register
Input
Register
Pipeline
Register
To
Accumulator
Input
Register
Pipeline
Register
To
Accumulator
m+n+16 bits
(default)
Output
Register
Multiplier
m
Output
Overflow
Register
Multiplicand
To
Accumulator
Overflow
signal
CLK (CLK0,CLK1,CLK2,CLK3)
CE (CE0,CE1,CE2,CE3)
RST(RST0,RST1,RST2,RST3)
Shift Register B Out
Shift Register A Out
MULTADD sysDSP Element
In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and A2. The user can enable the input, output and pipeline registers. Figure 2-21
shows the MULTADD sysDSP element.
Figure 2-21. MULTADD
Shift Register B In
Shift Register A In
Multiplicand A0
m
CLK (CLK0,CLK1,CLK2,CLK3)
m
CE (CE0,CE1,CE2,CE3)
Multiplier B0
RST(RST0,RST1,RST2,RST3)
m
n
n
Input Data
Register A
n
Multiplier
m
x
n
Input Data
Register B
Pipeline
Register
m
m+n
(default)
Add/Sub
Multiplicand A1
Multiplier B1
m
m+n+1
(default)
m
n
Input Data
Register A
n
Signed
Addn
Shift Register B Out
x
n
Input Data
Register B
n
Multiplier
m
Pipeline
Register
m
Input
Register
Pipeline
Pipe
Register
Reg
To Add/Sub
Input
Register
Pipeline
Pipe
Register
Reg
To Add/Sub
Shift Register A Out
2-17
m+n
(default)
Output
Register
n
Output
m+n+1
(default)
Architecture
LatticeECP/EC Family Data Sheet
MULTADDSUM sysDSP Element
In this case, the operands A0 and B0 are multiplied and the result is added/subtracted with the result of the multiplier operation of operands A1 and B1. Additionally the operands A2 and B2 are multiplied and the result is added/
subtracted with the result of the multiplier operation of operands A3 and B3. The result of both addition/subtraction
are added in a summation block. The user can enable the input, output and pipeline registers. Figure 2-22 shows
the MULTADDSUM sysDSP element.
Figure 2-22. MULTADDSUM
Shift Register B In
Shift Register A In
Multiplicand A0
m
m
CLK (CLK0,CLK1,CLK2,CLK3)
m
n
n
CE (CE0,CE1,CE2,CE3)
Input Data
Register A
n
n
Input Data
Register B
Multiplier
x
m+n
(default)
Pipeline
Register
m
RST(RST0,RST1,RST2,RST3)
Add/Sub0
n
Multiplicand A1
Multiplier B1
m
m
m+n
(default)
m
n
Input Data
Register A
n
n
Input Data
Register B
Multiplicand A2
n
Multiplier
m+n+1
x
SUM
Pipeline
Register
m
m
m+n+2
Multiplier B2
m
n
n
Input Data
Register A
n
n
Input Data
Register B
Multiplier
x
m+n+2
m+n
(default)
m+n+1
Pipeline
Register
m
Output
Add/Sub1
n
Multiplicand A3
Multiplier B3
m
Output
Register
Multiplier B0
m
n
Input Data
Register A
n
Input Data
Register B
Signed
Addn0
Addn1
Shift Register B Out
m+n
(default)
m
n
m
n
Multiplier
x
Pipeline
Register
m
Input
Register
Pipeline
Register
To Add/Sub0, Add/Sub1
Input
Register
Pipeline
Register
To Add/Sub0
Input
Register
Pipeline
Register
To Add/Sub1
Shift Register A Out
Clock, Clock Enable and Reset Resources
Global Clock, Clock Enable and Reset signals from routing are available to every DSP block. Four Clock, Reset
and Clock Enable signals are selected for the sysDSP block. From four clock sources (CLK0, CLK1, CLK2, CLK3)
one clock is selected for each input register, pipeline register and output register. Similarly Clock enable (CE) and
Reset (RST) are selected from their four respective sources (CE0, CE1, CE2, CE3 and RST0, RST1, RST2, RST3)
at each input register, pipeline register and output register.
2-18
Architecture
LatticeECP/EC Family Data Sheet
Signed and Unsigned with Different Widths
The DSP block supports different widths of signed and unsigned multipliers besides x9, x18 and x36 widths. For
unsigned operands, unused upper data bits should be filled to create a valid x9, x18 or x36 operand. For signed
two’s complement operands, sign extension of the most significant bit should be performed until x9, x18 or x36
width is reached. Table 2-8 provides an example of this.
Table 2-8. An Example of Sign Extension
Number Unsigned
Unsigned
9-bit
Unsigned
18-bit
Signed
Two’s Complement
Signed 9-Bits
Two’s Complement
Signed 18-bits
+5
0101
000000101
000000000000000101
0101
000000101
000000000000000101
-6
0110
000000110
000000000000000110
1010
111111010
111111111111111010
OVERFLOW Flag from MAC
The sysDSP block provides an overflow output to indicate that the accumulator has overflowed. When two
unsigned numbers are added and the result is a smaller number then accumulator roll over is said to occur and
overflow signal is indicated. When two positive numbers are added with a negative sum and when two negative
numbers are added with a positive sum, then the accumulator “roll-over” is said to have occurred and an overflow
signal is indicated. Note when overflow occurs the overflow flag is present for only one cycle. By counting these
overflow pulses in FPGA logic, larger accumulators can be constructed. The conditions overflow signals for signed
and unsigned operands are listed in Figure 2-23.
Figure 2-23. Accumulator Overflow/Underflow Conditions
0101111100
0101111101
0101111110
0101111111
1010000000
1010000001
1010000010
252
253
254
255
256
257
258
000000011
000000010
000000001
000000000
3
2
1
0
111111111
111111110
111111101
511
510
509
Unsigned Operation
0101111100
000000011
000000010
000000001
000000000
111111111
111111110
111111101
252
Overflow signal is generated 0101111101 253
0101111110 254
for one cycle when this
0101111111 255
boundary is crossed
1010000000 256
1010000001 255
1010000010 254
Signed Operation
2-19
+3
+2
+1
0
-1
-2
-3
Carry signal is generated for
one cycle when this
boundary is crossed
Architecture
LatticeECP/EC Family Data Sheet
IPexpress™
The user can access the sysDSP block via the IPexpress configuration tool, included with the ispLEVER design
tool suite. IPexpress has options to configure each DSP module (or group of modules) or through direct HDL
instantiation. Additionally Lattice has partnered Mathworks to support instantiation in the Simulink tool, which is a
Graphical Simulation Environment. Simulink works with ispLEVER and dramatically shortens the DSP design cycle
in Lattice FPGAs.
Optimized DSP Functions
Lattice provides a library of optimized DSP IP functions. Some of the IPs planned for LatticeECP DSP are: Bit Correlators, Fast Fourier Transform, Finite Impulse Response (FIR) Filter, Reed-Solomon Encoder/ Decoder, Turbo
Encoder/Decoders and Convolutional Encoder/Decoder. Please contact Lattice to obtain the latest list of available
DSP IPs.
Resources Available in the LatticeECP Family
Table 2-9 shows the maximum number of multipliers for each member of the LatticeECP family. Table 2-10 shows
the maximum available EBR RAM Blocks in each of the LatticeECP family. EBR blocks, together with Distributed
RAM can be used to store variables locally for the fast DSP operations.
Table 2-9. Number of DSP Blocks in LatticeECP Family
Device
DSP Block
9x9 Multiplier
18x18 Multiplier
36x36 Multiplier
LFECP6
4
32
16
4
LFECP10
5
40
20
5
LFECP15
6
48
24
6
LFECP20
7
56
28
7
LFECP33
8
64
32
8
Device
EBR SRAM Block
Total EBR SRAM
(Kbits)
Table 2-10. Embedded SRAM in LatticeECP Family
LFECP6
10
92
LFECP10
30
276
LFECP15
38
350
LFECP20
46
424
LFECP33
54
498
DSP Performance of the LatticeECP Family
Table 2-11 lists the maximum performance in millions of MAC operations per second (MMAC) for each member of
the LatticeECP family.
Table 2-11. DSP Block Performance of LatticeECP Family
Device
DSP Block
DSP Performance
MMAC
LFECP6
4
3680
LFECP10
5
4600
LFECP15
6
5520
LFECP20
7
6440
LFECP33
8
7360
2-20
Architecture
LatticeECP/EC Family Data Sheet
For further information about the sysDSP block, please see the list of technical information at the end of this data
sheet.
Programmable I/O Cells (PIC)
Each PIC contains two PIOs connected to their respective sysI/O Buffers which are then connected to the PADs as
shown in Figure 2-24. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to sysI/O
buffer, and receives input from the buffer.
Figure 2-24. PIC Diagram
PIO A
TD
D0
D1
DDRCLK
TD
OPOS1
ONEG1
IOLT0
Tristate
Register Block
(2 Flip Flops)
D0
D1
DDRCLK
OPOS0
ONEG0
PADA
"T"
IOLD0
Output
Register Block
(2 Flip Flops)
INCK
INDD
INFF
IPOS0
IPOS1
INCK
INDD
INFF
IPOS0
IPOS1
Control
Muxes
CLK
CE
LSR
GSRN
DQS
DDRCLKPOL
CLKO
CEO
LSR
GSR
CLKI
CEI
sysIO
Buffer
DI
Input
Register Block
(5 Flip Flops)
PADB
"C"
PIO B
Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-25.
The PAD Labels “T” and “C” distinguish the two PIOs. Only the PIO pairs on the left and right edges of the device
can be configured as LVDS transmit/receive pairs.
One of every 16 PIOs contains a delay element to facilitate the generation of DQS signals. The DQS signal feeds
the DQS bus which spans the set of 16 PIOs. Figure 2-25 shows the assignment of DQS pins in each set of 16
PIOs. The exact DQS pins are shown in a dual function in the Logic Signal Connections table at the end of this data
sheet. Additional detail is provided in the Signal Descriptions table at the end of this data sheet. The DQS signal
from the bus is used to strobe the DDR data from the memory into input register blocks. This interface is designed
for memories that support one DQS strobe per eight bits of data.
2-21
Architecture
LatticeECP/EC Family Data Sheet
Table 2-12. PIO Signal List
Name
CE0, CE1
Type
Control from the core
Description
Clock enables for input and output block FFs.
CLK0, CLK1
Control from the core
System clocks for input and output blocks.
LSR
Control from the core
Local Set/Reset.
GSRN
Control from routing
Global Set/Reset (active low).
INCK
Input to the core
Input to Primary Clock Network or PLL reference inputs.
DQS
Input to PIO
DQS signal from logic (routing) to PIO.
INDD
Input to the core
Unregistered data input to core.
INFF
Input to the core
Registered input on positive edge of the clock (CLK0).
IPOS0, IPOS1
Input to the core
DDRX registered inputs to the core.
ONEG0
Control from the core
Output signals from the core for SDR and DDR operation.
OPOS0,
Control from the core
Output signals from the core for DDR operation
OPOS1 ONEG1
Tristate control from the core
Signals to Tristate Register block for DDR operation.
TD
Tristate control from the core
Tristate signal from the core used in SDR operation.
DDRCLKPOL
Control from clock polarity bus
Controls the polarity of the clock (CLK0) that feed the DDR input block.
Figure 2-25. DQS Routing
PIO A
PADA "T"
PIO B
PADB "C"
PIO A
PADA "T"
LVDS Pair
LVDS Pair
PIO B
PADB "C"
PIO A
PADA "T"
LVDS Pair
PADB "C"
PIO B
PIO A
PADA "T"
LVDS Pair
PADB "C"
PIO B
DQS
PIO A
sysIO
Buffer
Delay
PIO B
PIO A
Assigned
DQS Pin
PADA "T"
LVDS Pair
PADB "C"
PADA "T"
LVDS Pair
PIO B
PADB "C"
PIO A
PADA "T"
LVDS Pair
PIO B
PADB "C"
PIO A
PADA "T"
PIO B
LVDS Pair
PADB "C"
PIO
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic
block. These blocks contain registers for both single data rate (SDR) and double data rate (DDR) operation along
with the necessary clock and selection logic. Programmable delay lines used to shift incoming clock and data signals are also included in these blocks.
2-22
Architecture
LatticeECP/EC Family Data Sheet
Input Register Block
The input register block contains delay elements and registers that can be used to condition signals before they are
passed to the device core. Figure 2-26 shows the diagram of the input register block.
Input signals are fed from the sysI/O buffer to the input register block (as signal DI). If desired the input signal can
bypass the register and delay elements and be used directly as a combinatorial signal (INDD), a clock (INCK) and
in selected blocks the input to the DQS delay block. If one of the bypass options is not chosen, the signal first
passes through an optional delay block. This delay, if selected, reduces input-register hold-time requirement when
using a global clock.
The input block allows two modes of operation. In the single data rate (SDR) the data is registered, by one of the
registers in the single data rate sync register block, with the system clock. In the DDR Mode two registers are used
to sample the data on the positive and negative edges of the DQS signal creating two data streams, D0 and D2.
These two data streams are synchronized with the system clock before entering the core. Further discussion on
this topic is in the DDR Memory section of this data sheet.
Figure 2-27 shows the input register waveforms for DDR operation and Figure 2-28 shows the design tool primitives. The SDR/SYNC registers have reset and clock enable available.
The signal DDRCLKPOL controls the polarity of the clock used in the synchronization registers. It ensures adequate timing when data is transferred from the DQS to system clock domain. For further discussion on this topic,
see the DDR Memory section of this data sheet.
Figure 2-26. Input Register Diagram
DI
(From sysIO
Buffer)
INCK
INDD
Delay Block
Fixed Delay
SDR & Sync
Registers
DDR Registers
D0
D
Q
D
D-Type
/LATCH
Q
D-Type
D2
D
Q
D1
D-Type
DQS Delayed
(From DQS
Bus)
CLK0
(From Routing)
DDRCLKPOL
(From DDR
Polarity Control Bus)
2-23
D
Q
D-Type
D
Q
D-Type
/LATCH
To Routing
IPOS0
IPOS1
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-27. Input Register DDR Waveforms
DI
(In DDR Mode)
A
B
C
D
F
E
DQS
DQS
Delayed
D0
B
D
D2
A
C
Figure 2-28. INDDRXB Primitive
D
ECLK
LSR
SCLK
QA
IDDRXB
QB
CE
DDRCLKPOL
Output Register Block
The output register block provides the ability to register signals from the core of the device before they are passed
to the sysI/O buffers. The block contains a register for SDR operation that is combined with an additional latch for
DDR operation. Figure 2-29 shows the diagram of the Output Register Block.
In SDR mode, ONEG0 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG0 is fed into one register on the positive edge of the clock and OPOS0 is
latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).
Figure 2-30 shows the design tool DDR primitives. The SDR output register has reset and clock enable available.
The additional register for DDR operation does not have reset or clock enable available.
2-24
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-29. Output Register Block
OUTDDN
Q
D
D-Type
/LATCH
ONEG0
0
0
DO
1
From
Routing
To sysIO
Buffer
1
OPOS0
Q
D
Latch
LE*
CLK1
Programmed
Control
*Latch is transparent when input is low.
Figure 2-30. ODDRXB Primitive
DA
DB
CLK
ODDRXB
Q
LSR
Tristate Register Block
The tristate register block provides the ability to register tri-state control signals from the core of the device before
they are passed to the sysI/O buffers. The block contains a register for SDR operation and an additional latch for
DDR operation. Figure 2-31 shows the diagram of the Tristate Register Block.
In SDR mode, ONEG1 feeds one of the flip-flops that then feeds the output. The flip-flop can be configured a Dtype or latch. In DDR mode, ONEG1 is fed into one register on the positive edge of the clock and OPOS1 is
latched. A multiplexer running off the same clock selects the correct register for feeding to the output (D0).
2-25
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-31. Tristate Register Block
TD
OUTDDN
Q
D
D-Type
/LATCH
ONEG1
0
0
From
Routing
TO
1
To sysIO
Buffer
1
OPOS1
D
Q
Latch
LE*
CLK1
Programmed
Control
*Latch is transparent when input is low.
Control Logic Block
The control logic block allows the selection and modification of control signals for use in the PIO block. A clock is
selected from one of the clock signals provided from the general purpose routing and a DQS signal provided from
the programmable DQS pin. The clock can optionally be inverted.
The clock enable and local reset signals are selected from the routing and optionally inverted. The global tristate
signal is passed through this block.
DDR Memory Support
Implementing high performance DDR memory interfaces requires dedicated DDR register structures in the input
(for read operations) and in the output (for write operations). As indicated in the PIO Logic section, the LatticeEC
devices provide this capability. In addition to these registers, the LatticeEC devices contain two elements to simplify
the design of input structures for read operations: the DQS delay block and polarity control logic.
DLL Calibrated DQS Delay Block
Source Synchronous interfaces generally require the input clock to be adjusted in order to correctly capture data at
the input register. For most interfaces a PLL is used for this adjustment. However in DDR memories the clock
(referred to as DQS) is not free running so this approach cannot be used. The DQS Delay block provides the
required clock alignment for DDR memory interfaces.
The DQS signal (selected PIOs only) feeds from the PAD through a DQS delay element to a dedicated DQS routing
resource. The DQS signal also feeds polarity control logic, which controls the polarity of the clock to the sync registers in the input register blocks. Figures 2-32 and 2-33 show how the DQS transition signals are routed to the PIOs.
The temperature, voltage and process variations of the DQS delay block are compensated by a set of calibration
(6-bit bus) signals from two DLLs on opposite sides of the device. Each DLL compensates DQS Delays in its half of
the device as shown in Figure 2-33. The DLL loop is compensated for temperature, voltage and process variations
by the system clock and feedback loop.
2-26
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-32. DQS Local Bus.
PIO
Delay
Control
Bus
Polarity
Control
Bus
DQS
Bus
DQS
GSR
CLKI
CEI
DQS
DDR
Datain
PAD
sysIO
Buffer
Input
Register Block
( 5 Flip Flops)
To Sync.
Reg.
DI
To DDR
Reg.
PIO
DQS
Strobe
PAD
sysIO
Buffer
Polarity Control
Logic
DI
DQS
DQSDEL
Calibration Bus
from DLL
Figure 2-33. DLL Calibration Bus and DQS/DQS Transition Distribution
Delay Control Bus
Polarity Control Bus
DQS Bus
DLL
DLL
2-27
Architecture
LatticeECP/EC Family Data Sheet
Polarity Control Logic
In a typical DDR Memory interface design, the phase relation between the incoming delayed DQS strobe and the
internal system Clock (during the READ cycle) is unknown.
The LatticeECP/EC family contains dedicated circuits to transfer data between these domains. To prevent setup
and hold violations at the domain transfer between DQS (delayed) and the system Clock a clock polarity selector is
used. This changes the edge on which the data is registered in the synchronizing registers in the input register
block. This requires evaluation at the start of each READ cycle for the correct clock polarity.
Prior to the READ operation in DDR memories DQS is in tristate (pulled by termination). The DDR memory device
drives DQS low at the start of the preamble state. A dedicated circuit detects this transition. This signal is used to
control the polarity of the clock to the synchronizing registers.
sysI/O Buffer
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the
periphery of the device in eight groups referred to as Banks. The sysI/O buffers allow users to implement the wide
variety of standards that are found in today’s systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL.
sysI/O Buffer Banks
LatticeECP/EC devices have eight sysI/O buffer banks; each is capable of supporting multiple I/O standards. Each
sysI/O bank has its own I/O supply voltage (VCCIO), and two voltage references VREF1 and VREF2 resources allowing each bank to be completely independent from each other. Figure 2-34 shows the eight banks and their associated supplies.
In the LatticeECP/EC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI and PCIX) are powered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold
input independent of VCCIO. In addition to the bank VCCIO supplies, the LatticeECP/EC devices have a VCC core logic
power supply, and a VCCAUX supply that power all differential and referenced buffers.
Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeECP/EC devices, some dedicated I/O pins in a bank can be configured to be a
reference voltage supply pin. Each I/O is individually configurable based on the bank’s supply and reference voltages.
2-28
Architecture
LatticeECP/EC Family Data Sheet
Figure 2-34. LatticeECP/EC Banks
TOP
Bank 7
Bank 1
VCCIO2
Bank 2
VREF1(2)
VREF2(2)
GND
VCCIO6
VCCIO3
V REF1(6)
VREF1(3)
Bank 6
V REF2(6)
Bank 3
GND
RIGHT
LEFT
GND
VREF2(1)
VREF1(1)
VCCIO1
GND
VREF2(0)
VREF1(7)
VREF2(7)
VREF1(0)
VCCIO0
Bank 0
VCCIO7
VREF2(3)
GND
GND
GND
VREF1(4)
VREF2(4)
VCCIO4
Bank 4
GND
VREF1(5)
VREF2(5)
VCCIO5
Bank 5
BOTTOM
LatticeECP/EC devices contain two types of sysI/O buffer pairs.
1. Top and Bottom sysI/O Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top and bottom banks of the device consist of two single-ended output drivers
and two sets of single-ended input buffers (both ratioed and referenced). The referenced input buffer can also
be configured as a differential input.
The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of
the differential input buffer.
Only the I/Os on the top and bottom banks have programmable PCI clamps. These I/O banks also support hot
socketing with IDK less than 1mA. Note that the PCI clamp is enabled after VCC, VCCAUX and VCCIO are at valid
operating levels and the device has been configured.
2. Left and Right sysI/O Buffer Pairs (Differential and Single-Ended Outputs)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. The referenced input buffer can also be configured as a differential input. In these banks the two pads in the pair are
described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O,
and the comp (complementary) pad is associated with the negative side of the differential I/O.
Only the left and right banks have LVDS differential output drivers. See the IDK specification for I/O leakage current during power-up.
2-29
Architecture
LatticeECP/EC Family Data Sheet
Typical I/O Behavior During Power-up
The internal power-on-reset (POR) signal is deactivated when VCC and VCCAUX have reached satisfactory levels.
After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to ensure
that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of all the
I/O banks that are critical to the application. For more information about controlling the output logic state with valid
input logic levels during power-up in LatticeECP/EC devices, see the list of technical documentation at the end of
this data sheet.
The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buffers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or
together with the VCC and VCCAUX supplies.
Supported Standards
The LatticeECP/EC sysI/O buffer supports both single-ended and differential standards. Single-ended standards
can be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2,
1.5, 1.8, 2.5 and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individually configurable
options for drive strength, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and open drain.
Other single-ended standards supported include SSTL and HSTL. Differential standards supported include LVDS,
BLVDS, LVPECL, RSDS, differential SSTL and differential HSTL. Tables 2-13 and 2-14 show the I/O standards
(together with their supply and reference voltages) supported by the LatticeECP/EC devices. For further information about utilizing the sysI/O buffer to support a variety of standards please see the the list of technical information
at the end of this data sheet.
Table 2-13. Supported Input Standards
VREF (Nom.)
VCCIO1 (Nom.)
LVTTL
—
—
LVCMOS332
—
—
2
LVCMOS25
—
—
LVCMOS18
—
1.8
LVCMOS15
—
1.5
LVCMOS122
—
—
PCI
—
3.3
HSTL18 Class I, II
0.9
—
HSTL18 Class III
1.08
—
HSTL15 Class I
0.75
—
HSTL15 Class III
0.9
—
SSTL3 Class I, II
1.5
—
SSTL2 Class I, II
1.25
—
SSTL18 Class I
0.9
—
Differential SSTL18 Class I
—
—
Differential SSTL2 Class I, II
—
—
Differential SSTL3 Class I, II
—
—
Differential HSTL15 Class I, III
—
—
Differential HSTL18 Class I, II, III
—
—
LVDS, LVPECL, BLVDS, RSDS
—
—
Input Standard
Single Ended Interfaces
Differential Interfaces
1. When not specified VCCIO can be set anywhere in the valid operating range.
2. JTAG inputs do not have a fixed threshold option and always follow VCCJ.
2-30
Architecture
LatticeECP/EC Family Data Sheet
Table 2-14. Supported Output Standards
Output Standard
Drive
VCCIO (Nom.)
4mA, 8mA, 12mA, 16mA, 20mA
3.3
Single-ended Interfaces
LVTTL
LVCMOS33
4mA, 8mA, 12mA 16mA, 20mA
3.3
LVCMOS25
4mA, 8mA, 12mA, 16mA, 20mA
2.5
LVCMOS18
4mA, 8mA, 12mA, 16mA
1.8
LVCMOS15
4mA, 8mA
1.5
LVCMOS12
2mA, 6mA
1.2
LVCMOS33, Open Drain
4mA, 8mA, 12mA 16mA, 20mA
—
LVCMOS25, Open Drain
4mA, 8mA, 12mA 16mA, 20mA
—
LVCMOS18, Open Drain
4mA, 8mA, 12mA 16mA
—
LVCMOS15, Open Drain
4mA, 8mA
—
LVCMOS12, Open Drain
2mA, 6mA
—
PCI33
N/A
3.3
HSTL18 Class I, II, III
N/A
1.8
HSTL15 Class I, III
N/A
1.5
SSTL3 Class I, II
N/A
3.3
SSTL2 Class I, II
N/A
2.5
SSTL18 Class I
N/A
1.8
N/A
3.3
Differential Interfaces
Differential SSTL3, Class I, II
Differential SSTL2, Class I, II
N/A
2.5
Differential SSTL18, Class I
N/A
1.8
Differential HSTL18, Class I, II, III
N/A
1.8
Differential HSTL15, Class I, III
N/A
1.5
LVDS
N/A
2.5
BLVDS1
N/A
2.5
N/A
3.3
N/A
2.5
LVPECL
1
RSDS1
1. Emulated with external resistors.
Hot Socketing
The LatticeECP/EC devices have been carefully designed to ensure predictable behavior during power-up and
power-down. Power supplies can be sequenced in any order. During power up and power-down sequences, the
I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition,
leakage into I/O pins is controlled within specified limits, this allows for easy integration with the rest of the system. These capabilities make the LatticeECP/EC ideal for many multiple power supply and hot-swap applications.
Configuration and Testing
The following section describes the configuration and testing features of the LatticeECP/EC devices.
IEEE 1149.1-Compliant Boundary Scan Testability
All LatticeECP/EC devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant test
access port (TAP). This allows functional testing of the circuit board, on which the device is mounted, through a
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to
2-31
Architecture
LatticeECP/EC Family Data Sheet
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test
access port consists of dedicated I/Os: TDI, TDO, TCK and TMS. The test access port has its own supply voltage
VCCJ and can operate with LVCMOS3.3, 2.5, 1.8, 1.5 and 1.2 standards.
For more details on boundary scan test, please see information regarding additional technical documentation at
the end of this data sheet.
Device Configuration
All LatticeECP/EC devices contain two possible ports that can be used for device configuration. The test access
port (TAP), which supports bit-wide configuration, and the sysCONFIG port that supports both byte-wide and serial
configuration.
The TAP supports both the IEEE Std. 1149.1 Boundary Scan specification and the IEEE Std. 1532 In-System Configuration specification. The sysCONFIG port is a 20-pin interface with six of the I/Os used as dedicated pins and
the rest being dual-use pins (please refer to TN1053 for more information about using the dual-use pins as general
purpose I/O). There are four configuration options for LatticeECP/EC devices:
1. Industry standard SPI memories.
2. Industry standard byte wide flash and ispMACH 4000 for control/addressing.
3. Configuration from system microprocessor via the configuration bus or TAP.
4. Industry standard FPGA board memory.
On power-up, the FPGA SRAM is ready to be configured with the sysCONFIG port active. The IEEE 1149.1 serial
mode can be activated any time after power-up by sending the appropriate command through the TAP port. Once a
configuration port is selected, that port is locked and another configuration port cannot be activated until the next
power-up sequence.
For more information about device configuration, please see the list of technical documentation at the end of this
data sheet.
Internal Logic Analyzer Capability (ispTRACY)
All LatticeECP/EC devices support an internal logic analyzer diagnostic feature. The diagnostic features provide
capabilities similar to an external logic analyzer, such as programmable event and trigger condition and deep trace
memory. This feature is enabled by Lattice’s ispTRACY. The ispTRACY utility is added into the user design at compile time.
For more information about ispTRACY, please see information regarding additional technical documentation at the
end of this data sheet.
External Resistor
LatticeECP/EC devices require a single external, 10K ohm +/- 1% value between the XRES pin and ground. Device
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external
resistor pad.
2-32
Architecture
LatticeECP/EC Family Data Sheet
Oscillator
Every LatticeECP/EC device has an internal CMOS oscillator which is used to derive a master clock for configuration. The oscillator and the master clock run continuously. The default value of the master clock is 2.5MHz. Table 215 lists all the available Master Clock frequencies. When a different Master Clock is selected during the design process, the following sequence takes place:
1. User selects a different Master Clock frequency.
2. During configuration the device starts with the default (2.5MHz) Master Clock frequency.
3. The clock configuration settings are contained in the early configuration bit stream.
4. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.
For further information about the use of this oscillator for configuration, please see the list of technical documentation at the end of this data sheet.
Table 2-15. Selectable Master Clock (CCLK) Frequencies During Configuration
CCLK (MHz)
CCLK (MHz)
CCLK (MHz)
2.5*
13
45
4.3
15
51
5.4
20
55
6.9
26
60
8.1
30
130
9.2
34
—
10.0
41
—
Density Shifting
The LatticeECP/EC family has been designed to ensure that different density devices in the same package have
the same pin-out. Furthermore, the architecture ensures a high success rate when performing design migration
from lower density parts to higher density parts. In many cases, it is also possible to shift a lower utilization design
targeted for a high-density device to a lower density device. However, the exact details of the final resource utilization will impact the likely success in each case.
2-33
LatticeECP/EC Family Data Sheet
DC and Switching Characteristics
September 2012
Data Sheet
Absolute Maximum Ratings1, 2, 3
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . -0.5 to 1.32V
Supply Voltage VCCAUX . . . . . . . . . . . . . . . . -0.5 to 3.75V
Supply Voltage VCCJ . . . . . . . . . . . . . . . . . . -0.5 to 3.75V
Output Supply Voltage VCCIO . . . . . . . . . . . -0.5 to 3.75V
Dedicated Input Voltage Applied4 . . . . . . . . -0.5 to 4.25V
I/O Tristate Voltage Applied 4 . . . . . . . . . . . . -0.5 to 3.75V
Storage Temperature (Ambient) . . . . . . . . . -65 to 150°C
Junction Temp. (Tj) . . . . . . . . . . . . . . . . . . . . . . . +125°C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
4. Overshoot and undershoot of -2V to (VIHMAX + 2) volts is permitted for a duration of VCCIO
—
35
—
mA
Left and Right General Purpose sysI/Os (Banks 2, 3, 6 and 7)
IDK_LR
1.
2.
3.
4.
Input or I/O Leakage Current
Insensitive to sequence of VCC, VCCAUX and VCCIO. However, assumes monotonic rise/fall rates for VCC, VCCAUX and VCCIO.
0 ð VCC ð VCC (MAX), 0 ð VCCIO ð VCCIO (MAX) or 0 ð VCCAUX ð VCCAUX (MAX).
IDK is additive to IPU, IPW or IBH.
LVCMOS and LVTTL only.
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
3-1
DC and Switching_02.0
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
IIL, IIH1
IIH
1, 3
Min.
Typ.
Max.
Units
Input or I/O Leakage
Parameter
0 ð VIN ð (VCCIO - 0.2V)
Condition
—
—
10
µA
Input or I/O High Leakage
(VCCIO - 0.2V) ð VIH ð 3.6V
—
—
40
µA
IPU
I/O Active Pull-up Current
0 ð VIN ð 0.7 VCCIO
-30
—
-150
µA
IPD
I/O Active Pull-down Current
VIL (MAX) ð VIN ð VIH (MAX)
30
—
150
µA
VIN = VIL (MAX)
µA
IBHLS
Bus Hold Low sustaining current
30
—
—
IBHHS
Bus Hold High sustaining current VIN = 0.7VCCIO
-30
—
—
µA
IBHLO
Bus Hold Low Overdrive current
0 ð VIN ð VIH (MAX)
—
—
150
µA
IBHLH
Bus Hold High Overdrive current
0 ð VIN ð VIH (MAX)
—
—
-150
µA
VBHT
Bus Hold trip Points
0 ð VIN ð VIH (MAX)
C1
I/O Capacitance
VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = 1.2V, VIO = 0 to VIH (MAX)
C2
Dedicated Input Capacitance2
VCCIO = 3.3V, 2.5V, 1.8V, 1.5V, 1.2V,
VCC = 1.2V, VIO = 0 to VIH (MAX)
2
VIL (MAX)
—
VIH (MIN)
V
—
8
—
pf
—
6
—
pf
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured
with the output driver active. Bus maintenance circuits are disabled.
2. TA 25oC, f = 1.0MHz
3. For top and bottom general purpose I/O pins, when VIH is higher than VCCIO, a transient current typically of 30ns in duration or less with a
peak current of 6mA can occur on the high-to-low transition. For left and right I/O banks, VIH must be less than or equal to VCCIO.
3-2
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Supply Current (Standby)1, 2, 3, 4
Over Recommended Operating Conditions
Symbol
ICC
Parameter
Core Power Supply Current
Device
Typ.5
Units
LFEC1
6
mA
LFEC3
10
mA
LFECP6/LFEC6
15
mA
LFECP10/LFEC10
25
mA
LFECP15/LFEC15
35
mA
LFECP20/LFEC20
60
mA
85
mA
15
mA
LFECP33/LFEC33
ICCAUX
Auxiliary Power Supply Current
ICCPLL
PLL Power Supply Current
5
mA
ICCIO
Bank Power Supply Current6
2
mA
ICCJ
VCCJ Power Supply Current
5
mA
1.
2.
3.
4.
5.
6.
For further information about supply current, please see the list of technical documentation at the end of this data sheet.
Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.
Frequency 0MHz.
Pattern represents a “blank” configuration data file.
TJ=25oC, power supplies at nominal voltage.
Per bank.
3-3
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Initialization Supply Current1, 2, 3, 4, 5, 6
Over Recommended Operating Conditions
Symbol
ICC
ICCAUX
ICCPLL
Typ.6
Units
LFEC1
25
mA
LFEC3
40
mA
Parameter
Core Power Supply Current
Auxiliary Power Supply Current
Devices
LFECP6/LFEC6
50
mA
LFECP10/LFEC10
60
mA
LFECP15/LFEC15
70
mA
LFECP20/LFEC20
150
mA
LFECP33/LFEC33
220
mA
LFEC1
30
mA
LFEC3
30
mA
LFECP6/LFEC6
30
mA
LFECP10/LFEC10
35
mA
LFECP15/LFEC15
35
mA
LFECP20/LFEC20
40
mA
LFECP33/LFEC33
40
mA
12
mA
4
mA
PLL Power Supply Current
LFEC1
ICCIO
ICCJ
1.
2.
3.
4.
5.
6.
7.
Bank Power Supply Current7
LFEC3
5
mA
LFECP6/LFEC6
6
mA
LFECP10/LFEC10
6
mA
LFECP15/LFEC15
7
mA
LFECP20/LFEC20
8
mA
LFECP33/LFEC33
8
mA
20
mA
VCCJ Power Supply Current
Until DONE signal is active.
For further information about supply current, please see the list of technical documentation at the end of this data sheet.
Assumes all outputs are tristated, all inputs are configured as LVCMOS and held at the VCCIO or GND.
Frequency 0MHz.
Pattern represents typical design with 65% logic, 55% EBR, 10% routing utilization.
TJ=25oC, power supplies at nominal voltage.
Per bank.
3-4
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
sysI/O Recommended Operating Conditions
VCCIO
Standard
VREF (V)
Min.
Typ.
Max.
Min.
Typ.
Max.
LVCMOS 3.3
3.135
3.3
3.465
—
—
—
LVCMOS 2.5
2.375
2.5
2.625
—
—
—
LVCMOS 1.8
1.71
1.8
1.89
—
—
—
LVCMOS 1.5
1.425
1.5
1.575
—
—
—
LVCMOS 1.2
1.14
1.2
1.26
—
—
—
LVTTL
3.135
3.3
3.465
—
—
—
PCI
3.135
3.3
3.465
—
—
—
SSTL18 Class I
1.71
1.8
1.89
0.833
0.90
0.969
SSTL2 Class I, II
2.375
2.5
2.625
1.15
1.25
1.35
SSTL3 Class I, II
3.135
3.3
3.465
1.3
1.5
1.7
HSTL15 Class I
1.425
1.5
1.575
0.68
0.75
0.9
HSTL15 Class III
1.425
1.5
1.575
—
0.9
—
HSTL 18 Class I, II
1.71
1.8
1.89
—
0.9
—
HSTL 18 Class III
1.71
1.8
1.89
—
1.08
—
LVDS
2.375
2.5
2.625
—
—
—
LVPECL1
3.135
3.3
3.465
—
—
—
BLVDS
2.375
2.5
2.625
—
—
—
RSDS1
2.375
2.5
2.625
—
—
—
1
1. Outputs are implemented with the addition of external resistors. VCCIO applies to outputs only.
3-5
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
sysI/O Single-Ended DC Electrical Characteristics
Input/Output
Standard
LVCMOS 3.3
LVTTL
LVCMOS 2.5
VIH
VIL
Min. (V)
Max. (V)
Min. (V)
Max. (V)
-0.3
0.8
2.0
3.6
-0.3
-0.3
0.8
0.7
2.0
1.7
3.6
3.6
LVCMOS 1.8
-0.3
0.35VCCIO
0.65VCCIO
3.6
LVCMOS 1.5
-0.3
0.35VCCIO
0.65VCCIO
3.6
VOL Max.
(V)
VOH Min.
(V)
IOL1
(mA)
IOH1
(mA)
0.4
VCCIO - 0.4
20, 16, 12,
8, 4
-20, -16, -12,
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
20, 16, 12,
8, 4
-20, -16, -12,
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
20, 16, 12,
8, 4
-20, -16, -12,
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
16, 12, 8, 4
-16, -12, -8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
8, 4
-8, -4
0.2
VCCIO - 0.2
0.1
-0.1
0.4
VCCIO - 0.4
6, 2
-6, -2
0.2
VCCIO - 0.2
0.1
-0.1
LVCMOS 1.2
-0.3
0.35VCC
PCI
-0.3
SSTL3 class I
-0.3
SSTL3 class II
-0.3
VREF - 0.2
VREF + 0.2
3.6
0.5
VCCIO - 0.9
16
-16
SSTL2 class I
-0.3
VREF - 0.18
VREF + 0.18
3.6
0.54
VCCIO - 0.62
7.6
-7.6
SSTL2 class II
-0.3
VREF - 0.18
VREF + 0.18
3.6
0.35
VCCIO - 0.43
15.2
-15.2
SSTL18 class I
-0.3
0.4
VCCIO - 0.4
6.7
-6.7
-0.3
VREF - 0.125 VREF + 0.125
VREF - 0.1
VREF + 0.1
3.6
HSTL15 class I
3.6
0.4
VCCIO - 0.4
8
-8
HSTL15 class III
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCIO - 0.4
24
-8
HSTL18 class I
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCIO - 0.4
9.6
-9.6
HSTL18 class II
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCIO - 0.4
16
-16
HSTL18 class III
-0.3
VREF - 0.1
VREF + 0.1
3.6
0.4
VCCIO - 0.4
24
-8
0.65VCC
3.6
0.3VCCIO
0.5VCCIO
3.6
0.1VCCIO
0.9VCCIO
1.5
-0.5
VREF - 0.2
VREF + 0.2
3.6
0.7
VCCIO - 1.1
8
-8
1. The average DC current drawn by I/Os between GND connections, or between the last GND in an I/O bank and the end of an I/O bank, as
shown in the logic signal connections table shall not exceed n * 8mA. Where n is the number of I/Os between bank GND connections or
between the last GND in a bank and the end of a bank.
3-6
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
sysI/O Differential Electrical Characteristics
LVDS
Over Recommended Operating Conditions
Parameter
Symbol
Parameter Description
Test Conditions
VINP, VINM
Input voltage
VTHD
Differential input threshold
VCM
Input common mode voltage
IIN
Input current
Power on or power off
Min.
Typ.
Max.
Units
0
—
2.4
V
+/-100
—
—
mV
100mV ð VTHD
VTHD/2
1.2
1.8
V
200mV ð VTHD
VTHD/2
1.2
1.9
V
350mV ð VTHD
VTHD/2
1.2
2.0
V
—
—
+/-10
µA
VOH
Output high voltage for VOP or VOM
RT = 100 Ohm
—
1.38
1.60
V
VOL
Output low voltage for VOP or VOM
RT = 100 Ohm
0.9V
1.03
—
V
VOD
Output voltage differential
(VOP - VOM), RT = 100 Ohm
250
350
450
mV
VOD
Change in VOD between high and
low
—
—
50
mV
VOS
Output voltage offset
1.125
1.25
1.375
V
VOS
Change in VOS between H and L
—
—
50
mV
—
—
6
mA
IOSD
Output short circuit current
(VOP + VOM)/2, RT = 100 Ohm
VOD = 0V Driver outputs
shorted
3-7
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Differential HSTL and SSTL
Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.
LVDS25E
The top and bottom side of LatticeECP/EC devices support LVDS outputs via emulated complementary LVCMOS
outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in
Figure 3-1 is one possible solution for point-to-point signals.
Figure 3-1. LVDS25E Output Termination Example
Bourns
CAT16-LV4F12
VCCIO = 2.5V (±5%)
RS=165 ohms
(±1%)
VCCIO = 2.5V (±5%)
RS=165 ohms
(±1%)
RD = 140 ohms
(±1%)
+
-
RD = 100 ohms
(±1%)
Transmission line, Zo = 100 ohm differential
ON-chip OFF-chip
OFF-chip ON-chip
Table 3-1. LVDS25E DC Conditions
Typical
Units
VOH
Parameter
Output high voltage
Description
1.42
V
VOL
Output low voltage
1.08
V
VOD
Output differential voltage
0.35
V
VCM
Output common mode voltage
1.25
V
ZBACK
Back impedance
100
¾
3-8
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
BLVDS
The LatticeECP/EC devices support BLVDS standard. This standard is emulated using complementary LVCMOS
outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when
multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one
possible solution for bi-directional multi-point differential signals.
Figure 3-2. BLVDS Multi-point Output Example
Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
2.5V
2.5V
100
45-90 ohms, +/- 1%
%
45-90
- ohms, +/- 1%
100
2.5V
2.5V
100
100
...
2.5V
+
-
+
-
+
-
+
-
2.5V
2.5V
100
100
2.5V
100
100
Table 3-2. BLVDS DC Conditions1
Over Recommended Operating Conditions
Typical
Parameter
Description
Zo = 45
Zo = 90
Units
100
100
ohm
ZOUT
Output impedance
RTLEFT
Left end termination
45
90
ohm
RTRIGHT
Right end termination
45
90
ohm
VOH
Output high voltage
1.375
1.48
V
VOL
Output low voltage
1.125
1.02
V
VOD
Output differential voltage
0.25
0.46
V
VCM
Output common mode voltage
1.25
1.25
V
IDC
DC output current
11.2
10.2
mA
1. For input buffer, see LVDS table.
3-9
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LVPECL
The LatticeECP/EC devices support differential LVPECL standard. This standard is emulated using complementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The LVPECL input standard
is supported by the LVDS differential input buffer. The scheme shown in Figure 3-3 is one possible solution for
point-to-point signals.
Figure 3-3. Differential LVPECL
3.3V
100 ohms
+
100 ohms
~150 ohms
3.3V
-
100 ohms
Transmission line, Zo = 100 ohm differential
Off-chip
Table 3-3. LVPECL DC Conditions1
Over Recommended Operating Conditions
Parameter
Description
Typical
Units
100
ohm
ZOUT
Output impedance
RP
Driver parallel resistor
150
ohm
RT
Receiver termination
100
ohm
VOH
Output high voltage
2.03
V
VOL
Output low voltage
1.27
V
VOD
Output differential voltage
0.76
V
VCM
Output common mode voltage
1.65
V
ZBACK
Back impedance
85.7
ohm
IDC
DC output current
12.7
mA
1. For input buffer, see LVDS table.
For further information about LVPECL, BLVDS and other differential interfaces please see the list of technical information at the end of this data sheet.
3-10
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
RSDS
The LatticeECP/EC devices support differential RSDS standard. This standard is emulated using complementary
LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input standard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for RSDS
standard implementation. Use LVDS25E mode with suggested resistors for RSDS operation. Resistor values in
Figure 3-4 are industry standard values for 1% resistors.
Figure 3-4. RSDS (Reduced Swing Differential Standard)
VCCIO = 2.5V
294
Zo = 100
+
VCCIO = 2.5V
121
100
294
On-chip
Off-chip
Emulated
RSDS Buffer
Table 3-4. RSDS DC Conditions
Parameter
Description
Typical
Units
ZOUT
Output impedance
20
ohm
RS
Driver series resistor
294
ohm
RP
Driver parallel resistor
121
ohm
RT
Receiver termination
100
ohm
VOH
Output high voltage
1.35
V
VOL
Output low voltage
1.15
V
VOD
Output differential voltage
0.20
V
VCM
Output common mode voltage
1.25
V
ZBACK
Back impedance
101.5
ohm
IDC
DC output current
3.66
mA
3-11
-
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12mA Drive)
Function
-5 Timing
Units
16-bit decoder
5.5
ns
32-bit decoder
6.9
ns
64-bit decoder
7.1
ns
4:1 MUX
4.3
ns
Basic Functions
8:1 MUX
4.7
ns
16:1 MUX
5.0
ns
32:1 MUX
5.5
ns
-5 Timing
Units
16 bit decoder
410
MHz
32 bit decoder
283
MHz
64 bit decoder
272
MHz
4:1 MUX
613
MHz
8:1 MUX
565
MHz
16:1 MUX
526
MHz
32:1 MUX
442
MHz
8-bit adder
363
MHz
16-bit adder
353
MHz
64-bit adder
196
MHz
16-bit counter
414
MHz
32-bit counter
317
MHz
64-bit counter
216
MHz
64-bit accumulator
178
MHz
256x36 Single Port RAM
280
MHz
512x18 True-Dual Port RAM
280
MHz
Register-to-Register Performance1
Function
Basic Functions
Embedded Memory Functions
Distributed Memory Functions
16x2 Single Port RAM
460
MHz
64x2 Single Port RAM
375
MHz
128x4 Single Port RAM
294
MHz
32x2 Pseudo-Dual Port RAM
392
MHz
64x4 Pseudo-Dual Port RAM
332
MHz
DSP Function2
9x9 Pipelined Multiply/Accumulate
242
MHz
18x18 Pipelined Multiply/Accumulate
238
MHz
36x36 Pipelined Multiply
235
MHz
1. These timing numbers were generated using the ispLEVER design tool. Exact performance may vary with design and tool version. The tool
uses internal parameters that have been characterized but are not tested on every device.
2. Applies to LatticeECP devices only.
Timing v.G 0.30
3-12
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Derating Timing Tables
Logic Timing provided in the following sections of the data sheet and the ispLEVER design tools are worst-case
numbers in the operating range. Actual delays at nominal temperature and voltage for best-case process, can be
much better than the values given in the tables. To calculate logic timing numbers at a particular temperature and
voltage multiply the noted numbers with the derating factors provided below.
The junction temperature for the FPGA depends on the power dissipation by the device, the package thermal characteristics (JA), and the ambient temperature, as calculated with the following equation:
TJMAX = TAMAX + (Power * JA)
The user must determine this temperature and then use it to determine the derating factor based on the following
derating tables: TJ °C.
Table 3-5. Delay Derating Table for Internal Blocks
Power Supply Voltage
TJ °C
Commercial
TJ °C
Industrial
1.14V
1.2V
1.26V
—
-40
0.82
0.77
0.71
—
-25
0.82
0.76
0.71
0
20
0.89
0.83
0.78
25
45
0.93
0.87
0.81
85
105
1.00
0.94
0.89
3-13
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC External Switching Characteristics
Over Recommended Operating Conditions
-5
Parameter
Description
Device
Min.
-4
-3
Max.
Min.
Max.
Min.
Max.
Units
General I/O Pin Parameters (Using Primary Clock without PLL)1
Clock to Output - PIO Output
Register
tCO7
tSU
Clock to Data Setup - PIO Input
Register
7
Clock to Data Hold - PIO Input
Register
tH7
tSU_DEL
tH_DEL
7
7
fMAX_IO2
Clock to Data Setup - PIO Input
Register with Data Input Delay
Clock to Data Hold - PIO Input
Register with Input Data Delay
Clock Frequency of I/O and PFU
Register
DDR I/O Pin Parameters
LFEC1
—
5.09
—
6.11
—
7.13
ns
LFEC3
—
5.71
—
6.85
—
7.99
ns
LFEC6
—
5.60
—
6.72
—
7.84
ns
LFEC10
—
5.47
—
6.57
—
7.66
ns
LFEC15
—
5.67
—
6.81
—
7.94
ns
LFEC20
—
5.89
—
7.07
—
8.25
ns
LFEC33
—
6.19
—
7.42
—
8.66
ns
LFEC1
-0.08
—
-0.10
—
-0.12
—
ns
LFEC3
-0.70
—
-0.84
—
-0.98
—
ns
LFEC6
-0.63
—
-0.76
—
-0.89
—
ns
LFEC10
-0.43
—
-0.52
—
-0.61
—
ns
LFEC15
-0.70
—
-0.84
—
-0.98
—
ns
LFEC20
-0.88
—
-1.06
—
-1.24
—
ns
LFEC33
-1.12
—
-1.34
—
-1.56
—
ns
LFEC1
2.19
—
2.62
—
3.06
—
ns
LFEC3
2.80
—
3.36
—
3.92
—
ns
LFEC6
2.69
—
3.23
—
3.77
—
ns
LFEC10
2.56
—
3.08
—
3.59
—
ns
LFEC15
2.76
—
3.32
—
3.87
—
ns
LFEC20
2.99
—
3.58
—
4.18
—
ns
LFEC33
3.28
—
3.93
—
4.59
—
ns
LFEC1
3.36
—
4.03
—
4.70
—
ns
LFEC3
2.74
—
3.29
—
3.84
—
ns
LFEC6
2.81
—
3.37
—
3.93
—
ns
LFEC10
3.01
—
3.61
—
4.21
—
ns
LFEC15
2.74
—
3.29
—
3.83
—
ns
LFEC20
2.56
—
3.07
—
3.58
—
ns
LFEC33
2.32
—
2.79
—
3.25
—
ns
LFEC1
-1.31
—
-1.57
—
-1.83
—
ns
LFEC3
-0.70
—
-0.83
—
-0.97
—
ns
LFEC6
-0.80
—
-0.96
—
-1.12
—
ns
LFEC10
-0.93
—
-1.12
—
-1.30
—
ns
LFEC15
-0.73
—
-0.88
—
-1.02
—
ns
LFEC20
-0.51
—
-0.61
—
-0.71
—
ns
LFEC33
-0.22
—
-0.26
—
-0.30
—
ns
—
420
—
378
—
340
Mhz
All
3, 4, 5
tDVADQ
Data Valid After DQS (DDR Read)
All
—
0.19
—
0.19
—
0.19
UI
tDVEDQ
Data Hold After DQS (DDR Read)
All
0.67
—
0.67
—
0.67
—
UI
3-14
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC External Switching Characteristics (Continued)
Over Recommended Operating Conditions
-5
Parameter
Description
Device
Min.
-4
Max.
Min.
-3
Max.
Min.
Max.
Units
tDQVBS
Data Valid Before DQS
All
0.20
—
0.20
—
0.20
—
UI
tDQVAS
Data Valid After DQS
All
0.20
—
0.20
—
0.20
—
UI
fMAX_DDR
DDR Clock Frequency
All
95
200
95
166
95
133
MHz
Primary and Secondary Clock6
fMAX_PRI2
Frequency for Primary Clock Tree
All
—
420
—
378
—
340
MHz
tW_PRI
Clock Pulse Width for Primary
Clock
All
1.19
—
1.19
—
1.19
—
ns
tSKEW_PRI
Primary Clock Skew within an I/O
Bank
All
—
250
—
300
—
350
ps
1.
2.
3.
4.
5.
6.
7.
General timing numbers based on LVCMOS2.5V, 12 mA. Loading of 0 pF.
Using LVDS I/O standard.
DDR timing numbers based on SSTL I/O.
DDR specifications are characterized but not tested.
UI is average bit period.
Based on a single primary clock.
These timing numbers were generated using ispLEVER design tool. Exact performance may vary with design and tool version. The tool
uses internal parameters that have been characterized but are not tested on every device.
Timing v.G 0.30
Figure 3-5. DDR Timings
DQ and DQS Read Timings
DQS
DQ
tDVADQ
tDVEDQ
DQ and DQS Write Timings
DQS
DQ
tDQVBS
tDQVAS
3-15
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC Internal Switching Characteristics
Over Recommended Operating Conditions
-5
Parameter
Description
Min.
-4
Max.
Min.
-3
Max.
Min.
Max.
Units
PFU/PFF Logic Mode Timing
tLUT4_PFU
LUT4 Delay (A to D Inputs to F Output)
—
0.25
—
0.31
—
0.36
ns
tLUT6_PFU
LUT6 Delay (A to D Inputs to OFX Output)
—
0.40
—
0.48
—
0.56
ns
tLSR_PFU
Set/Reset to Output of PFU
—
0.81
—
0.98
—
1.14
ns
tSUM_PFU
Clock to Mux (M0,M1) Input Setup Time
0.12
—
0.14
—
0.16
—
ns
tHM_PFU
Clock to Mux (M0,M1) Input Hold Time
-0.05
—
-0.06
—
-0.06
—
ns
tSUD_PFU
Clock to D Input Setup Time
0.12
—
0.14
—
0.16
—
ns
tHD_PFU
Clock to D Input Hold time
-0.03
—
-0.03
—
-0.04
—
ns
tCK2Q_PFU
Clock to Q Delay, D-type Register Configuration
—
0.36
—
0.44
—
0.51
ns
tLE2Q_PFU
Clock to Q Delay Latch Configuration
—
0.48
—
0.58
—
0.68
ns
tLD2Q_PFU
D to Q Throughput Delay when Latch is Enabled
—
0.50
—
0.60
—
0.69
ns
—
0.36
—
0.44
—
0.51
ns
PFU Dual Port Memory Mode Timing
tCORAM_PFU
Clock to Output
tSUDATA_PFU
Data Setup Time
-0.20
—
-0.24
—
-0.28
—
ns
tHDATA_PFU
Data Hold Time
0.26
—
0.31
—
0.36
—
ns
tSUADDR_PFU
Address Setup Time
-0.51
—
-0.62
—
-0.72
—
ns
tHADDR_PFU
Address Hold Time
0.64
—
0.77
—
0.90
—
ns
tSUWREN_PFU
Write/Read Enable Setup Time
-0.24
—
-0.29
—
-0.34
—
ns
tHWREN_PFU
Write/Read Enable Hold Time
0.30
—
0.36
—
0.42
—
ns
PIC Timing
PIO Input/Output Buffer Timing
tIN_PIO
Input Buffer Delay
—
0.56
—
0.67
—
0.78
ns
tOUT_PIO
Output Buffer Delay
—
1.92
—
2.31
—
2.69
ns
—
1.08
—
1.26
—
ns
IOLOGIC Input/Output Timing
tSUI_PIO
Input Register Setup Time (Data Before Clock)
0.90
tHI_PIO
Input Register Hold Time (Data after Clock)
0.62
—
0.74
—
0.87
—
ns
tCOO_PIO
Output Register Clock to Output Delay
—
0.33
—
0.40
—
0.46
ns
tSUCE_PIO
Input Register Clock Enable Setup Time
-0.10
—
-0.12
—
-0.14
—
ns
tHCE_PIO
Input Register Clock Enable Hold Time
0.12
—
0.14
—
0.17
—
ns
tSULSR_PIO
Set/Reset Setup Time
0.18
—
0.21
—
0.25
—
ns
tHLSR_PIO
Set/Reset Hold Time
-0.15
—
-0.18
—
-0.21
—
ns
—
3.64
—
4.37
—
5.10
ns
—
0.74
—
0.88
—
1.03
ns
-0.29
—
-0.35
—
-0.41
—
ns
EBR Timing
tCO_EBR
Clock to Output from Address or Data
tCOO_EBR
Clock to Output from EBR output Register
tSUDATA_EBR
Setup Data to EBR Memory
tHDATA_EBR
Hold Data to EBR Memory
0.37
—
0.44
—
0.52
—
ns
tSUADDR_EBR
Setup Address to EBR Memory
-0.29
—
-0.35
—
-0.41
—
ns
tHADDR_EBR
Hold Address to EBR Memory
0.37
—
0.45
—
0.52
—
ns
tSUWREN_EBR
Setup Write/Read Enable to EBR Memory
-0.18
—
-0.22
—
-0.26
—
ns
tHWREN_EBR
Hold Write/Read Enable to EBR Memory
0.23
—
0.28
—
0.33
—
ns
3-16
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC Internal Switching Characteristics (Continued)
Over Recommended Operating Conditions
-5
Parameter
Description
-4
-3
Min.
Max.
Min.
Max.
Min.
Max.
Units
tSUCE_EBR
Clock Enable Setup Time to EBR Output
Register
0.18
—
0.21
—
0.25
—
ns
tHCE_EBR
Clock Enable Hold Time to EBR Output Register
-0.14
—
-0.17
—
-0.20
—
ns
tRSTO_EBR
Reset To Output Delay Time from EBR Output
Register
—
1.47
—
1.76
—
2.05
ns
PLL Parameters
tRSTREC
Reset Recovery to Rising Clock
1.00
—
1.00
—
1.00
—
ns
tRSTSU
Reset Signal Setup Time
1.00
—
1.00
—
1.00
—
ns
-0.38
—
-0.30
—
-0.23
—
ns
DSP Block Timing2, 3
tSUI_DSP
Input Register Setup Time
tHI_DSP
Input Register Hold Time
0.71
—
0.86
—
1.00
—
ns
tSUP_DSP
Pipeline Register Setup Time
3.31
—
3.98
—
4.64
—
ns
tHP_DSP
Pipeline Register Hold Time
0.71
—
0.86
—
1.00
—
ns
tSUO_DSP4
Output Register Setup Time
5.54
—
6.64
—
7.75
—
ns
tHO_DSP4
Output Register Hold Time
0.71
—
0.86
—
1.00
—
ns
tCOI_DSP4
Input Register Clock to Output Time
—
7.50
—
9.00
—
10.50
ns
4
tCOP_DSP
Pipeline Register Clock to Output Time
—
4.66
—
5.60
—
6.53
ns
tCOO_DSP
Output Register Clock to Output Time
—
1.47
—
1.77
—
2.06
ns
tSUADSUB
AdSub Input Register Setup Time
-0.38
—
-0.30
—
-0.23
—
ns
tHADSUB
AdSub Input Register Hold Time
0.71
—
0.86
—
1.00
—
ns
1. Internal parameters are characterized but not tested on every device.
2. These parameters apply to LatticeECP devices only.
3. DSP Block is configured in Multiply Add/Sub 18 x 18 Mode.
4. These parameters include the Adder Subtractor block in the path.
Timing v.G 0.30
3-17
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Timing Diagrams
PFU Timing Diagrams
Figure 3-6. Slice Single/Dual Port Write Cycle Timing
CK
WRE
AD[3:0]
AD
DI[1:0]
D
DO[1:0]
Old Data
D
Figure 3-7. Slice Single /Dual Port Read Cycle Timing
WRE
AD[3:0]
AD
DO[1:0]
Old Data
D
3-18
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
EBR Memory Timing Diagrams
Figure 3-8. Read/Write Mode (Normal)
CLKA
CSA
WEA
A0
ADA
A1
A0
A0
A1
tSU tH
DIA
D0
D1
tCO_EBR
tCO_EBR
D0
DOA
tCO_EBR
D1
D0
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
Figure 3-9. Read/Write Mode with Input and Output Registers
CLKA
CSA
WEA
ADA
A0
tSU
DIA
A1
A0
A1
A0
tH
D0
D1
tCOO_EBR
DOA (Regs)
Mem(n) data from previous read
output is only updated during a read cycle
3-19
tCOO_EBR
D0
D1
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Figure 3-10. Read Before Write (SP Read/Write on Port A, Input Registers Only)
CLKA
CSA
WEA
ADA
A0
tSU
DIA
A1
A0
A1
A0
D3
D1
tH
D2
D1
D0
tACCESS
old A0 Data
DOA
tACCESS
tACCESS
old A1 Data
tACCESS
tACCESS
D0
D1
D2
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
Figure 3-11. Write Through (SP Read/Write On Port A, Input Registers Only)
CLKA
CSA
WEA
Three consecutive writes to A0
ADA
A0
tSU
DIA
A1
tH
D0
D2
D1
tACCESS
DOA
A0
Data from Prev Read
or Write
tACCESS
D0
D3
D4
tACCESS
D1
tACCESS
D2
D3
D4
Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
3-20
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC Family Timing Adders1, 2, 3
Over Recommended Operating Conditions
Buffer Type
Description
-5
-4
-3
Units
0.41
0.50
0.58
ns
Input Adjusters
LVDS25
LVDS
BLVDS25
BLVDS
0.41
0.50
0.58
ns
LVPECL33
LVPECL
0.50
0.60
0.70
ns
HSTL18_I
HSTL_18 class I
0.41
0.49
0.57
ns
HSTL18_II
HSTL_18 class II
0.41
0.49
0.57
ns
HSTL18_III
HSTL_18 class III
0.41
0.49
0.57
ns
HSTL18D_I
Differential HSTL 18 class I
0.37
0.44
0.52
ns
HSTL18D_II
Differential HSTL 18 class II
0.37
0.44
0.52
ns
HSTL18D_III
Differential HSTL 18 class III
0.37
0.44
0.52
ns
HSTL15_I
HSTL_15 class I
0.40
0.48
0.56
ns
HSTL15_III
HSTL_15 class III
0.40
0.48
0.56
ns
HSTL15D_I
Differential HSTL 15 class I
0.37
0.44
0.51
ns
HSTL15D_III
Differential HSTL 15 class III
0.37
0.44
0.51
ns
SSTL33_I
SSTL_3 class I
0.46
0.55
0.64
ns
SSTL33_II
SSTL_3 class II
0.46
0.55
0.64
ns
SSTL33D_I
Differential SSTL_3 class I
0.39
0.47
0.55
ns
SSTL33D_II
Differential SSTL_3 class II
0.39
0.47
0.55
ns
SSTL25_I
SSTL_2 class I
0.43
0.51
0.60
ns
SSTL25_II
SSTL_2 class II
0.43
0.51
0.60
ns
SSTL25D_I
Differential SSTL_2 class I
0.38
0.45
0.53
ns
SSTL25D_II
Differential SSTL_2 class II
0.38
0.45
0.53
ns
SSTL18_I
SSTL_18 class I
0.40
0.48
0.56
ns
SSTL18D_I
Differential SSTL_18 class I
0.37
0.44
0.51
ns
LVTTL33
LVTTL
0.07
0.09
0.10
ns
LVCMOS33
LVCMOS 3.3
0.07
0.09
0.10
ns
LVCMOS25
LVCMOS 2.5
0.00
0.00
0.00
ns
LVCMOS18
LVCMOS 1.8
0.07
0.09
0.10
ns
LVCMOS15
LVCMOS 1.5
0.24
0.29
0.33
ns
LVCMOS12
LVCMOS 1.2
1.27
1.52
1.77
ns
PCI33
PCI
0.07
0.09
0.10
ns
Output Adjusters
LVDS25E
LVDS 2.5 E
0.12
0.14
0.17
ns
LVDS25
LVDS 2.5
-0.44
-0.53
-0.62
ns
BLVDS25
BLVDS 2.5
0.33
0.40
0.46
ns
LVPECL33
LVPECL 3.3
0.20
0.24
0.28
ns
HSTL18_I
HSTL_18 class I
-0.10
-0.12
-0.14
ns
HSTL18_II
HSTL_18 class II
0.06
0.07
0.08
ns
HSTL18_III
HSTL_18 class III
0.15
0.19
0.22
ns
HSTL18D_I
Differential HSTL 18 class I
-0.10
-0.12
-0.14
ns
HSTL18D_II
Differential HSTL 18 class II
0.06
0.07
0.08
ns
HSTL18D_III
Differential HSTL 18 class III
0.15
0.19
0.22
ns
HSTL15_I
HSTL_15 class I
0.08
0.10
0.11
ns
3-21
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC Family Timing Adders1, 2, 3 (Continued)
Over Recommended Operating Conditions
Buffer Type
HSTL15_II
Description
HSTL_15 class II
-5
-4
-3
Units
0.10
0.12
0.14
ns
HSTL15_III
HSTL_15 class III
0.10
0.12
0.14
ns
HSTL15D_I
Differential HSTL 15 class I
0.08
0.10
0.11
ns
HSTL15D_III
Differential HSTL 15 class III
0.10
0.12
0.14
ns
SSTL33_I
SSTL_3 class I
-0.05
-0.06
-0.07
ns
SSTL33_II
SSTL_3 class II
0.40
0.48
0.56
ns
SSTL33D_I
Differential SSTL_3 class I
-0.05
-0.06
-0.07
ns
SSTL33D_II
Differential SSTL_3 class II
0.40
0.48
0.56
ns
SSTL25_I
SSTL_2 class I
0.05
0.07
0.08
ns
SSTL25_II
SSTL_2 class II
0.25
0.30
0.35
ns
SSTL25D_I
Differential SSTL_2 class I
0.05
0.07
0.08
ns
SSTL25D_II
Differential SSTL_2 class II
0.25
0.30
0.35
ns
SSTL18_I
SSTL_1.8 class I
0.01
0.01
0.01
ns
SSTL18D_I
Differential SSTL_1.8 class I
0.01
0.01
0.01
ns
LVTTL33_4mA
LVTTL 4mA drive
0.09
0.11
0.13
ns
LVTTL33_8mA
LVTTL 8mA drive
0.07
0.08
0.09
ns
LVTTL33_12mA
LVTTL 12mA drive
-0.03
-0.04
-0.05
ns
LVTTL33_16mA
LVTTL 16mA drive
0.36
0.43
0.51
ns
LVTTL33_20mA
LVTTL 20mA drive
0.28
0.33
0.39
ns
LVCMOS33_4mA
LVCMOS 3.3 4mA drive
0.09
0.11
0.13
ns
LVCMOS33_8mA
LVCMOS 3.3 8mA drive
0.07
0.08
0.09
ns
LVCMOS33_12mA
LVCMOS 3.3 12mA drive
-0.03
-0.04
-0.05
ns
LVCMOS33_16mA
LVCMOS 3.3 16mA drive
0.36
0.43
0.51
ns
LVCMOS33_20mA
LVCMOS 3.3 20mA drive
0.28
0.33
0.39
ns
LVCMOS25_4mA
LVCMOS 2.5 4mA drive
0.18
0.21
0.25
ns
LVCMOS25_8mA
LVCMOS 2.5 8mA drive
0.10
0.12
0.14
ns
LVCMOS25_12mA
LVCMOS 2.5 12mA drive
0.00
0.00
0.00
ns
LVCMOS25_16mA
LVCMOS 2.5 16mA drive
0.22
0.26
0.31
ns
LVCMOS25_20mA
LVCMOS 2.5 20mA drive
0.14
0.16
0.19
ns
LVCMOS18_4mA
LVCMOS 1.8 4mA drive
0.15
0.18
0.21
ns
LVCMOS18_8mA
LVCMOS 1.8 8mA drive
0.06
0.08
0.09
ns
LVCMOS18_12mA
LVCMOS 1.8 12mA drive
0.01
0.01
0.01
ns
LVCMOS18_16mA
LVCMOS 1.8 16mA drive
0.16
0.19
0.22
ns
LVCMOS15_4mA
LVCMOS 1.5 4mA drive
0.26
0.31
0.36
ns
LVCMOS15_8mA
LVCMOS 1.5 8mA drive
0.04
0.04
0.05
ns
LVCMOS12_2mA
LVCMOS 1.2 2mA drive
0.36
0.43
0.50
ns
LVCMOS12_6mA
LVCMOS 1.2 6mA drive
0.08
0.10
0.11
ns
LVCMOS12_4mA
LVCMOS 1.2 4mA drive
0.36
0.43
0.50
ns
PCI33
PCI33
1.05
1.26
1.46
ns
1. Timing adders are characterized but not tested on every device.
2. LVCMOS timing measured with the load specified in Switching Test Conditions table of this document.
3. All other standards according to the appropriate specification.
Timing v.G 0.30
3-22
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
sysCLOCK PLL Timing
Over Recommended Operating Conditions
Min.
Typ.
Max.
Units
fIN
Parameter
Input Clock Frequency (CLKI, CLKFB)
Description
Conditions
25
—
420
MHz
fOUT
Output Clock Frequency (CLKOP, CLKOS)
25
—
420
MHz
fOUT2
K-Divider Output Frequency (CLKOK)
0.195
—
210
MHz
fVCO
PLL VCO Frequency
420
—
840
MHz
fPFD
Phase Detector Input Frequency
25
—
—
MHz
45
50
55
%
—
—
0.05
UI
fOUT >= 100MHz
—
—
+/- 125
ps
fOUT < 100MHz
—
—
0.02
UIPP
Divider ratio = integer
—
—
+/- 200
ps
AC Characteristics
tDT
Output Clock Duty Cycle
tPH4
Output Phase Accuracy
tOPJIT1
Output Clock Period Jitter
tSK
Input Clock to Output Clock Skew
Default Duty Cycle
Elected3
tW
Output Clock Pulse Width
tLOCK2
PLL Lock-in Time
At 90% or 10%
tPA
Programmable Delay Unit
tIPJIT
Input Clock Period Jitter
tFBKDLY
External Feedback Delay
tHI
Input Clock High Time
90% to 90%
tLO
Input Clock Low Time
10% to 10%
tRST
RST Pulse Width
3
1
—
—
ns
—
—
150
µs
100
250
450
ps
—
—
+/- 200
ps
—
—
10
ns
0.5
—
—
ns
0.5
—
—
ns
10
—
—
ns
1. Jitter sample is taken over 10,000 samples of the primary PLL output with clean reference clock.
2. Output clock is valid after tLOCK for PLL reset and dynamic delay adjustment.
3. Using LVDS output buffers.
4. Relative to CLKOP.
Timing v.G 0.30
3-23
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC sysCONFIG Port Timing Specifications
Over Recommended Operating Conditions
Parameter
Description
Min.
Typ.
Max.
Units
—
ns
sysCONFIG Byte Data Flow
tSUCBDI
Byte D[0:7] Setup Time to CCLK
tHCBDI
Byte D[0:7] Hold Time to CCLK
1
—
ns
tCODO
Clock to Dout in Flowthrough Mode
—
12
ns
tSUCS
CS[0:1] Setup Time to CCLK
7
—
ns
tHCS
CS[0:1] Hold Time to CCLK
1
—
ns
tSUWD
Write Signal Setup Time to CCLK
7
—
ns
tHWD
Write Signal Hold Time to CCLK
1
—
ns
tDCB
CCLK to BUSY Delay Time
—
12
ns
tCORD
Clock to Out for Read Data
—
12
ns
6
—
ns
7
sysCONFIG Byte Slave Clocking
tBSCH
Byte Slave Clock Minimum High Pulse
tBSCL
Byte Slave Clock Minimum Low Pulse
9
—
ns
tBSCYC
Byte Slave Clock Cycle Time
15
—
ns
tSUSCDI
Din Setup time to CCLK Slave Mode
7
—
ns
tHSCDI
Din Hold Time to CCLK Slave Mode
1
—
ns
tCODO
Clock to Dout in Flowthrough Mode
—
12
ns
sysCONFIG Serial (Bit) Data Flow
tSUMCDI
Din Setup time to CCLK Master Mode
7
—
ns
tHMCDI
Din Hold Time to CCLK Master Mode
1
—
ns
sysCONFIG Serial Slave Clocking
tSSCH
Serial Slave Clock Minimum High Pulse
6
—
ns
tSSCL
Serial Slave Clock Minimum Low Pulse
6
—
ns
sysCONFIG POR, Initialization and Wake Up
tICFG
Minimum Vcc to INIT High
—
50
ms
tVMC
Time from tICFG to Valid Master Clock
—
2
us
tPRGMRJ
Program Pin Pulse Rejection
—
8
ns
tPRGM
PROGRAMN Low Time to Start Configuration
25
—
ns
tDINIT
INIT Low Time
—
1
ms
tDPPINIT
Delay Time from PROGRAMN Low to INIT Low
—
37
ns
tDINITD
Delay Time from PROGRAMN Low to DONE Low
—
37
ns
tIODISS
User I/O Disable from PROGRAMN Low
—
35
ns
tIOENSS
User I/O Enabled Time from CCLK Edge During Wake Up
Sequence
—
25
ns
tMWC
Additional Wake Master Clock Signals after Done Pin High
120
—
cycles
tSUCFG
CFG to INITN Setup Time
100
—
ns
tHCFG
CFG to INITN Hold Time
100
—
ns
sysCONFIG SPI Port
tCFGX
Init High to CCLK Low
—
80
ns
tCSSPI
Init High to CSSPIN Low
—
2
us
tCSCCLK
CCLK Low Before CSSPIN Low
0
-
ns
tSOCDO
CCLK Low to Output Valid
—
15
ns
3-24
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
LatticeECP/EC sysCONFIG Port Timing Specifications (Continued)
Over Recommended Operating Conditions
Parameter
Description
tSOE
CSSPIN Active Setup Time
Min.
Max.
Units
300
Typ.
—
ns
300+3cyc
600+6cyc
ns
—
25
MHz
tCSPID
CSSPIN Low to First Clock Edge Setup Time
fMAXSPI
Max Frequency for SPI
tSUSPI
SOSPI Data Setup Time Before CCLK
7
—
ns
tHSPI
SOSPI Data Hold Time After CCLK
1
—
ns
Timing v.G 0.30
Master Clock
Min.
Typ.
Max.
Units
2.5MHz
Clock Mode
1.75
2.5
3.25
MHz
5 MHz
3.78
5.4
7.02
MHz
10 MHz
7
10
13
MHz
15 MHz
10.5
15
19.5
MHz
20 MHz
14
20
26
MHz
25 MHz
18.2
26
33.8
MHz
30 MHz
21
30
39
MHz
35 MHz
23.8
34
44.2
MHz
40 MHz
28.7
41
53.3
MHz
45 MHz
31.5
45
58.5
MHz
50 MHz
35.7
51
66.3
MHz
55 MHz
38.5
55
71.5
MHz
60 MHz
42
60
78
MHz
Duty Cycle
40
—
60
%
Timing v.G 0.30
3-25
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Figure 3-12. sysCONFIG Parallel Port Read Cycle
tBSCL
tBSCYC
tBSCH
CCLK 1
t SUCS
tHCS
tSUWD
t HWD
CS1N
CSN
WRITEN
tDCB
BUSY
t CORD
D[0:7]
Byte 0
Byte 1
Byte 2
Byte n
1. In Master Parallel Mode the FPGA provides CCLK. In Slave Parallel Mode the external device provides CCLK.
Figure 3-13. sysCONFIG Parallel Port Write Cycle
tBSCYC
tBSCL
CCLK
tBSCH
1
t SUCS
tHCS
CS1N
CSN
t SUWD
t HWD
WRITEN
tDCB
BUSY
t HCBDI
tSUCBDI
D[0:7]
Byte 0
Byte 1
Byte 2
Byte n
1. In Master Parallel Mode the FPGA provides CCLK. In Slave Parallel Mode the external device provides CCLK.
3-26
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Figure 3-14. sysCONFIG Master Serial Port Timing
CCLK (output)
t HMCDI
tSUMCDI
DIN
t CODO
DOUT
Figure 3-15. sysCONFIG Slave Serial Port Timing
tSSCL
tSSCH
CCLK (input)
tHSCDI
t SUSCDI
DIN
t CODO
DOUT
Figure 3-16. Power-On-Reset (POR) Timing
VCC/VCCAUX 1
tICFG
INITN
DONE
t VMC
CCLK 2
tHCFG
t SUCFG
CFG[2:0] 3
Valid
1. Time taken from VCC or VCCAUX, whichever is the last to reach its VMIN.
2. Device is in a Master Mode.
3. The CFG pins are normally static (hard wired).
3-27
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Figure 3-17. Configuration from PROGRAMN Timing
t PRGMRJ
PROGRAMN
t DPPINIT
tDINIT
INITN
tDINITD
DONE
CCLK
tHCFG
tSUCFG
CFG[2:0]
Valid
tIODISS
USER I/O
1. The CFG pins are normally static (hard wired)
Figure 3-18. Wake-Up Timing
PROGRAMN
INITN
Wake-Up
DONE
tMWC
CCLK
tIOENSS
USER I/O
Figure 3-19. sysCONFIG SPI Port Sequence
Capture
CFGx
Capture
OPCODE
Clock 127
Clock 128
tICFG
VCC
tPRGM
PROGRAMN
tDINITD
DONE
tDPPINIT
INITN
CSSPIN
CCLK
tDINIT
tCSSPI
tCSPID
tCFGX
tCSCCLK
0
2
3
4
5
6
7
tSOCDO
tSOE
SISPI/BUSY
1
D7
D6 D5 D4 D3 D2 D1 D0
D7/SPID0
0
XXX
3-28
Valid Bitstream
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
JTAG Port Timing Specifications
Over Recommended Operating Conditions
Min
Max
Units
fMAX
Symbol
TCK clock frequency
Parameter
—
25
MHz
tBTCP
TCK [BSCAN] clock pulse width
40
—
ns
tBTCPH
TCK [BSCAN] clock pulse width high
20
—
ns
tBTCPL
TCK [BSCAN] clock pulse width low
20
—
ns
tBTS
TCK [BSCAN] setup time
8
—
ns
tBTH
TCK [BSCAN] hold time
10
—
ns
tBTRF
TCK [BSCAN] rise/fall time
50
—
mV/ns
tBTCO
TAP controller falling edge of clock to valid output
—
10
ns
tBTCODIS
TAP controller falling edge of clock to valid disable
—
10
ns
tBTCOEN
TAP controller falling edge of clock to valid enable
—
10
ns
tBTCRS
BSCAN test capture register setup time
8
—
ns
tBTCRH
BSCAN test capture register hold time
25
—
ns
tBUTCO
BSCAN test update register, falling edge of clock to valid output
—
25
ns
tBTUODIS
BSCAN test update register, falling edge of clock to valid disable
—
25
ns
tBTUPOEN
BSCAN test update register, falling edge of clock to valid enable
—
25
ns
Timing v.G 0.30
Figure 3-20. JTAG Port Timing Waveforms
TMS
TDI
tBTS
tBTCPH
tBTH
tBTCP
tBTCPL
TCK
tBTCO
tBTCOEN
TDO
Valid Data
tBTCRS
Data to be
captured
from I/O
tBTCODIS
Valid Data
tBTCRH
Data Captured
tBTUPOEN
tBUTCO
Data to be
driven out
to I/O
Valid Data
3-29
tBTUODIS
Valid Data
DC and Switching Characteristics
LatticeECP/EC Family Data Sheet
Switching Test Conditions
Figure 3-21 shows the output test load that is used for AC testing. The specific values for resistance, capacitance,
voltage, and other test conditions are shown in Table 3-6.
Figure 3-21. Output Test Load, LVTTL and LVCMOS Standards
VT
R1
DUT
Test Point
CL*
*CL Includes Test Fixture and Probe Capacitance
Table 3-6. Test Fixture Required Components, Non-Terminated Interfaces
Test Condition
LVTTL and other LVCMOS settings (L -> H, H -> L)
R1
CL
0pF
Timing Ref.
LVCMOS 3.3 = 1.5V
—
LVCMOS 2.5 = VCCIO/2
—
LVCMOS 1.8 = VCCIO/2
—
LVCMOS 1.5 = VCCIO/2
—
LVCMOS 1.2 = VCCIO/2
LVCMOS 2.5 I/O (Z -> H)
LVCMOS 2.5 I/O (Z -> L)
LVCMOS 2.5 I/O (H -> Z)
188¾
LVCMOS 2.5 I/O (L -> Z)
0pF
—
VCCIO/2
VOL
VCCIO/2
VOH
VOH - 0.15
VOL
VOL + 0.15
VOH
Note: Output test conditions for all other interfaces are determined by the respective standards.
3-30
VT
LatticeECP/EC Family Data Sheet
Pinout Information
September 2012
Data Sheet
Signal Descriptions
Signal Name
I/O
Description
General Purpose
[Edge] indicates the edge of the device on which the pad is located. Valid
edge designations are L (Left), B (Bottom), R (Right), T (Top).
[Row/Column Number] indicates the PFU row or the column of the device on
which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify
Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number*]_[A/B]
I/O
[A/B] indicates the PIO within the PIC to which the pad is connected.
Some of these user-programmable pins are shared with special function
pins. These pin when not used as special purpose pins can be programmed
as I/Os for user logic.
During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after
configuration.
GSRN
NC
I
—
Global RESET signal (active low). Any I/O pin can be GSRN.
No connect.
GND
—
Ground. Dedicated pins.
VCC
—
Power supply pins for core logic. Dedicated pins.
VCCAUX
—
Auxiliary power supply pin. It powers all the differential and referenced input
buffers. Dedicated pins.
VCCIOx
—
Power supply pins for I/O bank x. Dedicated pins.
VREF1_x, VREF2_x
—
Reference supply pins for I/O bank x. Pre-determined pins in each bank are
assigned as VREF inputs. When not used, they may be used as I/O pins.
XRES
—
10K ohm +/-1% resistor must be connected between this pad and ground.
VCCPLL
—
Power supply pin for PLL.þApplicable to ECP/EC33 device.
PLL and Clock Functions (Used as user programmable I/O pins when not in use for PLL or clock pins)
[LOC][num]_PLL[T, C]_IN_A
I
Reference clock (PLL) input pads: ULM, LLM, URM, LRM, num = row from
center, T = true and C = complement, index A,B,C...at each side.
[LOC][num]_PLL[T, C]_FB_A
I
Optional feedback (PLL) input pads: ULM, LLM, URM, LRM, num = row from
center, T = true and C = complement, index A,B,C...at each side.
PCLK[T, C]_[n:0]_[3:0]
I
Primary Clock pads, T = true and C = complement, n per side, indexed by
bank and 0,1,2,3 within bank.
[LOC]DQS[num]
I
DQS input pads: T (Top), R (Right), B (Bottom), L (Left), DQS, num = ball
function number. Any pad can be configured to be output.
TMS
I
Test Mode Select input, used to control the 1149.1 state machine. Pull-up is
enabled during configuration.
TCK
I
Test Clock input pin, used to clock the 1149.1 state machine. No pull-up
enabled.
Test and Programming (Dedicated pins)
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
4-1
Pinout Information_02.6
Pinout Information
LatticeECP/EC Family Data Sheet
Signal Descriptions (Cont.)
Signal Name
I/O
Description
TDI
I
Test Data in pin. Used to load data into device using 1149.1 state machine.
After power-up, this TAP port can be activated for configuration by sending
appropriate command. (Note: once a configuration port is selected it is
locked. Another configuration port cannot be selected until the power-up
sequence). Pull-up is enabled during configuration.
TDO
O
Output pin. Test Data out pin used to shift data out of device using 1149.1.
VCCJ
—
VCCJ - The power supply pin for JTAG Test Access Port.
Configuration Pads (used during sysCONFIG)
CFG[2:0]
INITN
PROGRAMN
DONE
I
Mode pins used to specify configuration modes values latched on rising edge
of INITN. During configuration, a pull-up is enabled. These are dedicated
pins.
I/O
Open Drain pin. Indicates the FPGA is ready to be configured. During configuration, a pull-up is enabled. It is a dedicated pin.
I
Initiates configuration sequence when asserted low. This pin always has an
active pull-up. This is a dedicated pin.
I/O
Open Drain pin. Indicates that the configuration sequence is complete, and
the startup sequence is in progress. This is a dedicated pin.
CCLK
I/O Configuration Clock for configuring an FPGA in sysCONFIG mode.
BUSY/SISPI
I/O Read control command in SPI3 or SPIX mode.
CSN
I
sysCONFIG chip select (Active low). During configuration, a pull-up is
enabled.
CS1N
I
sysCONFIG chip select (Active low). During configuration, a pull-up is
enabled.
I
Write Data on Parallel port (Active low).
WRITEN
D[7:0]/SPID[0:7]
I/O sysCONFIG Port Data I/O.
DOUT/CSON
O
DI/CSSPIN
Input for serial configuration data (clocked with CCLK) when using sysCONI/O FIG port. During configuration, a pull-up is enabled. Output when used in
SPI/SPIX modes.
Output for serial configuration data (rising edge of CCLK) when using sysCONFIG port.
4-2
Pinout Information
LatticeECP/EC Family Data Sheet
PICs and DDR Data (DQ) Pins Associated with the DDR Strobe (DQS) Pin
PICs Associated
with DQS Strobe
P[Edge] [n-4]
P[Edge] [n-3]
P[Edge] [n-2]
P[Edge] [n-1]
P[Edge] [n]
P[Edge] [n+1]
P[Edge] [n+2]
P[Edge] [n+3]
PIO Within PIC
DDR Strobe (DQS) and
Data (DQ) Pins
A
DQ
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
A
[Edge]DQSn
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
A
DQ
B
DQ
Notes:
1. “n” is a Row/Column PIC number
2. The DDR interface is designed for memories that support one DQS strobe per eight bits of
data. In some packages, all the potential DDR data (DQ) pins may not be available.
3. PIC numbering definitions are provided in the “Signal Names” column of the Signal Descriptions table.
4-3
Pinout Information
LatticeECP/EC Family Data Sheet
Pin Information Summary
LFEC1
Pin Type
LFEC3
LFECP6/EC6
LFECP/EC10
100- 144- 208- 100- 144- 208- 256- 144- 208- 256- 484- 208- 256- 484TQFP TQFP PQFP TQFP TQFP PQFP fpBGA TQFP PQFP fpBGA fpBGA PQFP fpBGA fpBGA
Single Ended User
I/O
67
97
112
67
97
145
160
97
147
195
224
147
195
288
Differential Pair User
I/O
29
46
56
29
46
72
80
46
72
97
112
72
97
144
Dedicated
13
13
13
13
13
13
13
13
13
13
13
13
13
13
Muxed
48
48
48
48
48
48
48
48
48
48
48
56
56
56
TAP
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Dedicated (total
without supplies)
80
110
160
80
110
160
208
110
160
208
373
160
208
373
10
4
4
10
20
6
10
20
Configuration
VCC
2
3
3
2
3
3
VCCAUX
2
2
2
4
4
4
4
2
4
2
12
4
2
12
VCCPLL
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Bank0
1
2
2
1
2
3
2
2
3
2
4
3
2
4
Bank1
1
2
2
1
2
2
2
2
2
2
4
2
2
4
Bank2
1
1
1
2
2
2
2
1
2
2
4
2
2
4
Bank3
1
2
2
1
2
2
2
2
2
2
4
2
2
4
Bank4
1
2
2
1
2
2
2
2
2
2
4
2
2
4
Bank5
1
2
2
1
2
2
2
2
3
2
4
3
2
4
Bank6
1
2
2
1
2
2
2
2
2
2
4
2
2
4
Bank7
1
1
1
2
2
2
2
1
2
2
4
2
2
4
8
13
13
8
13
16
20
14
18
20
44
20
20
44
9
35
0
4
0
139
0
0
75
VCCIO
GND, GND0-GND7
NC
Single
Ended/
Differential I/O
Pair per
Bank
VCCJ
0
2
51
0
2
Bank 0
11/5
14/7
16/8
11/5
14/7
26/13 32/16
14/7 26/13 32/16 32/16 26/13 32/16 48/24
Bank 1
11/5
13/6
16/8
11/5
13/6
16/8
13/6
17/8
16/8
18/9
32/16
17/8
18/9
32/16
32/16
Bank 2
3/1
8/4
8/4
3/1
8/4
14/7
16/8
8/4
14/7
16/8
16/8
14/7
16/8
Bank 3
8/4
13/6
16/8
8/4
13/6
16/8
16/8
13/6
16/8
32/16 32/16
16/8
32/16 32/16
Bank 4
12/4
14/6
16/8
12/4
14/6
16/8
16/8
14/6
17/8
17/8
17/8
17/8
32/16
32/16
Bank 5
9/4
13/6
16/8
9/4
13/6
26/13 32/16
13/6 26/13 32/16 32/16 26/13 32/16 48/24
Bank 6
5/2
14/7
16/8
5/2
14/7
16/8
16/8
14/7
16/8
32/16 32/16
16/8
32/16 32/16
Bank 7
8/4
8/4
8/4
8/4
8/4
15/7
16/8
8/4
15/7
16/8
16/8
15/7
16/8
32/16
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not
bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
4-4
Pinout Information
LatticeECP/EC Family Data Sheet
Pin Information Summary (Cont.)
LFECP/EC15
Pin Type
256-fpBGA
LFECP20/EC20
484-fpBGA
484-fpBGA
672-fpBGA
LFECP/EC33
484-fpBGA
672-fpBGA
Single Ended User I/O
195
352
360
400
360
496
Differential Pair User I/O
97
176
180
200
180
248
Dedicated
13
13
13
13
13
13
Muxed
56
56
56
56
56
56
5
5
5
5
5
5
Dedicated (total without supplies)
208
373
373
509
373
509
VCC
10
20
20
32
16
28
VCCAUX
2
12
12
20
12
20
VCCPLL
0
0
0
0
4
4
Bank0
2
4
4
6
4
6
Bank1
2
4
4
6
4
6
Bank2
2
4
4
6
4
6
Bank3
2
4
4
6
4
6
Bank4
2
4
4
6
4
6
Bank5
2
4
4
6
4
6
Bank6
2
4
4
6
4
6
Bank7
2
4
4
6
4
6
GND, GND0-GND7
20
44
44
63
44
63
NC
0
11
3
96
3
0
Bank0
32/16
48/24
48/24
64/32
48/24
64/32
Bank1
18/9
48/24
48/24
48/24
48/24
64/32
Bank2
16/8
40/20
40/20
40/20
40/20
56/28
Bank3
32/16
40/20
44/22
48/24
44/22
64/32
Configuration
TAP
VCCIO
Single Ended/
Differential I/O
Pair per Bank
VCCJ
Bank4
17/8
48/24
48/24
48/24
48/24
64/32
Bank5
32/16
48/24
48/24
64/32
48/24
64/32
Bank6
32/16
40/20
44/22
48/24
44/22
64/32
Bank7
16/8
40/20
40/20
40/20
40/20
56/28
1
1
1
1
1
1
Note: During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not
bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
4-5
Pinout Information
LatticeECP/EC Family Data Sheet
Power Supply and NC Connections
Signals
100 TQFP
144 TQFP
208 PQFP
256 fpBGA
VCC
12, 64
EC1, EC3: 13, 92, 99
EC1, EC3: 26, 128, 135 E12, E5, E8, M12, M5,
ECP/EC6: 11, 13, 92, 99 ECP/EC6: 24, 26, 128, M9, F6, F11, L11, L6
135
ECP/EC10: 5, 24, 26,
128, 135, 152
VCCIO0
100
136, 143
EC1: 187, 208
EC3, ECP/EC6, ECP/
EC10: 187, 197, 208
F7, F8
VCCIO1
86
110, 125
157, 176
F9, F10
VCCIO2
73
108
EC1: 155
EC3, ECP/EC6, ECP/
EC10: 145, 155
G11, H11
VCCIO3
56
73, 84
106, 120
J11, K11
VCCIO4
38
55, 71
85, 104
L9, L10
VCCIO5
26
38, 44
EC1: 53, 74
EC2, ECP/EC6, ECP/
EC10: 53, 64, 74
L7, L8
VCCIO6
24
24, 36
37, 51
J6, K6
VCCIO7
2
1
EC1: 2
EC3, ECP/EC6, ECP/
EC10: 2, 13
G6, H6
VCCJ
18
19
32
L4
VCCAUX
37, 87
54, 126
EC1: 84, 177
EC3, ECP/EC6, ECP/
EC10: 22, 84, 136, 177
B15, R2
VCCPLL
—
—
—
—
GND, GND0-GND7
1, 14, 25, 35, 51, 68, 74, EC1, EC3: 15, 28, 37,
89
52, 63, 72, 80, 96, 98,
109, 117, 128, 144
ECP/EC6: 12, 15, 28,
37, 52, 63, 72, 80, 96,
98, 109, 117, 128, 144
EC1: 1, 28, 41, 52, 82,
93, 105, 116, 132, 134,
156, 168, 179
EC3: 1, 28, 41, 52, 72,
82, 93, 105, 116, 132,
134, 138, 156, 168, 179,
189
ECP/EC6: 1, 18, 25, 28,
41, 52, 72, 82, 93, 105,
116, 132, 134, 138, 156,
168, 179, 189
ECP/EC10: 1, 6, 18, 25,
28, 41, 52, 72, 82, 93,
105, 116, 132, 134, 138,
151, 156, 168, 179, 189
A1, A16, G10, G7, G8,
G9, H10, H7, H8, H9,
J10, J7, J8, J9, K10, K7,
K8, K9, T1, T16
NC
—
EC1: 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 18, 22, 24,
25, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63, 64,
72, 103, 136, 138, 144,
145, 146, 147, 148, 149,
150, 151, 152, 158, 189,
197, 198, 199, 200, 201,
202, 203, 204, 205, 206,
207
EC3: 5, 6, 18, 24, 25,
103, 151, 152, 158
ECP/EC6: 5, 6, 151, 152
ECP/EC10: None
EC3: G5, H5, F2, F1, H4,
H3, G2, G1, J4, J3, J5,
K5, H2, H1, J2, J1, R12,
H16, H15, G16, G15,
K12, J12, J14, J15, F16,
F15, J13, H13, H14, G14,
E16, E15, B13, C13
ECP/EC10: None
ECP/EC15: None
EC1, EC3: 11, 12
ECP6/EC6: None
4-6
Pinout Information
LatticeECP/EC Family Data Sheet
Power Supply and NC Connections (Cont.)
Signals
484 fpBGA
672 fpBGA
VCC
J16, J7, K16, K17, K6, K7, L17, L6, M17, M6, N16, H10, H11, H16, H17, H18, H19, H8, H9, J18, J9,
N17, N6, N7, P16, P7, J6, J17, P6, P17
K8, L19, M19, N7, R20, R7, T19, V18, V8, V9,
W10, W11, W16, W17, W18, W19, W8, W9, K19,
L8, U19, U8
VCCIO0
G11, H10, H11, H9
H12, H13, J10, J11, J12, J13
VCCIO1
G12, H12, H13, H14
H14, H15, J14, J15, J16, J17
VCCIO2
J15, K15, L15, L16
K17, K18, L18, M18, N18, N19
VCCIO3
M15, M16, N15, P15
P18, P19, R18, R19, T18, U18
VCCIO4
R12, R13, R14, T12
V14, V15, V16, V17, W14, W15
VCCIO5
R10, R11, R9, T11
V10, V11, V12, V13, W12, W13
VCCIO6
M7, M8, N8, P8
P8, P9, R8, R9, T9, U9
VCCIO7
J8, K8, L7, L8
K9, L9, M8, M9, N8, N9
VCCJ
U2
U6
VCCAUX
G15, G16, G7, G8, H16, H7, R16, R7, T15, T16,
T7, T8
G13, H20, H7, J19, J8, K7, L20, M20, M7, N20,
P20, P7, T20, T7, T8, V19, V7, W20, Y13, Y7
VCCPLL
ECP/EC20: None
ECP/EC33: J6, J17, P6, P17
ECP/EC20: None
ECP/EC33: K19, L8, U19, U8
GND, GND0-GND7
A1, A22, AB1, AB22, H15, H8, J10, J11, J12, J13,
J14, J9, K10, K11, K12, K13, K14, K9, L10, L11,
L12, L13, L14, L9, M10, M11, M12, M13, M14, M9,
N10, N11, N12, N13, N14, N9, P10, P11, P12,
P13, P14, P9, R15, R8
K10, K11, K12, K13, K14, K15, K16, L10, L11,
L12, L13, L14, L15, L16, L17, M10, M11, M12,
M13, M14, M15, M16, M17, N10, N11, N12, N13,
N14, N15, N16, N17, P10, P11, P12, P13, P14,
P15, P16, P17, R10, R11, R12, R13, R14, R15,
R16, R17, T10, T11, T12, T13, T14, T15, T16,
T17, U10, U11, U12, U13, U14, U15, U16, U17
NC
ECP/EC6: C3, B2, E5, F5, D3, C2, F4, G4, E3, D2,
B1, C1, F3, E2, G5, H6, G3, H4, J5, H5, F2, F1,
E1, D1, R6, P5, P3, P4, R1, R2, R5, R4, T1, T2,
R3, T3, V7, T6, V8, U7, W5, U6, AA3, AB3, Y6,
V6, AA5, W6, Y5, Y4, AA4, AB4, W16, U15, V16,
U16, Y17, V17, AB20, AA19, Y16, W17, AA20,
Y19, Y18, W18, T17, U17, T18, R17, R19, R18,
U22, T22, R21, R22, P20, N20, P19, P18, E21,
D22, G21, G20, J18, H19, J19, H20, H17, H18,
D21, C22, G19, G18, F20, F19, E20, D20, C21,
C20, F18, E18, B22, B21, G17, F17, D18, C18,
C19, B20, D17, C16, B19, A20, E17, C17, F16,
E16, F15, D16, A4, B4, C4, C5, D6, B5, E6, C6,
A3, B3, F6, D5, F7, E8, G6, E7, A2, AB2, A21
ECP/EC10: G5, H6, G3, H4, J5, H5, F2, F1, R6,
P5, P3, P4, R2, R1, R5, R4, T1, T2, R3, T3, W16,
U15, V16, U16, Y17, V17, AB20, AA19, Y16, W17,
AA20, Y19, Y18, W18, T17, U17, T18, R17, R19,
R18, U22, T22, R21, R22, P20, N20, P19, P18,
G21, G20, J18, H19, J19, H20, H17, H18, G17,
F17, D18, C18, C19, B20, D17, C16, B19, A20,
E17, C17, F16, E16, F15, D16, A2, AB2, A21
ECP/EC15: T1, T2, R3, T3, T18, R17, R19, R18,
A2, AB2, A21
ECP/EC20: A2, AB2, A21
ECP/EC33: A2, AB2, A21
ECP/EC20: E5, D5, F4, F5, C3, D3, C2, B2, H6,
J7, G5, H5, H3, J3, H2, J2, AA2, AA3, W5, Y5, Y6,
W7, AA4, AB3, AC2, AC3, AA5, AB5, AD3, AD2,
AE1, AD1, AD19, AD20, AC19, AB19, AD21,
AC20, AF25, AE25, AB21, AB20, AE24, AD23,
AD22, AC21, AC22, AB22, AD24, AD25, AE26,
AD26, Y20, Y19, AA23, AA22, AB23, AB24, Y21,
AA21, Y23, Y22, AA24, Y24, J21, J22, J23, H22,
G26, F26, E26, E25, F24, F23, E24, D24, E22,
F22, E21, D22, G20, F20, D21, C21, C23, C22,
B23, C24, D20, E19, B25, B24, B26, A25, C20,
C19
ECP/EC33: None
4-7
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 100 TQFP
LFEC1
LFEC3
Pin
Number
Pin
Function
1*
GND0
GND7
-
2
VCCIO7
7
3
PL2A
7
T
VREF2_7
4
PL2B
7
C
VREF1_7
5
PL3A
7
6
PL3B
7
7
PL4A
7
T
8
PL4B
7
C
9
PL5A
7
T
PCLKT7_0
10
PL5B
7
C
PCLKC7_0
11
XRES
12
VCC
13
TCK
14
15
16
Bank
LVDS
Dual Function
Pin
Function
Bank
LVDS
Dual Function
7
T
VREF2_7
7
C
VREF1_7
GND0
GND7
-
VCCIO7
7
PL2A
PL2B
T
PL7A
7
T
C
PL7B
7
C
PL8A
7
T
PL8B
7
C
PL9A
7
T
PCLKT7_0
PL9B
7
C
PCLKC7_0
6
XRES
6
-
VCC
-
6
TCK
6
GND
-
GND
-
TDI
6
TDI
6
TMS
6
TMS
6
LUM0_PLLT_IN_A
17
TDO
6
TDO
6
18
VCCJ
6
VCCJ
6
19
PL7A
6
T
LLM0_PLLT_IN_A
PL11A
6
T
20
PL7B
6
C
LLM0_PLLC_IN_A
PL11B
6
C
LUM0_PLLC_IN_A
21
PL8A
6
T
LLM0_PLLT_FB_A
PL12A
6
T
LUM0_PLLT_FB_A
22
PL8B
6
C
LLM0_PLLC_FB_A
PL12B
6
C
LUM0_PLLC_FB_A
23
PL14A
6
PL18A
6
24
VCCIO6
6
VREF1_6
VCCIO6
6
VREF1_6
25*
GND5
GND6
-
GND5
GND6
-
26
VCCIO5
5
VCCIO5
5
27
PB2A
5
T
PB10A
5
T
28
PB2B
5
C
PB10B
5
C
29
PB3A
5
T
PB11A
5
T
30
PB3B
5
C
C
31
PB6A
5
32
PB8A
5
T
PB11B
5
BDQS6
PB14A
5
VREF2_5
PB16A
5
T
BDQS14
VREF2_5
33
PB8B
5
C
VREF1_5
PB16B
5
C
VREF1_5
34
PB9A
5
T
PCLKT5_0
PB17A
5
T
PCLKT5_0
35
GND5
5
GND5
5
36
PB9B
5
PB17B
5
C
PCLKC5_0
37
VCCAUX
-
VCCAUX
-
38
VCCIO4
4
VCCIO4
4
C
PCLKC5_0
39
PB10A
4
T
WRITEN
PB18A
4
T
WRITEN
40
PB10B
4
C
CS1N
PB18B
4
C
CS1N
4-8
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 100 TQFP (Cont.)
LFEC1
LFEC3
Pin
Number
Pin
Function
Bank
LVDS
Dual Function
Pin
Function
Bank
LVDS
Dual Function
41
PB11A
4
T
VREF1_4
PB19A
4
T
VREF1_4
C
C
42
PB11B
4
43
PB12B
4
CSN
PB19B
4
D0/SPID7
PB20B
4
44
PB13A
4
45
PB13B
46
PB14A
47
T
D2/SPID5
PB21A
4
T
D2/SPID5
4
C
D1/SPID6
PB21B
4
C
D1/SPID6
4
T
BDQS14
PB22A
4
T
BDQS22
PB14B
4
C
D3/SPID4
PB22B
4
C
D3/SPID4
48
PB15B
4
D4/SPID3
PB23B
4
D4/SPID3
49
PB16B
4
D5/SPID2
PB24B
4
D5/SPID2
50
PB17B
4
D6/SPID1
PB25B
4
D6/SPID1
51*
GND3
GND4
-
GND3
GND4
-
52
PR10B
3
C
RLM0_PLLC_FB_A
PR14B
3
C
RLM0_PLLC_FB_A
53
PR10A
3
T
RLM0_PLLT_FB_A
PR14A
3
T
RLM0_PLLT_FB_A
54
PR9B
3
C
RLM0_PLLC_IN_A
PR13B
3
C
RLM0_PLLC_IN_A
T
RLM0_PLLT_IN_A
T
RLM0_PLLT_IN_A
C
DI/CSSPIN
55
PR9A
3
56
VCCIO3
3
57
PR8B
3
58
PR8A
59
PR7B
60
PR13A
3
VCCIO3
3
CSN
D0/SPID7
C
DI/CSSPIN
PR12B
3
3
T
DOUT/CSON
PR12A
3
T
DOUT/CSON
3
C
BUSY/SISPI
PR11B
3
C
BUSY/SISPI
PR7A
3
T
D7/SPID0
PR11A
3
T
D7/SPID0
61
CFG2
3
CFG2
3
62
CFG1
3
CFG1
3
63
CFG0
3
CFG0
3
64
VCC
-
VCC
-
65
PROGRAMN
3
PROGRAMN
3
66
CCLK
3
CCLK
3
67
INITN
3
INITN
3
68
GND
-
GND
-
69
DONE
3
DONE
3
70
PR5B
2
C
PCLKC2_0
PR9B
2
C
PCLKC2_0
71
PR5A
2
T
PCLKT2_0
PR9A
2
T
PCLKT2_0
72
PR2B
2
VREF1_2
PR2B
2
73
VCCIO2
2
VCCIO2
2
74
GND2
2
GND2
2
75
PT17B
1
C
PT25B
1
76
PT17A
1
T
PT25A
1
T
77
PT14B
1
C
PT22B
1
C
78
PT14A
1
T
PT22A
1
T
79
PT13A
1
PT21A
1
80
PT12B
1
C
PT20B
1
C
81
PT12A
1
T
PT20A
1
T
TDQS14
4-9
VREF1_2
C
TDQS22
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 100 TQFP (Cont.)
LFEC1
LFEC3
Pin
Number
Pin
Function
Bank
LVDS
Dual Function
Pin
Function
Bank
LVDS
Dual Function
82
PT11B
1
C
VREF2_1
PT19B
1
C
VREF2_1
VREF1_1
VREF1_1
83
PT11A
1
T
PT19A
1
T
84
PT10B
1
C
PT18B
1
C
85
PT10A
1
T
PT18A
1
T
86
VCCIO1
1
VCCIO1
1
87
VCCAUX
-
VCCAUX
-
88
PT9B
0
89
GND0
0
90
PT9A
91
PT8B
C
PCLKC0_0
PT17B
0
GND0
0
0
T
PCLKT0_0
PT17A
0
C
VREF1_0
PT16B
T
VREF2_0
92
PT8A
0
93
PT7B
0
94
PT6B
0
C
TDQS6
C
PCLKC0_0
0
T
PCLKT0_0
0
C
VREF1_0
T
VREF2_0
PT16A
0
PT15B
0
PT14B
0
C
95
PT6A
0
T
PT14A
0
T
96
PT4B
0
C
PT12B
0
C
97
PT4A
0
T
PT12A
0
T
98
PT2B
0
C
PT10B
0
C
99
PT2A
0
T
PT10A
0
T
100
VCCIO0
0
VCCIO0
0
*Double bonded to the pin.
4-10
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3, LFECP/EC6 Logic Signal Connections: 144 TQFP
LFEC1
Pin
LVD
Number Pin Function Bank
S
LFEC3
Dual Function
LVD
Pin Function Bank
S
VCCIO7
LFECP6/EC6
Dual Function
7
Pin Function Bank
VCCIO7
LVD
S
Dual Function
1
VCCIO7
7
7
2
PL2A
7
T
VREF2_7
PL2A
7
T
VREF2_7
PL2A
7
T
VREF2_7
3
PL2B
7
C
VREF1_7
PL2B
7
C
VREF1_7
PL2B
7
C
VREF1_7
4
PL3A
7
T
PL7A
7
T
PL7A
7
T
5
PL3B
7
C
PL7B
7
C
PL7B
7
C
6
PL4A
7
T
PL8A
7
T
PL8A
7
T
7
PL4B
7
C
PL8B
7
C
PL8B
7
C
8
PL5A
7
T
PCLKT7_0
PL9A
7
T
PCLKT7_0
PL9A
7
T
PCLKT7_0
9
PL5B
7
C
PCLKC7_0
PL9B
7
C
PCLKC7_0
PL9B
7
C
PCLKC7_0
10
XRES
6
XRES
6
XRES
6
11
NC
-
NC
-
VCC
-
12
NC
-
NC
-
GND
-
13
VCC
-
VCC
-
VCC
-
14
TCK
6
TCK
6
TCK
6
15
GND
-
GND
-
GND
-
16
TDI
6
TDI
6
TDI
6
6
17
TMS
6
TMS
6
TMS
18
TDO
6
TDO
6
TDO
6
19
VCCJ
6
VCCJ
6
VCCJ
6
20
PL7A
6
T
LLM0_PLLT_IN_A
PL11A
6
T
LLM0_PLLT_IN_A
PL20A
6
T
LLM0_PLLT_IN_A
21
PL7B
6
C
LLM0_PLLC_IN_A
PL11B
6
C
LLM0_PLLC_IN_A
PL20B
6
C
LLM0_PLLC_IN_A
22
PL8A
6
T
LLM0_PLLT_FB_A
PL12A
6
T
LLM0_PLLT_FB_A
PL21A
6
T
LLM0_PLLT_FB_A
23
PL8B
6
C
LLM0_PLLC_FB_A
PL12B
6
C
LLM0_PLLC_FB_A
PL21B
6
C
LLM0_PLLC_FB_A
24
VCCIO6
6
VCCIO6
6
VCCIO6
6
25
PL9A
6
T
PL13A
6
T
PL22A
6
T
26
PL9B
6
C
PL13B
6
C
PL22B
6
C
27
PL10A
6
T
PL14A
6
T
PL23A
6
T
28
GND6
6
GND6
6
GND6
6
29
PL10B
6
C
30
PL11A
6
T
31
PL11B
6
32
PL12A
33
PL12B
34
PL14A
6
T
35
PL14B
6
C
36
VCCIO6
37*
PL14B
6
C
PL15A
6
T
C
PL15B
6
6
T
PL16A
6
C
PL16B
VREF1_6
PL18A
6
T
VREF2_6
PL18B
6
C
6
VCCIO6
GND5
GND6
-
GND5
GND6
38
VCCIO5
5
VCCIO5
5
VCCIO5
5
39
PB2A
5
T
PB10A
5
T
PB10A
5
T
40
PB2B
5
C
PB10B
5
C
PB10B
5
C
41
PB3A
5
T
PB11A
5
T
PB11A
5
T
42
PB3B
5
C
PB11B
5
C
PB11B
5
C
5
LDQS11
PL23B
6
PL24A
6
T
C
PL24B
6
C
6
T
PL25A
6
T
6
C
PL25B
6
C
VREF1_6
PL27A
6
T
VREF1_6
VREF2_6
PL27B
6
C
VREF2_6
6
VCCIO6
6
-
GND5
GND6
-
LDQS15
C
43
PB5B
5
PB13B
5
PB13B
44
VCCIO5
5
VCCIO5
5
VCCIO5
5
45
PB6A
5
T
PB14A
5
T
PB14A
5
T
46
PB6B
5
C
PB14B
5
C
PB14B
5
C
47
PB7A
5
T
PB15A
5
T
PB15A
5
T
48
PB7B
5
C
PB15B
5
C
PB15B
5
C
49
PB8A
5
T
PB16A
5
T
PB16A
5
T
BDQS6
VREF2_5
4-11
BDQS14
VREF2_5
LDQS24
BDQS14
VREF2_5
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3, LFECP/EC6 Logic Signal Connections: 144 TQFP (Cont.)
LFEC1
Pin
LVD
Number Pin Function Bank
S
LFEC3
Dual Function
LVD
Pin Function Bank
S
LFECP6/EC6
Dual Function
Pin Function Bank
LVD
S
Dual Function
50
PB8B
5
C
VREF1_5
PB16B
5
C
VREF1_5
PB16B
5
C
VREF1_5
51
PB9A
5
T
PCLKT5_0
PB17A
5
T
PCLKT5_0
PB17A
5
T
PCLKT5_0
52
GND5
5
GND5
5
GND5
5
53
PB9B
5
C
PCLKC5_0
PB17B
5
C
PCLKC5_0
PB17B
5
C
PCLKC5_0
54
VCCAUX
-
VCCAUX
-
VCCAUX
-
55
VCCIO4
4
VCCIO4
4
VCCIO4
4
56
PB10A
4
T
WRITEN
PB18A
4
T
WRITEN
PB18A
4
T
WRITEN
57
PB10B
4
C
CS1N
PB18B
4
C
CS1N
PB18B
4
C
CS1N
58
PB11A
4
T
VREF1_4
PB19A
4
T
VREF1_4
PB19A
4
T
VREF1_4
59
PB11B
4
C
CSN
PB19B
4
C
CSN
PB19B
4
C
CSN
60
PB12A
4
T
VREF2_4
PB20A
4
T
VREF2_4
PB20A
4
T
VREF2_4
61
PB12B
4
C
D0/SPID7
PB20B
4
C
D0/SPID7
PB20B
4
C
D0/SPID7
62
PB13A
4
T
D2/SPID5
PB21A
4
T
D2/SPID5
PB21A
4
T
D2/SPID5
63
GND4
4
GND4
4
GND4
4
64
PB13B
4
C
D1/SPID6
PB21B
4
C
D1/SPID6
PB21B
4
C
D1/SPID6
65
PB14A
4
T
BDQS14
PB22A
4
T
BDQS22
PB22A
4
T
BDQS22
66
PB14B
4
C
D3/SPID4
PB22B
4
C
D3/SPID4
PB22B
4
C
D3/SPID4
PB23A
4
T
D4/SPID3
PB23B
4
C
67
PB15A
4
T
68
PB15B
4
C
PB23A
4
T
D4/SPID3
PB23B
4
C
69
PB16B
4
D5/SPID2
PB24B
4
D5/SPID2
PB24B
4
70
PB17B
4
D6/SPID1
D5/SPID2
PB25B
4
D6/SPID1
PB25B
4
71
VCCIO4
D6/SPID1
4
VCCIO4
4
VCCIO4
4
72*
GND3
GND4
-
GND3
GND4
-
GND3
GND4
-
73
VCCIO3
3
74
PR14A
3
75
PR12B
3
76
PR12A
3
77
PR11B
3
78
PR11A
3
T
79
PR10B
3
C
80
GND3
3
81
PR10A
3
T
RLM0_PLLT_FB_A
82
PR9B
3
C
RLM0_PLLC_IN_A
83
PR9A
3
T
RLM0_PLLT_IN_A
84
VCCIO3
3
VCCIO3
3
PR18A
3
PR16B
3
T
PR16A
C
PR15B
RDQS11
PR15A
3
T
RDQS15
PR24A
3
T
RDQS24
RLM0_PLLC_FB_A
PR14B
3
C
RLM0_PLLC_FB_A
PR23B
3
C
RLM0_PLLC_FB_A
GND3
3
GND3
3
PR14A
3
T
RLM0_PLLT_FB_A
PR23A
3
T
RLM0_PLLT_FB_A
PR13B
3
C
RLM0_PLLC_IN_A
PR22B
3
C
RLM0_PLLC_IN_A
PR13A
3
T
RLM0_PLLT_IN_A
PR22A
3
T
RLM0_PLLT_IN_A
VCCIO3
3
VCCIO3
3
VREF1_3
C
VCCIO3
3
PR27A
3
C
PR25B
3
3
T
PR25A
3
T
3
C
PR24B
3
C
D4/SPID3
VREF1_3
VREF1_3
C
85
PR8B
3
C
DI/CSSPIN
PR12B
3
C
DI/CSSPIN
PR21B
3
C
DI/CSSPIN
86
PR8A
3
T
DOUT/CSON
PR12A
3
T
DOUT/CSON
PR21A
3
T
DOUT/CSON
87
PR7B
3
C
BUSY/SISPI
PR11B
3
C
BUSY/SISPI
PR20B
3
C
BUSY/SISPI
88
PR7A
3
T
D7/SPID0
PR11A
3
T
D7/SPID0
PR20A
3
T
D7/SPID0
89
CFG2
3
CFG2
3
CFG2
3
90
CFG1
3
CFG1
3
CFG1
3
91
CFG0
3
CFG0
3
CFG0
3
92
VCC
-
VCC
-
VCC
-
93
PROGRAMN
3
PROGRAMN
3
PROGRAMN
3
94
CCLK
3
CCLK
3
CCLK
3
95
INITN
3
INITN
3
INITN
3
96
GND
-
GND
-
GND
-
97
DONE
3
DONE
3
DONE
3
98
GND
-
GND
-
GND
-
4-12
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3, LFECP/EC6 Logic Signal Connections: 144 TQFP (Cont.)
LFEC1
Pin
LVD
Number Pin Function Bank
S
99
LFEC3
Dual Function
LVD
Pin Function Bank
S
VCC
LFECP6/EC6
Dual Function
-
Pin Function Bank
VCC
LVD
S
Dual Function
VCC
-
-
100
PR5B
2
C
PCLKC2_0
PR9B
2
C
PCLKC2_0
PR9B
2
C
PCLKC2_0
101
PR5A
2
T
PCLKT2_0
PR9A
2
T
PCLKT2_0
PR9A
2
T
PCLKT2_0
102
PR4B
2
C
PR8B
2
C
PR8B
2
C
103
PR4A
2
T
PR8A
2
T
PR8A
2
T
104
PR3B
2
C
PR7B
2
C
PR7B
2
C
105
PR3A
2
T
PR7A
2
T
PR7A
2
T
106
PR2B
2
C
VREF1_2
PR2B
2
C
VREF1_2
PR2B
2
C
VREF1_2
107
PR2A
2
T
VREF2_2
PR2A
2
T
VREF2_2
PR2A
2
T
VREF2_2
108
VCCIO2
2
VCCIO2
2
VCCIO2
2
109*
GND1
GND2
-
GND1
GND2
-
GND1
GND2
-
110
VCCIO1
1
VCCIO1
1
VCCIO1
1
111
PT17B
1
C
PT25B
1
C
PT25B
1
C
112
PT17A
1
T
PT25A
1
T
PT25A
1
T
113
PT15A
1
PT23A
1
PT23A
1
114
PT14B
1
C
PT22B
1
115
PT14A
1
T
PT22A
1
T
116
PT13B
1
1
C
117
GND1
1
118
PT13A
119
PT12B
120
PT12A
1
T
121
PT11B
1
C
VREF2_1
122
PT11A
1
T
VREF1_1
123
PT10B
1
C
124
PT10A
1
T
125
VCCIO1
1
126
VCCAUX
-
127
PT9B
0
128
GND0
0
129
PT9A
0
T
PCLKT0_0
PT17A
0
T
PCLKT0_0
PT17A
130
PT8B
0
C
VREF1_0
PT16B
0
C
VREF1_0
PT16B
131
PT8A
0
T
VREF2_0
PT16A
0
T
VREF2_0
PT16A
132
PT7B
0
C
PT15B
0
C
133
PT7A
0
T
PT15A
0
134
PT6B
0
C
PT14B
0
T
T
PT22B
1
C
PT22A
1
T
C
PT21B
1
C
PT21B
GND1
1
GND1
1
1
T
PT21A
1
T
PT21A
1
T
1
C
PT20B
1
C
PT20B
1
C
PT20A
1
T
PT20A
1
T
PT19B
1
C
VREF2_1
PT19B
1
C
VREF2_1
PT19A
1
T
VREF1_1
PT19A
1
T
VREF1_1
PT18B
1
C
PT18B
1
C
PT18A
1
T
PT18A
1
T
VCCIO1
1
VCCIO1
1
135
PT6A
0
136
VCCIO0
0
137
PT5B
0
138
PT5A
0
139
PT4B
0
140
PT4A
141
PT2B
C
TDQS14
PCLKC0_0
TDQS6
VCCAUX
-
PT17B
0
GND0
0
C
TDQS22
PCLKC0_0
VCCAUX
-
PT17B
0
GND0
0
C
C
PCLKC0_0
0
T
PCLKT0_0
0
C
VREF1_0
0
T
VREF2_0
PT15B
0
C
T
PT15A
0
T
C
PT14B
0
C
PT14A
0
T
VCCIO0
0
PT14A
0
VCCIO0
0
C
PT13B
0
C
PT13B
0
T
PT13A
0
T
PT13A
0
T
C
PT12B
0
C
PT12B
0
C
0
T
PT12A
0
T
PT12A
0
T
0
C
PT10B
0
C
PT10B
0
C
TDQS14
T
T
T
142
PT2A
0
PT10A
0
PT10A
0
143
VCCIO0
0
VCCIO0
0
VCCIO0
0
144*
GND0
GND7
-
GND0
GND7
-
GND0
GND7
-
*Double bonded to the pin.
4-13
TDQS22
C
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 208 PQFP
LFEC1
Pin Number
Pin Function
1*
GND0
GND7
2
Bank
LVDS
LFEC3
Dual Function
Pin Function
Bank
-
GND0
GND7
LVDS
Dual Function
-
VCCIO7
7
VCCIO7
7
3
PL2A
7
T
VREF2_7
PL2A
4
PL2B
7
C
VREF1_7
PL2B
7
T
VREF2_7
7
C
VREF1_7
5
NC
-
NC
-
6
NC
-
NC
-
7
NC
-
PL3B
7
8
NC
-
PL4A
7
T
9
NC
-
PL4B
7
C
10
NC
-
PL5A
7
T
11
NC
-
PL5B
7
C
12
NC
-
PL6A
7
T
LDQS6
13
NC
-
VCCIO7
7
14
NC
-
PL6B
7
15
PL3A
7
T
PL7A
7
T
16
PL3B
7
C
PL7B
7
C
17
PL4A
7
T
PL8A
7
T
18
NC
-
NC
-
19
PL4B
7
C
PL8B
7
C
20
PL5A
7
T
PCLKT7_0
PL9A
7
T
PCLKT7_0
21
PL5B
7
C
PCLKC7_0
PL9B
7
C
PCLKC7_0
22
NC
-
VCCAUX
-
23
XRES
6
XRES
6
24
NC
-
NC
-
C
25
NC
-
NC
-
26
VCC
-
VCC
-
27
TCK
6
TCK
6
28
GND
-
GND
-
29
TDI
6
TDI
6
30
TMS
6
TMS
6
31
TDO
6
TDO
6
32
VCCJ
6
VCCJ
6
33
PL7A
6
T
LLM0_PLLT_IN_A
PL11A
6
T
LLM0_PLLT_IN_A
34
PL7B
6
C
LLM0_PLLC_IN_A
PL11B
6
C
LLM0_PLLC_IN_A
35
PL8A
6
T
LLM0_PLLT_FB_A
PL12A
6
T
LLM0_PLLT_FB_A
36
PL8B
6
C
LLM0_PLLC_FB_A
PL12B
6
C
LLM0_PLLC_FB_A
37
VCCIO6
6
VCCIO6
6
38
PL9A
6
T
PL13A
6
T
39
PL9B
6
C
PL13B
6
C
40
PL10A
6
T
PL14A
6
T
41
GND6
6
GND6
6
42
PL10B
6
C
PL14B
6
4-14
C
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 208 PQFP (Cont.)
LFEC1
LFEC3
Pin Number
Pin Function
Bank
LVDS
Dual Function
Pin Function
Bank
LVDS
Dual Function
43
PL11A
6
T
LDQS11
PL15A
6
T
LDQS15
44
PL11B
6
C
PL15B
6
C
45
PL12A
6
T
PL16A
6
T
46
PL12B
6
C
PL16B
6
C
47
PL13A
6
T
PL17A
6
T
48
PL13B
6
C
PL17B
6
C
49
PL14A
6
T
VREF1_6
PL18A
6
T
VREF1_6
50
PL14B
6
C
VREF2_6
PL18B
6
C
VREF2_6
51
VCCIO6
6
VCCIO6
6
52*
GND5
GND6
-
GND5
GND6
-
53
VCCIO5
5
VCCIO5
5
54
NC
-
PB2A
5
T
55
NC
-
PB2B
5
C
56
NC
-
PB3A
5
T
57
NC
-
PB3B
5
C
58
NC
-
PB4A
5
T
59
NC
-
PB4B
5
C
60
NC
-
PB5A
5
T
61
NC
-
PB5B
5
C
62
NC
-
PB6A
5
T
63
NC
-
PB6B
5
C
64
NC
-
VCCIO5
5
65
PB2A
5
T
PB10A
5
T
66
PB2B
5
C
PB10B
5
C
67
PB3A
5
T
PB11A
5
T
68
PB3B
5
C
PB11B
5
C
69
PB4A
5
T
PB12A
5
T
70
PB4B
5
C
PB12B
5
C
71
PB5A
5
T
PB13A
5
T
72
NC
-
GND5
5
73
PB5B
5
PB13B
5
74
VCCIO5
5
VCCIO5
5
75
PB6A
5
T
76
PB6B
5
77
PB7A
78
PB7B
79
C
BDQS6
BDQS6
C
PB14A
5
T
C
PB14B
5
C
5
T
PB15A
5
T
5
C
PB15B
5
C
PB8A
5
T
PB16A
5
T
80
PB8B
5
C
VREF1_5
PB16B
5
C
VREF1_5
81
PB9A
5
T
PCLKT5_0
PB17A
5
T
PCLKT5_0
82
GND5
5
GND5
5
83
PB9B
5
C
PCLKC5_0
PB17B
5
C
PCLKC5_0
84
VCCAUX
-
VCCAUX
-
VREF2_5
4-15
BDQS14
VREF2_5
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 208 PQFP (Cont.)
LFEC1
LVDS
LFEC3
Pin Number
Pin Function
Bank
Dual Function
Pin Function
Bank
85
VCCIO4
4
VCCIO4
4
LVDS
Dual Function
86
PB10A
4
T
87
PB10B
4
C
WRITEN
PB18A
CS1N
PB18B
4
T
WRITEN
4
C
CS1N
88
PB11A
4
T
VREF1_4
PB19A
89
PB11B
4
C
CSN
PB19B
4
T
VREF1_4
4
C
CSN
90
PB12A
4
T
VREF2_4
PB20A
4
T
VREF2_4
91
PB12B
4
C
D0/SPID7
92
PB13A
4
T
D2/SPID5
PB20B
4
C
D0/SPID7
PB21A
4
T
93
GND4
4
D2/SPID5
GND4
4
94
PB13B
4
C
D1/SPID6
PB21B
4
C
D1/SPID6
95
PB14A
4
T
BDQS14
PB22A
4
T
BDQS22
96
PB14B
4
C
D3/SPID4
PB22B
4
C
D3/SPID4
97
PB15A
4
T
PB23A
4
T
98
PB15B
4
C
D4/SPID3
PB23B
4
C
99
PB16A
4
T
PB24A
4
T
100
PB16B
4
C
PB24B
4
C
101
PB17A
4
T
PB25A
4
T
102
PB17B
4
C
PB25B
4
C
D6/SPID1
D5/SPID2
D6/SPID1
D4/SPID3
D5/SPID2
103
NC
-
NC
-
104
VCCIO4
4
VCCIO4
4
105*
GND3
GND4
-
GND3
GND4
-
106
VCCIO3
3
VCCIO3
3
107
PR14B
3
C
VREF2_3
PR18B
3
C
VREF2_3
108
PR14A
3
T
VREF1_3
PR18A
3
T
VREF1_3
109
PR13B
3
C
PR17B
3
C
110
PR13A
3
T
PR17A
3
T
111
PR12B
3
C
PR16B
3
C
112
PR12A
3
T
PR16A
3
T
113
PR11B
3
C
PR15B
3
C
114
PR11A
3
T
RDQS11
PR15A
3
T
RDQS15
115
PR10B
3
C
RLM0_PLLC_FB_A
PR14B
3
C
RLM0_PLLC_FB_A
116
GND3
3
GND3
3
117
PR10A
3
T
RLM0_PLLT_FB_A
PR14A
3
T
RLM0_PLLT_FB_A
118
PR9B
3
C
RLM0_PLLC_IN_A
PR13B
3
C
RLM0_PLLC_IN_A
T
RLM0_PLLT_IN_A
T
RLM0_PLLT_IN_A
C
DI/CSSPIN
119
PR9A
3
120
VCCIO3
3
121
PR8B
3
122
PR8A
123
PR7B
PR13A
3
VCCIO3
3
C
DI/CSSPIN
PR12B
3
3
T
DOUT/CSON
PR12A
3
T
DOUT/CSON
3
C
BUSY/SISPI
PR11B
3
C
BUSY/SISPI
T
D7/SPID0
T
D7/SPID0
124
PR7A
3
PR11A
3
125
CFG2
3
CFG2
3
126
CFG1
3
CFG1
3
4-16
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 208 PQFP (Cont.)
LFEC1
Pin Number
Pin Function
Bank
127
CFG0
3
LVDS
LFEC3
Dual Function
Pin Function
Bank
CFG0
3
128
VCC
-
VCC
-
129
PROGRAMN
3
PROGRAMN
3
130
CCLK
3
CCLK
3
131
INITN
3
INITN
3
132
GND
-
GND
-
133
DONE
3
DONE
3
134
GND
-
GND
-
135
VCC
-
VCC
-
136
NC
-
137
PR5B
2
138
NC
-
139
PR5A
2
T
140
PR4B
2
C
141
PR4A
2
142
PR3B
143
PR3A
144
NC
145
146
LVDS
Dual Function
C
PCLKC2_0
PCLKT2_0
VCCAUX
-
PR9B
2
GND2
2
PR9A
2
T
PR8B
2
C
T
PR8A
2
T
2
C
PR7B
2
C
2
T
PR7A
2
T
-
PR6B
2
C
NC
-
VCCIO2
2
NC
-
PR6A
2
T
147
NC
-
PR5B
2
C
148
NC
-
PR5A
2
T
149
NC
-
PR4B
2
C
150
NC
-
PR4A
2
T
151
NC
-
NC
-
152
NC
-
NC
-
153
PR2B
2
C
VREF1_2
PR2B
2
C
VREF1_2
T
VREF2_2
T
VREF2_2
C
PCLKC2_0
PCLKT2_0
154
PR2A
2
PR2A
2
155
VCCIO2
2
VCCIO2
2
156*
GND1
GND2
-
GND1
GND2
-
157
VCCIO1
1
VCCIO1
1
158
NC
-
NC
-
159
PT17B
1
C
PT25B
1
C
160
PT17A
1
T
PT25A
1
T
161
PT16B
1
C
PT24B
1
C
162
PT16A
1
T
PT24A
1
T
163
PT15B
1
C
PT23B
1
C
164
PT15A
1
T
PT23A
1
T
165
PT14B
1
C
PT22B
1
C
166
PT14A
1
T
PT22A
1
T
167
PT13B
1
C
PT21B
1
C
168
GND1
1
GND1
1
TDQS14
4-17
RDQS6
TDQS22
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC1, LFEC3 Logic Signal Connections: 208 PQFP (Cont.)
LFEC1
Pin Number
Pin Function
Bank
LVDS
169
PT13A
1
170
PT12B
171
PT12A
172
173
174
LFEC3
Dual Function
Pin Function
Bank
LVDS
T
PT21A
1
T
1
C
PT20B
1
C
1
T
PT20A
1
T
PT11B
1
C
VREF2_1
PT19B
1
C
VREF2_1
PT11A
1
T
VREF1_1
PT19A
1
T
VREF1_1
PT10B
1
C
PT18B
1
C
T
T
175
PT10A
1
PT18A
1
176
VCCIO1
1
VCCIO1
1
177
VCCAUX
-
VCCAUX
-
178
PT9B
0
PT17B
0
179
GND0
0
GND0
0
180
PT9A
0
T
PCLKT0_0
PT17A
181
PT8B
0
C
VREF1_0
182
PT8A
0
T
VREF2_0
183
PT7B
0
184
PT7A
185
PT6B
186
PT6A
187
VCCIO0
0
188
PT5B
0
189
NC
-
190
PT5A
0
191
PT4B
0
192
PT4A
0
T
193
PT3B
0
C
194
PT3A
0
T
195
PT2B
0
C
PT10B
196
PT2A
0
T
197
NC
-
198
NC
-
PT6B
0
C
PCLKC0_0
Dual Function
C
PCLKC0_0
0
T
PCLKT0_0
PT16B
0
C
VREF1_0
PT16A
0
T
VREF2_0
C
PT15B
0
C
0
T
PT15A
0
T
0
C
PT14B
0
C
0
T
PT14A
0
T
VCCIO0
0
PT13B
0
GND0
0
T
PT13A
0
T
C
PT12B
0
C
PT12A
0
T
PT11B
0
C
PT11A
0
T
0
C
PT10A
0
T
VCCIO0
0
TDQS6
C
C
C
199
NC
-
PT6A
0
T
200
NC
-
PT5B
0
C
201
NC
-
PT5A
0
T
202
NC
-
PT4B
0
C
203
NC
-
PT4A
0
T
204
NC
-
PT3B
0
C
205
NC
-
PT3A
0
T
206
NC
-
PT2B
0
C
T
207
NC
-
PT2A
0
208
VCCIO0
0
VCCIO0
0
* Double bonded to the pin.
4-18
TDQS14
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP
LFECP6/LFEC6
LVDS
LFECP10/LFEC10
Pin Number
Pin Function
Bank
Dual Function
1*
GND0
GND7
-
2
VCCIO7
7
3
PL2A
7
T
VREF2_7
4
PL2B
7
C
VREF1_7
5
NC
-
VCC
-
6
NC
-
GND
-
7
PL3B
7
PL12B
7
8
PL4A
7
T
PL13A
7
T
9
PL4B
7
C
PL13B
7
C
10
PL5A
7
T
PL14A
7
T
11
PL5B
7
C
PL14B
7
C
12
PL6A
7
T
PL15A
7
T
13
VCCIO7
7
VCCIO7
7
14
PL6B
7
C
PL15B
7
C
15
PL7A
7
T
PL16A
7
T
16
PL7B
7
C
PL16B
7
C
17
PL8A
7
T
PL17A
7
T
18
GND7
7
GND7
7
LDQS6
Pin Function
Bank
LVDS
Dual Function
GND0
GND7
-
VCCIO7
7
PL2A
7
T
VREF2_7
PL2B
7
C
VREF1_7
LDQS15
19
PL8B
7
C
PL17B
7
20
PL9A
7
T
PCLKT7_0
PL18A
7
C
T
PCLKT7_0
21
PL9B
7
C
PCLKC7_0
PL18B
7
C
PCLKC7_0
22
VCCAUX
-
VCCAUX
-
23
XRES
6
XRES
6
24
VCC
-
VCC
-
25
GND
-
GND
-
26
VCC
-
VCC
-
27
TCK
6
TCK
6
28
GND
-
GND
-
29
TDI
6
TDI
6
30
TMS
6
TMS
6
LLM0_PLLT_IN_A
31
TDO
6
TDO
6
32
VCCJ
6
VCCJ
6
33
PL20A
6
T
LLM0_PLLT_IN_A
PL29A
6
T
34
PL20B
6
C
LLM0_PLLC_IN_A
PL29B
6
C
LLM0_PLLC_IN_A
35
PL21A
6
T
LLM0_PLLT_FB_A
PL30A
6
T
LLM0_PLLT_FB_A
36
PL21B
6
C
LLM0_PLLC_FB_A
PL30B
6
C
LLM0_PLLC_FB_A
37
VCCIO6
6
VCCIO6
6
38
PL22A
6
T
PL31A
6
T
39
PL22B
6
C
PL31B
6
C
40
PL23A
6
T
PL32A
6
T
41
GND6
6
GND6
6
42
PL23B
6
PL32B
6
C
4-19
C
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)
LFECP6/LFEC6
LFECP10/LFEC10
Pin Number
Pin Function
Bank
LVDS
Dual Function
Pin Function
Bank
LVDS
Dual Function
43
PL24A
6
T
LDQS24
PL33A
6
T
LDQS33
44
PL24B
6
C
PL33B
6
C
45
PL25A
6
T
PL34A
6
T
46
PL25B
6
C
PL34B
6
C
47
PL26A
6
T
PL35A
6
T
48
PL26B
6
C
PL35B
6
C
49
PL27A
6
T
VREF1_6
PL36A
6
T
VREF1_6
50
PL27B
6
C
VREF2_6
PL36B
6
C
VREF2_6
51
VCCIO6
6
VCCIO6
6
52*
GND5
GND6
-
GND5
GND6
-
53
VCCIO5
5
VCCIO5
5
54
PB2A
5
T
PB2A
5
T
55
PB2B
5
C
PB2B
5
C
56
PB3A
5
T
PB3A
5
T
57
PB3B
5
C
PB3B
5
C
58
PB4A
5
T
PB4A
5
T
59
PB4B
5
C
PB4B
5
C
60
PB5A
5
T
PB5A
5
T
61
PB5B
5
C
PB5B
5
C
62
PB6A
5
T
63
PB6B
5
C
64
VCCIO5
5
65
PB10A
5
66
PB10B
5
67
PB11A
5
T
68
PB11B
5
C
69
PB12A
5
T
70
PB12B
5
C
71
PB13A
5
T
72
GND5
5
73
PB13B
5
74
VCCIO5
5
75
PB14A
5
T
76
PB14B
5
77
PB15A
78
PB15B
79
PB16A
80
81
BDQS6
PB6A
5
T
PB6B
5
C
VCCIO5
5
T
PB18A
5
T
C
PB18B
5
C
PB19A
5
T
PB19B
5
C
PB20A
5
T
PB20B
5
C
PB21A
5
T
GND5
5
PB21B
5
VCCIO5
5
C
C
PB22A
5
T
C
PB22B
5
C
5
T
PB23A
5
T
5
C
PB23B
5
C
5
T
VREF2_5
PB24A
5
T
PB16B
5
C
VREF1_5
PB24B
5
C
VREF1_5
PB17A
5
T
PCLKT5_0
PB25A
5
T
PCLKT5_0
GND5
5
C
PCLKC5_0
PB25B
5
C
PCLKC5_0
VCCAUX
-
82
GND5
5
83
PB17B
5
84
VCCAUX
-
BDQS14
BDQS6
4-20
BDQS22
VREF2_5
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)
LFECP6/LFEC6
Pin Number
Pin Function
Bank
85
VCCIO4
4
LVDS
LFECP10/LFEC10
Dual Function
Pin Function
Bank
VCCIO4
4
LVDS
Dual Function
86
PB18A
4
T
WRITEN
PB26A
4
T
WRITEN
87
PB18B
4
C
CS1N
PB26B
4
C
CS1N
88
PB19A
4
T
VREF1_4
PB27A
4
T
VREF1_4
89
PB19B
4
C
CSN
PB27B
4
C
CSN
90
PB20A
4
T
VREF2_4
PB28A
4
T
VREF2_4
91
PB20B
4
C
D0/SPID7
PB28B
4
C
D0/SPID7
92
PB21A
4
T
D2/SPID5
PB29A
4
T
D2/SPID5
93
GND4
4
GND4
4
94
PB21B
4
C
D1/SPID6
PB29B
4
C
D1/SPID6
95
PB22A
4
T
BDQS22
PB30A
4
T
BDQS30
96
PB22B
4
C
D3/SPID4
PB30B
4
C
D3/SPID4
97
PB23A
4
T
PB31A
4
T
98
PB23B
4
C
PB31B
4
C
99
PB24A
4
T
PB32A
4
T
100
PB24B
4
C
101
PB25A
4
T
102
PB25B
4
C
D4/SPID3
D5/SPID2
D6/SPID1
D4/SPID3
PB32B
4
C
PB33A
4
T
D5/SPID2
PB33B
4
C
D6/SPID1
103
PB33A
4
PB41A
4
104
VCCIO4
4
VCCIO4
4
105*
GND3
GND4
-
GND3
GND4
-
106
VCCIO3
3
VCCIO3
3
107
PR27B
3
C
VREF2_3
PR36B
3
C
VREF2_3
108
PR27A
3
T
VREF1_3
PR36A
3
T
VREF1_3
109
PR26B
3
C
PR35B
3
C
110
PR26A
3
T
PR35A
3
T
111
PR25B
3
C
PR34B
3
C
112
PR25A
3
T
PR34A
3
T
113
PR24B
3
C
PR33B
3
C
114
PR24A
3
T
RDQS24
PR33A
3
T
RDQS33
115
PR23B
3
C
RLM0_PLLC_FB_A
PR32B
3
C
RLM0_PLLC_FB_A
116
GND3
3
GND3
3
117
PR23A
3
T
RLM0_PLLT_FB_A
PR32A
3
T
RLM0_PLLT_FB_A
118
PR22B
3
C
RLM0_PLLC_IN_A
PR31B
3
C
RLM0_PLLC_IN_A
T
RLM0_PLLT_IN_A
T
RLM0_PLLT_IN_A
C
DI/CSSPIN
119
PR22A
3
120
VCCIO3
3
121
PR21B
3
122
PR21A
123
PR20B
124
125
126
PR31A
3
VCCIO3
3
3
C
DI/CSSPIN
PR30B
3
T
DOUT/CSON
PR30A
3
T
DOUT/CSON
3
C
BUSY/SISPI
PR29B
3
C
BUSY/SISPI
PR20A
3
T
D7/SPID0
PR29A
3
T
D7/SPID0
CFG2
3
CFG2
3
CFG1
3
CFG1
3
4-21
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)
LFECP6/LFEC6
Pin Number
Pin Function
Bank
127
CFG0
3
LVDS
LFECP10/LFEC10
Dual Function
Pin Function
Bank
CFG0
3
128
VCC
-
VCC
-
129
PROGRAMN
3
PROGRAMN
3
130
CCLK
3
CCLK
3
131
INITN
3
INITN
3
132
GND
-
GND
-
133
DONE
3
DONE
3
134
GND
-
GND
-
135
VCC
-
VCC
-
136
VCCAUX
-
137
PR9B
2
138
GND2
2
139
PR9A
2
T
140
PR8B
2
C
141
PR8A
2
142
PR7B
143
PR7A
144
PR6B
145
VCCIO2
2
146
PR6A
2
T
147
PR5B
2
148
PR5A
149
PR4B
150
PR4A
LVDS
Dual Function
C
PCLKC2_0
PCLKT2_0
VCCAUX
-
PR18B
2
GND2
2
PR18A
2
T
PR17B
2
C
T
PR17A
2
T
2
C
PR16B
2
C
2
T
PR16A
2
T
2
C
PR15B
2
C
VCCIO2
2
PR15A
2
T
C
PR14B
2
C
2
T
PR14A
2
T
2
C
PR13B
2
C
2
T
PR13A
2
T
-
C
PCLKC2_0
PCLKT2_0
RDQS6
RDQS15
151
NC
-
GND
152
NC
-
VCC
-
153
PR2B
2
C
VREF1_2
PR2B
2
C
VREF1_2
T
VREF2_2
T
VREF2_2
154
PR2A
2
PR2A
2
155
VCCIO2
2
VCCIO2
2
156*
GND1
GND2
-
GND1
GND2
-
157
VCCIO1
1
VCCIO1
1
158
PT33A
1
PT41A
1
159
PT25B
1
C
PT33B
1
C
160
PT25A
1
T
PT33A
1
T
161
PT24B
1
C
PT32B
1
C
162
PT24A
1
T
PT32A
1
T
163
PT23B
1
C
PT31B
1
C
164
PT23A
1
T
PT31A
1
T
165
PT22B
1
C
PT30B
1
C
PT30A
1
T
PT29B
1
C
GND1
1
166
PT22A
1
T
167
PT21B
1
C
168
GND1
1
TDQS22
4-22
TDQS30
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10 Logic Signal Connections: 208 PQFP (Cont.)
LFECP6/LFEC6
Pin Number
Pin Function
Bank
LVDS
169
PT21A
1
170
PT20B
171
PT20A
172
173
174
LFECP10/LFEC10
Dual Function
Pin Function
Bank
LVDS
T
PT29A
1
T
1
C
PT28B
1
C
1
T
PT28A
1
T
PT19B
1
C
VREF2_1
PT27B
1
C
VREF2_1
PT19A
1
T
VREF1_1
PT27A
1
T
VREF1_1
PT18B
1
C
PT26B
1
C
T
T
175
PT18A
1
PT26A
1
176
VCCIO1
1
VCCIO1
1
177
VCCAUX
-
VCCAUX
-
178
PT17B
0
179
GND0
0
180
PT17A
0
T
181
PT16B
0
C
VREF1_0
182
PT16A
0
T
VREF2_0
183
PT15B
0
C
184
PT15A
0
185
PT14B
0
186
PT14A
0
T
187
VCCIO0
0
188
PT13B
0
189
GND0
0
190
PT13A
0
191
PT12B
0
192
PT12A
0
193
PT11B
194
PT11A
195
PT10B
C
PCLKC0_0
C
PCLKC0_0
0
T
PCLKT0_0
PT24B
0
C
VREF1_0
PT24A
0
T
VREF2_0
PT23B
0
C
T
PT23A
0
T
C
PT22B
0
C
PT22A
0
T
VCCIO0
0
PT21B
0
GND0
0
T
PT21A
0
T
C
PT20B
0
C
T
PT20A
0
T
0
C
PT19B
0
C
0
T
PT19A
0
T
0
C
PT18B
0
C
T
T
PCLKT0_0
TDQS14
C
PT25B
0
GND0
0
PT25A
Dual Function
PT10A
0
197
VCCIO0
0
198
PT6B
0
199
PT6A
0
T
PT6A
0
T
200
PT5B
0
C
PT5B
0
C
201
PT5A
0
T
PT5A
0
T
202
PT4B
0
C
PT4B
0
C
203
PT4A
0
T
PT4A
0
T
204
PT3B
0
C
PT3B
0
C
205
PT3A
0
T
PT3A
0
T
206
PT2B
0
C
PT2B
0
C
T
PT2A
0
T
VCCIO0
0
207
PT2A
0
208
VCCIO0
0
TDQS6
*Double bonded to the pin.
4-23
0
0
PT6B
0
C
196
C
PT18A
VCCIO0
TDQS22
C
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA
LFEC3
Ball
Number
Ball Function
Bank
GND
GND7
7
D4
PL2A
7
T
D3
PL2B
7
C
C3
PL3A
7
C2
PL3B
7
LVDS
LFECP6/LFEC6
Dual Function
Ball Function
Bank
GND7
7
LVDS
Dual Function
VREF2_7
PL2A
VREF1_7
PL2B
7
T
VREF2_7
7
C
VREF1_7
T
PL3A
7
T
C
PL3B
7
C
B1
PL4A
7
T
PL4A
7
T
C1
PL4B
7
C
PL4B
7
C
E3
PL5A
7
T
PL5A
7
T
E4
PL5B
7
C
PL5B
7
C
F4
PL6A
7
T
PL6A
7
T
F5
PL6B
7
C
PL6B
7
C
G4
PL7A
7
T
PL7A
7
T
G3
PL7B
7
C
PL7B
7
C
D2
PL8A
7
T
PL8A
7
T
D1
PL8B
7
C
PL8B
7
C
T
T
PCLKT7_0
C
PCLKC7_0
E1
PL9A
7
GND
GND7
7
E2
PL9B
7
F3
XRES
6
C
LDQS6
PCLKT7_0
PCLKC7_0
PL9A
7
GND7
7
PL9B
7
XRES
6
G5
NC
-
PL11A
6
T
H5
NC
-
PL11B
6
C
F2
NC
-
PL12A
6
T
F1
NC
-
PL12B
6
C
H4
NC
-
PL13A
6
T
H3
NC
-
PL13B
6
C
G2
NC
-
PL14A
6
T
-
-
-
GND6
6
G1
NC
-
PL14B
6
C
J4
NC
-
PL15A
6
T
J3
NC
-
PL15B
6
C
J5
NC
-
PL16A
6
T
K5
NC
-
PL16B
6
C
H2
NC
-
PL17A
6
T
H1
NC
-
PL17B
6
C
J2
NC
-
PL18A
6
T
-
-
-
GND6
6
J1
NC
-
PL18B
6
K4
TCK
6
TCK
6
K3
TDI
6
TDI
6
L3
TMS
6
TMS
6
L5
TDO
6
TDO
6
L4
VCCJ
6
VCCJ
6
4-24
C
LDQS6
LDQS15
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)
LFEC3
LFECP6/LFEC6
Ball
Number
Ball Function
Bank
LVDS
Dual Function
Ball Function
Bank
LVDS
Dual Function
K2
PL11A
6
T
LLM0_PLLT_IN_A
PL20A
6
T
LLM0_PLLT_IN_A
K1
PL11B
6
C
LLM0_PLLC_IN_A
PL20B
6
C
LLM0_PLLC_IN_A
L2
PL12A
6
T
LLM0_PLLT_FB_A
PL21A
6
T
LLM0_PLLT_FB_A
LLM0_PLLC_FB_A
LLM0_PLLC_FB_A
L1
PL12B
6
C
PL21B
6
C
M2
PL13A
6
T
PL22A
6
T
M1
PL13B
6
C
PL22B
6
C
T
PL23A
6
T
GND6
6
PL23B
6
N1
PL14A
6
GND
GND6
6
N2
PL14B
6
M4
PL15A
6
T
PL24A
6
T
M3
PL15B
6
C
PL24B
6
C
P1
PL16A
6
T
PL25A
6
T
C
C
LDQS15
C
LDQS24
R1
PL16B
6
C
PL25B
6
P2
PL17A
6
T
PL26A
6
T
P3
PL17B
6
C
PL26B
6
C
N3
PL18A
6
T
VREF1_6
PL27A
6
T
VREF1_6
N4
PL18B
6
C
VREF2_6
PL27B
6
C
VREF2_6
GND
GND6
6
GND6
6
GND
GND5
5
GND5
5
P4
PB2A
5
T
PB2A
5
T
N5
PB2B
5
C
PB2B
5
C
P5
PB3A
5
T
PB3A
5
T
P6
PB3B
5
C
PB3B
5
C
R4
PB4A
5
T
PB4A
5
T
R3
PB4B
5
C
PB4B
5
C
T2
PB5A
5
T
PB5A
5
T
T3
PB5B
5
C
PB5B
5
C
R5
PB6A
5
T
PB6A
5
T
R6
PB6B
5
C
PB6B
5
C
T4
PB7A
5
T
PB7A
5
T
C
BDQS6
T5
PB7B
5
C
PB7B
5
N6
PB8A
5
T
PB8A
5
T
M6
PB8B
5
C
PB8B
5
C
T
T
T6
PB9A
5
GND
GND5
5
T7
PB9B
5
PB9A
5
GND5
5
C
PB9B
5
C
P7
PB10A
5
T
PB10A
5
T
N7
PB10B
5
C
PB10B
5
C
R7
PB11A
5
T
PB11A
5
T
R8
PB11B
5
C
PB11B
5
C
M7
PB12A
5
T
PB12A
5
T
M8
PB12B
5
C
PB12B
5
C
T8
PB13A
5
T
PB13A
5
T
4-25
BDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)
LFEC3
Ball
Number
Ball Function
Bank
GND
GND5
5
LVDS
T9
PB13B
5
C
P8
PB14A
5
T
N8
PB14B
5
R9
PB15A
5
R10
PB15B
5
LFECP6/LFEC6
Dual Function
Ball Function
Bank
GND5
5
LVDS
PB13B
5
C
PB14A
5
T
C
PB14B
5
C
T
PB15A
5
T
C
PB15B
5
C
BDQS14
Dual Function
BDQS14
P9
PB16A
5
T
VREF2_5
PB16A
5
T
VREF2_5
N9
PB16B
5
C
VREF1_5
PB16B
5
C
VREF1_5
T10
PB17A
5
T
PCLKT5_0
PB17A
5
T
PCLKT5_0
GND
GND5
5
GND5
5
T11
PB17B
5
C
PCLKC5_0
PB17B
5
C
PCLKC5_0
T12
PB18A
4
T
WRITEN
PB18A
4
T
WRITEN
T13
PB18B
4
C
CS1N
PB18B
4
C
CS1N
P10
PB19A
4
T
VREF1_4
PB19A
4
T
VREF1_4
N10
PB19B
4
C
CSN
PB19B
4
C
CSN
T14
PB20A
4
T
VREF2_4
PB20A
4
T
VREF2_4
T15
PB20B
4
C
D0/SPID7
PB20B
4
C
D0/SPID7
M10
PB21A
4
T
D2/SPID5
PB21A
4
T
D2/SPID5
GND
GND4
4
GND4
4
M11
PB21B
4
C
D1/SPID6
PB21B
4
C
D1/SPID6
R11
PB22A
4
T
BDQS22
PB22A
4
T
BDQS22
D3/SPID4
PB22B
4
C
D3/SPID4
PB23A
4
T
D4/SPID3
PB23B
4
C
PB24A
4
T
D5/SPID2
PB24B
4
C
PB25A
4
T
P11
PB22B
4
C
R13
PB23A
4
T
R14
PB23B
4
C
P12
PB24A
4
T
P13
PB24B
4
C
N11
PB25A
4
T
-
-
-
N12
PB25B
4
GND4
4
PB25B
4
R12
NC
-
PB26A
4
GND
-
GND4
4
GND4
4
-
-
GND4
4
GND
GND3
3
GND3
3
N13
PR18B
3
C
VREF2_3
PR27B
N14
PR18A
3
T
VREF1_3
PR27A
P14
PR17B
3
C
C
D6/SPID1
D4/SPID3
D5/SPID2
C
D6/SPID1
3
C
VREF2_3
3
T
VREF1_3
PR26B
3
C
P15
PR17A
3
T
PR26A
3
T
R15
PR16B
3
C
PR25B
3
C
R16
PR16A
3
T
PR25A
3
T
M13
PR15B
3
C
PR24B
3
C
M14
PR15A
3
T
RDQS15
PR24A
3
T
RDQS24
P16
PR14B
3
C
RLM0_PLLC_FB_A
PR23B
3
C
RLM0_PLLC_FB_A
GND
GND3
3
GND3
3
4-26
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)
LFEC3
LFECP6/LFEC6
Ball
Number
Ball Function
Bank
LVDS
Dual Function
Ball Function
Bank
LVDS
Dual Function
N16
PR14A
3
T
RLM0_PLLT_FB_A
PR23A
3
T
RLM0_PLLT_FB_A
N15
PR13B
3
C
RLM0_PLLC_IN_A
PR22B
3
C
RLM0_PLLC_IN_A
M15
PR13A
3
T
RLM0_PLLT_IN_A
PR22A
3
T
RLM0_PLLT_IN_A
M16
PR12B
3
C
DI/CSSPIN
PR21B
3
C
DI/CSSPIN
L16
PR12A
3
T
DOUT/CSON
PR21A
3
T
DOUT/CSON
K16
PR11B
3
C
BUSY/SISPI
PR20B
3
C
BUSY/SISPI
T
D7/SPID0
T
D7/SPID0
J16
PR11A
3
PR20A
3
L12
CFG2
3
CFG2
3
L14
CFG1
3
CFG1
3
L13
CFG0
3
CFG0
3
K13
PROGRAMN
3
PROGRAMN
3
L15
CCLK
3
CCLK
3
K15
INITN
3
INITN
3
K14
DONE
3
DONE
3
-
-
GND3
3
H16
NC
-
PR18B
3
C
H15
NC
-
PR18A
3
T
G16
NC
-
PR17B
3
C
G15
NC
-
PR17A
3
T
K12
NC
-
PR16B
3
C
J12
NC
-
PR16A
3
T
J14
NC
-
PR15B
3
C
J15
NC
-
PR15A
3
T
F16
NC
-
PR14B
3
C
RDQS15
-
-
-
GND3
3
F15
NC
-
PR14A
3
T
J13
NC
-
PR13B
3
C
H13
NC
-
PR13A
3
T
H14
NC
-
PR12B
3
C
G14
NC
-
PR12A
3
T
E16
NC
-
PR11B
3
C
E15
NC
-
PR11A
3
T
H12
PR9B
2
PR9B
2
C
PCLKC2_0
GND
GND2
2
G12
PR9A
PR9A
2
T
PCLKT2_0
G13
C
C
PCLKC2_0
2
T
PCLKT2_0
PR8B
2
C
PR8B
2
F13
PR8A
2
T
PR8A
2
T
F12
PR7B
2
C
PR7B
2
C
GND2
E13
PR7A
2
T
PR7A
2
T
D16
PR6B
2
C
PR6B
2
C
D15
PR6A
2
T
PR6A
2
T
F14
PR5B
2
C
PR5B
2
C
E14
PR5A
2
T
PR5A
2
T
RDQS6
4-27
RDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)
LFEC3
Ball
Number
Ball Function
Bank
LVDS
C16
PR4B
2
C
LFECP6/LFEC6
Dual Function
Ball Function
Bank
LVDS
PR4B
2
C
Dual Function
B16
PR4A
2
T
PR4A
2
T
C15
PR3B
2
C
PR3B
2
C
C14
PR3A
2
T
PR3A
2
T
D14
PR2B
2
C
VREF1_2
PR2B
2
C
VREF1_2
D13
PR2A
2
T
VREF2_2
PR2A
2
T
VREF2_2
GND
GND2
2
GND2
2
GND
GND1
1
GND1
1
-
-
-
GND1
1
B13
NC
-
PT26B
1
C
C13
NC
-
PT26A
1
T
C12
PT25B
1
C
PT25B
1
C
-
-
-
GND1
1
D12
PT25A
1
T
PT25A
1
T
A15
PT24B
1
C
PT24B
1
C
B14
PT24A
1
T
PT24A
1
T
D11
PT23B
1
C
PT23B
1
C
C11
PT23A
1
T
PT23A
1
T
E10
PT22B
1
C
C
E11
PT22A
1
T
A14
PT21B
1
GND
GND1
1
A13
PT21A
D10
PT22B
1
PT22A
1
T
C
PT21B
1
C
GND1
1
1
T
PT21A
1
T
PT20B
1
C
PT20B
1
C
C10
PT20A
1
T
PT20A
1
T
A12
PT19B
1
C
VREF2_1
PT19B
1
C
VREF2_1
B12
PT19A
1
T
VREF1_1
PT19A
1
T
VREF1_1
A11
PT18B
1
C
PT18B
1
C
B11
PT18A
1
T
PT18A
1
T
A10
PT17B
0
C
PCLKC0_0
PT17B
0
C
PCLKC0_0
GND
GND0
0
GND0
0
B10
PT17A
0
T
PCLKT0_0
PT17A
0
T
PCLKT0_0
C9
PT16B
0
C
VREF1_0
PT16B
0
C
VREF1_0
VREF2_0
VREF2_0
TDQS22
B9
PT16A
0
T
PT16A
0
T
E9
PT15B
0
C
PT15B
0
C
D9
PT15A
0
T
PT15A
0
T
D8
PT14B
0
C
PT14B
0
C
C8
PT14A
0
T
PT14A
0
T
C
PT13B
0
C
GND0
0
TDQS14
A9
PT13B
0
GND
GND0
0
A8
PT13A
0
T
PT13A
0
T
B8
PT12B
0
C
PT12B
0
C
B7
PT12A
0
T
PT12A
0
T
4-28
TDQS22
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)
LFEC3
Ball
Number
Ball Function
Bank
LVDS
D7
PT11B
0
C
LFECP6/LFEC6
Dual Function
Ball Function
Bank
LVDS
PT11B
0
C
C7
PT11A
0
T
PT11A
0
T
A7
PT10B
0
C
PT10B
0
C
A6
PT10A
0
T
PT10A
0
T
E7
PT9B
0
C
PT9B
0
C
GND
GND0
0
GND0
0
E6
PT9A
0
T
PT9A
0
T
D6
PT8B
0
C
PT8B
0
C
C6
PT8A
0
T
PT8A
0
T
B6
PT7B
0
C
PT7B
0
C
B5
PT7A
0
T
PT7A
0
T
A5
PT6B
0
C
PT6B
0
C
A4
PT6A
0
T
PT6A
0
T
A3
PT5B
0
C
TDQS6
PT5B
0
C
A2
PT5A
0
T
PT5A
0
T
B2
PT4B
0
C
PT4B
0
C
B3
PT4A
0
T
PT4A
0
T
D5
PT3B
0
C
PT3B
0
C
C5
PT3A
0
T
PT3A
0
T
C4
PT2B
0
C
PT2B
0
C
B4
PT2A
0
T
PT2A
0
T
GND
GND0
0
GND0
0
A1
GND
-
GND
-
A16
GND
-
GND
-
G10
GND
-
GND
-
G7
GND
-
GND
-
G8
GND
-
GND
-
G9
GND
-
GND
-
H10
GND
-
GND
-
H7
GND
-
GND
-
H8
GND
-
GND
-
H9
GND
-
GND
-
J10
GND
-
GND
-
J7
GND
-
GND
-
J8
GND
-
GND
-
J9
GND
-
GND
-
K10
GND
-
GND
-
K7
GND
-
GND
-
K8
GND
-
GND
-
K9
GND
-
GND
-
T1
GND
-
GND
-
T16
GND
-
GND
-
E12
VCC
-
VCC
-
4-29
Dual Function
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFEC3 and LFECP/EC6 Logic Signal Connections: 256 fpBGA (Cont.)
LFEC3
Ball
Number
Ball Function
Bank
E5
VCC
-
LVDS
LFECP6/LFEC6
Dual Function
Ball Function
Bank
VCC
-
E8
VCC
-
VCC
-
M12
VCC
-
VCC
-
M5
VCC
-
VCC
-
M9
VCC
-
VCC
-
B15
VCCAUX
-
VCCAUX
-
R2
VCCAUX
-
VCCAUX
-
F7
VCCIO0
0
VCCIO0
0
F8
VCCIO0
0
VCCIO0
0
F10
VCCIO1
1
VCCIO1
1
F9
VCCIO1
1
VCCIO1
1
G11
VCCIO2
2
VCCIO2
2
H11
VCCIO2
2
VCCIO2
2
J11
VCCIO3
3
VCCIO3
3
K11
VCCIO3
3
VCCIO3
3
L10
VCCIO4
4
VCCIO4
4
L9
VCCIO4
4
VCCIO4
4
L7
VCCIO5
5
VCCIO5
5
5
L8
VCCIO5
5
VCCIO5
J6
VCCIO6
6
VCCIO6
6
K6
VCCIO6
6
VCCIO6
6
G6
VCCIO7
7
VCCIO7
7
H6
VCCIO7
7
VCCIO7
7
F6
VCC
-
VCC
-
F11
VCC
-
VCC
L11
VCC
-
VCC
-
L6
VCC
-
VCC
-
4-30
LVDS
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA
LFECP10/LFEC10
Ball
Number
Ball Function
GND
GND7
7
D4
PL2A
Bank
LFECP15/LFEC15
LVDS
Dual Function
7
T
VREF2_7
C
VREF1_7
D3
PL2B
7
GND
GND7
7
C3
PL12A
7
T
Ball Function
Bank
LVDS
Dual Function
GND7
7
PL2A
7
T
VREF2_7
C
VREF1_7
PL2B
7
GND7
7
PL16A
7
T
C
C2
PL12B
7
C
PL16B
7
B1
PL13A
7
T
PL17A
7
T
C1
PL13B
7
C
PL17B
7
C
T
T
E3
PL14A
7
PL18A
7
GND
GND7
7
GND7
7
-
-
-
GND7
7
E4
PL14B
7
C
F4
PL15A
7
T
F5
PL15B
7
C
G4
PL16A
7
T
PL20A
7
T
G3
PL16B
7
C
PL20B
7
C
D2
PL17A
7
T
PL21A
7
T
D1
PL17B
7
C
E1
PL18A
7
T
GND
GND7
7
E2
PL18B
7
F3
XRES
6
G5
PL20A
6
T
C
LDQS15
PCLKT7_0
PCLKC7_0
PL18B
7
PL19A
7
C
T
PL19B
7
C
PL21B
7
C
PL22A
7
T
PCLKT7_0
GND7
7
PL22B
7
C
PCLKC7_0
XRES
6
PL24A
6
T
C
H5
PL20B
6
C
PL24B
6
F2
PL21A
6
T
PL25A
6
T
F1
PL21B
6
C
PL25B
6
C
H4
PL22A
6
T
PL26A
6
T
H3
PL22B
6
C
PL26B
6
C
G2
PL23A
6
T
PL27A
6
T
GND6
6
PL27B
6
C
PL28A
6
T
GND
GND6
6
G1
PL23B
6
C
J4
PL24A
6
T
J3
PL24B
6
C
PL28B
6
C
J5
PL25A
6
T
PL29A
6
T
K5
PL25B
6
C
PL29B
6
C
H2
PL26A
6
T
PL30A
6
T
H1
PL26B
6
C
PL30B
6
C
T
PL31A
6
T
GND6
6
PL31B
6
LDQS24
J2
PL27A
6
GND
GND6
6
J1
PL27B
6
K4
TCK
6
TCK
6
K3
TDI
6
TDI
6
C
4-31
LDQS19
C
LDQS28
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)
LFECP10/LFEC10
Ball
Number
Ball Function
Bank
L3
TMS
6
LVDS
LFECP15/LFEC15
Dual Function
Ball Function
Bank
TMS
6
L5
TDO
6
TDO
6
L4
VCCJ
6
VCCJ
6
LVDS
Dual Function
K2
PL29A
6
T
LLM0_PLLT_IN_A
PL37A
6
T
LLM0_PLLT_IN_A
K1
PL29B
6
C
LLM0_PLLC_IN_A
PL37B
6
C
LLM0_PLLC_IN_A
L2
PL30A
6
T
LLM0_PLLT_FB_A
PL38A
6
T
LLM0_PLLT_FB_A
LLM0_PLLC_FB_A
LLM0_PLLC_FB_A
L1
PL30B
6
C
PL38B
6
C
M2
PL31A
6
T
PL39A
6
T
M1
PL31B
6
C
PL39B
6
C
T
T
N1
PL32A
6
PL40A
6
GND
GND6
6
GND6
6
-
-
-
GND6
6
N2
PL32B
6
C
M4
PL33A
6
T
PL40B
6
PL41A
6
M3
PL33B
6
T
C
PL41B
6
C
LDQS33
C
P1
PL34A
6
T
PL42A
6
T
R1
PL34B
6
C
PL42B
6
C
P2
PL35A
6
T
PL43A
6
T
C
LDQS41
P3
PL35B
6
C
PL43B
6
N3
PL36A
6
T
VREF1_6
PL44A
6
T
VREF1_6
N4
PL36B
6
C
VREF2_6
PL44B
6
C
VREF2_6
GND
GND6
6
GND6
6
GND
GND5
5
GND5
5
GND
GND5
5
GND5
5
P4
PB10A
5
T
PB10A
5
T
N5
PB10B
5
C
PB10B
5
C
P5
PB11A
5
T
PB11A
5
T
P6
PB11B
5
C
PB11B
5
C
R4
PB12A
5
T
PB12A
5
T
R3
PB12B
5
C
PB12B
5
C
T
PB13A
5
T
GND5
5
PB13B
5
T2
PB13A
5
GND
GND5
5
T3
PB13B
5
R5
PB14A
5
T
PB14A
5
T
R6
PB14B
5
C
PB14B
5
C
T4
PB15A
5
T
PB15A
5
T
T5
PB15B
5
C
PB15B
5
C
N6
PB16A
5
T
PB16A
5
T
C
BDQS14
C
M6
PB16B
5
C
PB16B
5
C
T6
PB17A
5
T
PB17A
5
T
GND
GND5
5
GND5
5
T7
PB17B
5
C
PB17B
5
C
P7
PB18A
5
T
PB18A
5
T
4-32
BDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)
LFECP10/LFEC10
Ball
Number
Ball Function
Bank
LVDS
N7
PB18B
5
R7
PB19A
R8
PB19B
M7
PB20A
M8
PB20B
T8
PB21A
LFECP15/LFEC15
Dual Function
Ball Function
Bank
LVDS
C
PB18B
5
C
5
T
PB19A
5
T
5
C
PB19B
5
C
5
T
PB20A
5
T
5
C
PB20B
5
C
5
T
PB21A
5
T
GND5
5
PB21B
5
C
PB22A
5
T
GND
GND5
5
T9
PB21B
5
C
P8
PB22A
5
T
N8
PB22B
5
C
PB22B
5
C
R9
PB23A
5
T
PB23A
5
T
R10
PB23B
5
C
PB23B
5
C
BDQS22
Dual Function
BDQS22
P9
PB24A
5
T
VREF2_5
PB24A
5
T
VREF2_5
N9
PB24B
5
C
VREF1_5
PB24B
5
C
VREF1_5
T10
PB25A
5
T
PCLKT5_0
PB25A
5
T
PCLKT5_0
GND
GND5
5
GND5
5
T11
PB25B
5
C
PCLKC5_0
PB25B
5
C
PCLKC5_0
T12
PB26A
4
T
WRITEN
PB26A
4
T
WRITEN
T13
PB26B
4
C
CS1N
PB26B
4
C
CS1N
P10
PB27A
4
T
VREF1_4
PB27A
4
T
VREF1_4
N10
PB27B
4
C
CSN
PB27B
4
C
CSN
T14
PB28A
4
T
VREF2_4
PB28A
4
T
VREF2_4
T15
PB28B
4
C
D0/SPID7
PB28B
4
C
D0/SPID7
M10
PB29A
4
T
D2/SPID5
PB29A
4
T
D2/SPID5
GND
GND4
4
GND4
4
M11
PB29B
4
C
D1/SPID6
PB29B
4
C
D1/SPID6
R11
PB30A
4
T
BDQS30
PB30A
4
T
BDQS30
D3/SPID4
PB30B
4
C
D3/SPID4
PB31A
4
T
D4/SPID3
PB31B
4
C
PB32A
4
T
D5/SPID2
PB32B
4
C
PB33A
4
T
P11
PB30B
4
C
R13
PB31A
4
T
R14
PB31B
4
C
P12
PB32A
4
T
P13
PB32B
4
C
N11
PB33A
4
T
GND
GND4
4
N12
PB33B
4
GND4
4
PB33B
4
R12
PB34A
4
PB34A
4
GND
GND
GND4
4
GND4
4
GND4
4
GND4
4
-
-
-
GND4
4
-
-
-
GND4
4
GND
GND3
3
GND3
3
N13
PR36B
3
C
VREF2_3
PR44B
N14
PR36A
3
T
VREF1_3
PR44A
C
D6/SPID1
4-33
D4/SPID3
D5/SPID2
C
D6/SPID1
3
C
VREF2_3
3
T
VREF1_3
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)
LFECP10/LFEC10
Ball
Number
Ball Function
Bank
LVDS
P14
PR35B
3
C
LFECP15/LFEC15
Dual Function
Ball Function
Bank
LVDS
PR43B
3
C
P15
PR35A
3
T
PR43A
3
T
R15
PR34B
3
C
PR42B
3
C
Dual Function
R16
PR34A
3
T
PR42A
3
T
M13
PR33B
3
C
PR41B
3
C
M14
PR33A
3
T
RDQS33
PR41A
3
T
RDQS41
C
RLM0_PLLC_FB_A
PR40B
3
C
RLM0_PLLC_FB_A
GND3
3
P16
PR32B
3
GND
GND3
3
N16
PR32A
3
T
RLM0_PLLT_FB_A
PR40A
3
T
RLM0_PLLT_FB_A
N15
PR31B
3
C
RLM0_PLLC_IN_A
PR39B
3
C
RLM0_PLLC_IN_A
M15
PR31A
3
T
RLM0_PLLT_IN_A
PR39A
3
T
RLM0_PLLT_IN_A
M16
PR30B
3
C
DI/CSSPIN
PR38B
3
C
DI/CSSPIN
L16
PR30A
3
T
DOUT/CSON
PR38A
3
T
DOUT/CSON
K16
PR29B
3
C
BUSY/SISPI
PR37B
3
C
BUSY/SISPI
J16
PR29A
3
T
D7/SPID0
PR37A
3
T
D7/SPID0
L12
CFG2
3
CFG2
3
L14
CFG1
3
CFG1
3
L13
CFG0
3
CFG0
3
K13
PROGRAMN
3
PROGRAMN
3
L15
CCLK
3
CCLK
3
K15
INITN
3
INITN
3
K14
DONE
3
DONE
3
GND
GND3
3
GND3
3
H16
PR27B
3
C
PR31B
3
GND3
3
C
-
-
-
H15
PR27A
3
T
PR31A
3
T
G16
PR26B
3
C
PR30B
3
C
G15
PR26A
3
T
PR30A
3
T
K12
PR25B
3
C
PR29B
3
C
J12
PR25A
3
T
PR29A
3
T
C
J14
PR24B
3
C
J15
PR24A
3
T
PR28B
3
PR28A
3
F16
PR23B
3
T
C
PR27B
3
C
GND
GND3
3
F15
PR23A
GND3
3
3
T
PR27A
3
T
J13
PR22B
3
C
PR26B
3
C
H13
PR22A
3
T
PR26A
3
T
H14
PR21B
3
C
PR25B
3
C
G14
PR21A
3
T
PR25A
3
T
E16
PR20B
3
C
PR24B
3
C
E15
PR20A
3
T
PR24A
3
T
H12
PR18B
2
C
PR22B
2
C
GND
GND2
2
GND2
2
RDQS24
PCLKC2_0
4-34
RDQS28
PCLKC2_0
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)
LFECP10/LFEC10
LFECP15/LFEC15
Ball
Number
Ball Function
Bank
LVDS
Dual Function
Ball Function
Bank
LVDS
Dual Function
G12
PR18A
2
T
PCLKT2_0
PR22A
2
T
PCLKT2_0
G13
PR17B
2
C
PR21B
2
C
F13
PR17A
2
T
PR21A
2
T
F12
PR16B
2
C
PR20B
2
C
E13
PR16A
2
T
PR20A
2
T
D16
PR15B
2
C
PR19B
2
C
D15
PR15A
2
T
PR19A
2
T
F14
PR14B
2
C
PR18B
2
C
GND
GND2
2
GND2
2
E14
PR14A
2
T
PR18A
2
T
C16
PR13B
2
C
PR17B
2
C
B16
PR13A
2
T
PR17A
2
T
C15
PR12B
2
C
PR16B
2
C
C14
PR12A
2
T
PR16A
2
T
GND
GND2
2
GND2
2
RDQS19
-
-
-
GND2
2
D14
PR2B
2
C
VREF1_2
PR2B
2
C
VREF1_2
D13
PR2A
2
T
VREF2_2
PR2A
2
T
VREF2_2
GND
GND2
2
GND2
2
GND
GND1
1
GND1
1
GND
GND1
1
GND1
1
-
-
-
GND1
1
-
-
-
GND1
1
B13
PT34B
1
C
PT34B
1
C13
PT34A
1
T
PT34A
1
T
C12
PT33B
1
C
PT33B
1
C
GND
GND1
1
GND1
1
D12
PT33A
1
T
PT33A
1
T
A15
PT32B
1
C
PT32B
1
C
B14
PT32A
1
T
PT32A
1
T
D11
PT31B
1
C
PT31B
1
C
C11
PT31A
1
T
PT31A
1
T
E10
PT30B
1
C
PT30B
1
C
E11
PT30A
1
T
PT30A
1
T
A14
PT29B
1
C
PT29B
1
C
GND
GND1
1
GND1
1
TDQS30
C
TDQS30
A13
PT29A
1
T
PT29A
1
T
D10
PT28B
1
C
PT28B
1
C
C10
PT28A
1
T
PT28A
1
T
A12
PT27B
1
C
VREF2_1
PT27B
1
C
VREF2_1
B12
PT27A
1
T
VREF1_1
PT27A
1
T
VREF1_1
A11
PT26B
1
C
PT26B
1
C
B11
PT26A
1
T
PT26A
1
T
4-35
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)
LFECP10/LFEC10
LFECP15/LFEC15
Ball
Number
Ball Function
Bank
LVDS
Dual Function
Ball Function
Bank
LVDS
Dual Function
A10
PT25B
0
C
PCLKC0_0
PT25B
0
C
PCLKC0_0
GND
GND0
0
GND0
0
B10
PT25A
0
T
PCLKT0_0
PT25A
0
T
PCLKT0_0
C9
PT24B
0
C
VREF1_0
PT24B
0
C
VREF1_0
B9
PT24A
0
T
VREF2_0
PT24A
0
T
VREF2_0
E9
PT23B
0
C
PT23B
0
C
D9
PT23A
0
T
PT23A
0
T
D8
PT22B
0
C
PT22B
0
C
C8
PT22A
0
T
PT22A
0
T
C
PT21B
0
C
GND0
0
TDQS22
A9
PT21B
0
GND
GND0
0
A8
PT21A
0
T
PT21A
0
T
B8
PT20B
0
C
PT20B
0
C
B7
PT20A
0
T
PT20A
0
T
D7
PT19B
0
C
PT19B
0
C
C7
PT19A
0
T
PT19A
0
T
A7
PT18B
0
C
PT18B
0
C
A6
PT18A
0
T
PT18A
0
T
C
PT17B
0
C
GND0
0
E7
PT17B
0
GND
GND0
0
E6
PT17A
0
T
PT17A
0
T
D6
PT16B
0
C
PT16B
0
C
C6
PT16A
0
T
PT16A
0
T
B6
PT15B
0
C
PT15B
0
C
B5
PT15A
0
T
PT15A
0
T
A5
PT14B
0
C
PT14B
0
C
A4
PT14A
0
T
PT14A
0
T
A3
PT13B
0
C
PT13B
0
C
-
GND0
0
GND0
0
A2
PT13A
0
T
PT13A
0
T
B2
PT12B
0
C
PT12B
0
C
B3
PT12A
0
T
PT12A
0
T
D5
PT11B
0
C
PT11B
0
C
C5
PT11A
0
T
PT11A
0
T
C4
PT10B
0
C
PT10B
0
C
B4
PT10A
0
T
PT10A
0
T
GND
GND0
0
GND0
0
GND
GND0
0
GND0
0
TDQS14
A1
GND
-
GND
-
A16
GND
-
GND
-
G10
GND
-
GND
-
G7
GND
-
GND
-
G8
GND
-
GND
-
4-36
TDQS22
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC10 and LFECP/EC15 Logic Signal Connections: 256 fpBGA (Cont.)
LFECP10/LFEC10
Ball
Number
Ball Function
Bank
G9
GND
H10
H7
H8
H9
LVDS
LFECP15/LFEC15
Dual Function
Ball Function
Bank
-
GND
-
GND
-
GND
-
GND
-
GND
-
GND
-
GND
-
GND
-
GND
-
J10
GND
-
GND
-
J7
GND
-
GND
-
J8
GND
-
GND
-
J9
GND
-
GND
-
K10
GND
-
GND
-
K7
GND
-
GND
-
K8
GND
-
GND
-
K9
GND
-
GND
-
T1
GND
-
GND
-
T16
GND
-
GND
-
E12
VCC
-
VCC
-
E5
VCC
-
VCC
-
E8
VCC
-
VCC
-
M12
VCC
-
VCC
-
M5
VCC
-
VCC
-
M9
VCC
-
VCC
-
B15
VCCAUX
-
VCCAUX
-
R2
VCCAUX
-
VCCAUX
-
F7
VCCIO0
0
VCCIO0
0
F8
VCCIO0
0
VCCIO0
0
F10
VCCIO1
1
VCCIO1
1
F9
VCCIO1
1
VCCIO1
1
G11
VCCIO2
2
VCCIO2
2
H11
VCCIO2
2
VCCIO2
2
J11
VCCIO3
3
VCCIO3
3
K11
VCCIO3
3
VCCIO3
3
L10
VCCIO4
4
VCCIO4
4
L9
VCCIO4
4
VCCIO4
4
L7
VCCIO5
5
VCCIO5
5
L8
VCCIO5
5
VCCIO5
5
J6
VCCIO6
6
VCCIO6
6
K6
VCCIO6
6
VCCIO6
6
G6
VCCIO7
7
VCCIO7
7
H6
VCCIO7
7
VCCIO7
7
F6
VCC
-
VCC
-
F11
VCC
-
VCC
-
L11
VCC
-
VCC
-
L6
VCC
-
VCC
-
4-37
LVDS
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA
LFECP6/LFEC6
LFECP10/LFEC10
Ball
Number
Ball
Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
E4
PL2B
7
C
VREF1_7
C3
NC
B2
NC
E5
F5
D3
C2
LFECP/LFEC15
Ball
Number
Ball
Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
E4
PL2B
7
C
VREF1_7
-
C3
PL3A
7
-
B2
PL3B
7
NC
-
E5
PL4A
7
NC
-
F5
PL4B
7
NC
-
D3
PL5A
7
T
D3
PL5A
7
T
NC
-
C2
PL5B
7
C
C2
PL5B
7
C
F4
NC
-
F4
PL6A
7
T
F4
PL6A
7
T
G4
NC
-
G4
PL6B
7
C
G4
PL6B
7
C
Bank LVDS
Dual
Function
Ball
Number
Ball
Function
GND
GND7
D4
PL2A
7
T
VREF2_7
E4
PL2B
7
C
VREF1_7
T
C3
PL3A
7
T
C
B2
PL3B
7
C
T
E5
PL4A
7
T
C
F5
PL4B
7
C
Bank LVDS
Dual
Function
LDQS6
Bank LVDS
Dual
Function
7
E3
NC
-
E3
PL7A
7
T
E3
PL7A
7
T
D2
NC
-
D2
PL7B
7
C
D2
PL7B
7
C
LDQS6
B1
NC
-
B1
PL8A
7
T
LUM0_PLLT_IN_A
B1
PL8A
7
T
LUM0_PLLT_IN_A
C1
NC
-
C1
PL8B
7
C
LUM0_PLLC_IN_A
C1
PL8B
7
C
LUM0_PLLC_IN_A
F3
NC
-
F3
PL9A
7
T
LUM0_PLLT_FB_A
F3
PL9A
7
T
LUM0_PLLT_FB_A
GND
-
-
GND
GND7
7
GND
GND7
7
LUM0_PLLC_FB_A
E2
NC
-
E2
PL9B
7
G5
NC
-
G5
NC
-
C
LUM0_PLLC_FB_A
E2
PL9B
7
C
G5
PL11A
7
T
C
H6
NC
-
H6
NC
-
H6
PL11B
7
G3
NC
-
G3
NC
-
G3
PL12A
7
T
H4
NC
-
H4
NC
-
H4
PL12B
7
C
J5
NC
-
J5
NC
-
J5
PL13A
7
T
H5
NC
-
H5
NC
-
H5
PL13B
7
C
T
F2
NC
-
F2
NC
-
F2
PL14A
7
GND
-
-
GND
-
-
GND
GND7
7
F1
NC
-
F1
NC
-
F1
PL14B
7
E1
NC
-
E1
PL11A
7
T
E1
PL15A
7
C
T
D1
NC
-
D1
PL11B
7
C
D1
PL15B
7
C
H3
PL3A
7
T
H3
PL12A
7
T
H3
PL16A
7
T
G2
PL3B
7
C
G2
PL12B
7
C
G2
PL16B
7
C
H2
PL4A
7
T
H2
PL13A
7
T
H2
PL17A
7
T
G1
PL4B
7
C
G1
PL13B
7
C
G1
PL17B
7
C
T
T
T
J4
PL5A
7
GND
-
-
J3
PL5B
7
C
J2
PL6A
7
T
H1
PL6B
7
K4
PL7A
K5
PL7B
K3
PL8A
K2
PL8B
J4
PL14A
7
GND
GND7
7
J4
PL18A
7
GND
GND7
7
J3
PL18B
7
J2
PL19A
7
T
H1
PL19B
7
C
J3
PL14B
7
C
J2
PL15A
7
T
C
H1
PL15B
7
C
7
T
K4
PL16A
7
T
K4
PL20A
7
T
7
C
K5
PL16B
7
C
K5
PL20B
7
C
7
T
K3
PL17A
7
T
K3
PL21A
7
T
7
C
K2
PL17B
7
C
K2
PL21B
7
C
T
T
T
PCLKT7_0
C
PCLKC7_0
J1
PL9A
7
GND
GND7
7
C
LDQS6
PCLKT7_0
PCLKC7_0
J1
PL18A
7
GND
GND7
7
K1
PL18B
7
L3
XRES
6
C
LDQS15
PCLKT7_0
PL22A
7
GND7
7
K1
PL22B
7
L3
XRES
6
K1
PL9B
7
L3
XRES
6
L4
PL11A
6
T
L4
PL20A
6
T
L4
PL24A
6
T
L5
PL11B
6
C
L5
PL20B
6
C
L5
PL24B
6
C
L2
PL12A
6
T
L2
PL21A
6
T
L2
PL25A
6
T
L1
PL12B
6
C
L1
PL21B
6
C
L1
PL25B
6
C
4-38
PCLKC7_0
J1
GND
C
LDQS19
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
LFECP10/LFEC10
Ball
Function
M4
PL13A
6
T
M4
PL22A
6
T
M4
PL26A
6
T
M5
PL13B
6
C
M5
PL22B
6
C
M5
PL26B
6
C
T
T
T
Bank LVDS
M1
PL14A
6
GND
GND6
6
M2
PL14B
6
C
N3
PL15A
6
T
M3
PL15B
6
N5
PL16A
N4
PL16B
N1
PL17A
N2
PL17B
Dual
Function
Ball
Number
Ball
Function
LFECP/LFEC15
Ball
Number
Bank LVDS
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
M1
PL23A
6
GND
GND6
6
M2
PL23B
6
C
N3
PL24A
6
T
C
M3
PL24B
6
C
6
T
N5
PL25A
6
T
N5
PL29A
6
T
6
C
N4
PL25B
6
C
N4
PL29B
6
C
6
T
N1
PL26A
6
T
N1
PL30A
6
T
6
C
N2
PL26B
6
C
N2
PL30B
6
C
T
T
P1
PL31A
6
T
GND
GND6
6
P1
PL18A
6
GND
GND6
6
LDQS15
C
P1
PL27A
6
GND
GND6
6
LDQS24
C
M1
PL27A
6
GND
GND6
6
M2
PL27B
6
N3
PL28A
6
T
M3
PL28B
6
C
C
P2
PL18B
6
P2
PL27B
6
P2
PL31B
6
R6
NC
-
R6
NC
-
R6
PL32A
6
T
P5
NC
-
P5
NC
-
P5
PL32B
6
C
P3
NC
-
P3
NC
-
P3
PL33A
6
T
P4
NC
-
P4
NC
-
P4
PL33B
6
C
R1
NC
-
R1
NC
-
R1
PL34A
6
T
R2
NC
-
R2
NC
-
R2
PL34B
6
C
T
R5
NC
-
R5
NC
-
R5
PL35A
6
GND
-
-
-
-
-
GND
GND6
6
R4
NC
-
R4
NC
-
R4
PL35B
6
T1
NC
-
T1
NC
-
T1
NC
-
T2
NC
-
T2
NC
-
T2
NC
-
R3
NC
-
R3
NC
-
R3
NC
-
T3
NC
-
T3
NC
-
T3
NC
-
T5
TCK
6
T5
TCK
6
T5
TCK
6
6
Dual
Function
LDQS28
C
C
U5
TDI
6
U5
TDI
6
U5
TDI
T4
TMS
6
T4
TMS
6
T4
TMS
6
U1
TDO
6
U1
TDO
6
U1
TDO
6
U2
VCCJ
6
U2
VCCJ
6
U2
VCCJ
6
V1
PL20A
6
T
LLM0_PLLT_IN_A
V1
PL29A
6
T
LLM0_PLLT_IN_A
V1
PL37A
6
T
LLM0_PLLT_IN_A
V2
PL20B
6
C
LLM0_PLLC_IN_A
V2
PL29B
6
C
LLM0_PLLC_IN_A
V2
PL37B
6
C
LLM0_PLLC_IN_A
U3
PL21A
6
T
LLM0_PLLT_FB_A
U3
PL30A
6
T
LLM0_PLLT_FB_A
U3
PL38A
6
T
LLM0_PLLT_FB_A
V3
PL21B
6
C
LLM0_PLLC_FB_A
V3
PL30B
6
C
LLM0_PLLC_FB_A
V3
PL38B
6
C
LLM0_PLLC_FB_A
U4
PL22A
6
T
U4
PL31A
6
T
U4
PL39A
6
T
V5
PL22B
6
C
V5
PL31B
6
C
V5
PL39B
6
C
T
T
T
W1
PL23A
6
GND
GND6
6
W1
PL32A
6
GND
GND6
6
W2
PL23B
6
C
Y1
PL24A
6
T
W2
PL32B
6
C
Y1
PL33A
6
T
Y2
PL24B
6
C
Y2
PL33B
6
C
AA1
PL25A
AA2
PL25B
6
T
AA1
PL34A
6
T
AA1
PL42A
6
T
6
C
AA2
PL34B
6
C
AA2
PL42B
6
C
W4
PL26A
V4
PL26B
6
T
W4
PL35A
6
T
W4
PL43A
6
T
6
C
V4
PL35B
6
C
V4
PL43B
6
C
W3
PL27A
6
T
Y3
PL27B
6
C
VREF1_6
W3
PL36A
6
T
VREF1_6
W3
PL44A
6
T
VREF1_6
VREF2_6
Y3
PL36B
6
C
VREF2_6
Y3
PL44B
6
C
VREF2_6
GND
GND6
6
GND
GND6
6
GND
GND6
6
LDQS24
4-39
LDQS33
W1
PL40A
6
GND
GND6
6
W2
PL40B
6
Y1
PL41A
6
T
Y2
PL41B
6
C
C
LDQS41
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
GND
GND5
V7
NC
T6
LFECP10/LFEC10
Ball
Number
Ball
Function
5
GND
GND5
5
-
V7
PB2A
5
T
NC
-
T6
PB2B
5
C
Bank LVDS
Dual
Function
Bank LVDS
LFECP/LFEC15
Dual
Function
Ball
Number
Ball
Function
GND
GND5
5
V7
PB2A
5
T
T6
PB2B
5
C
Bank LVDS
V8
NC
-
V8
PB3A
5
T
V8
PB3A
5
T
U7
NC
-
U7
PB3B
5
C
U7
PB3B
5
C
W5
NC
-
W5
PB4A
5
T
W5
PB4A
5
T
U6
NC
-
U6
PB4B
5
C
U6
PB4B
5
C
AA3
NC
-
AA3
PB5A
5
T
AA3
PB5A
5
T
AB3
NC
-
AB3
PB5B
5
C
AB3
PB5B
5
C
Y6
NC
-
Y6
PB6A
5
T
Y6
PB6A
5
T
V6
NC
-
V6
PB6B
5
C
BDQS6
V6
PB6B
5
C
AA5
NC
-
AA5
PB7A
5
T
AA5
PB7A
5
T
W6
NC
-
W6
PB7B
5
C
W6
PB7B
5
C
Y5
NC
-
Y5
PB8A
5
T
Y5
PB8A
5
T
Y4
NC
-
Y4
PB8B
5
C
Y4
PB8B
5
C
AA4
NC
-
AA4
PB9A
5
T
T
GND
-
-
GND
GND5
5
AA4
PB9A
5
GND
GND5
5
AB4
NC
-
AB4
PB9B
5
C
AB4
PB9B
5
Y7
PB2A
5
T
Y7
PB10A
5
T
Y7
PB10A
5
T
W8
PB2B
5
C
W8
PB10B
5
C
W8
PB10B
5
C
W7
PB3A
5
T
W7
PB11A
5
T
W7
PB11A
5
T
U8
PB3B
5
C
U8
PB11B
5
C
U8
PB11B
5
C
W9
PB4A
5
T
W9
PB12A
5
T
W9
PB12A
5
T
U9
PB4B
5
C
U9
PB12B
5
C
U9
PB12B
5
C
T
Y8
PB13A
5
T
Y8
PB13A
5
T
GND
GND5
5
GND
GND5
5
Y8
PB5A
5
GND
-
-
Y9
PB5B
5
C
V9
PB6A
5
T
T9
PB6B
5
W10
PB7A
U10
PB7B
Y9
PB13B
5
C
V9
PB14A
5
T
C
T9
PB14B
5
5
T
W10
PB15A
5
C
U10
PB15B
BDQS6
Y9
PB13B
5
PB14A
5
C
T
C
T9
PB14B
5
C
5
T
W10
PB15A
5
T
5
C
U10
PB15B
5
C
V10
PB8A
5
T
V10
PB16A
5
T
V10
PB16A
5
T
T10
PB8B
5
C
T10
PB16B
5
C
T10
PB16B
5
C
T
T
T
AA6
PB9A
5
GND
GND5
5
AB5
PB9B
5
AA8
PB10A
5
AA7
PB10B
5
AB6
PB11A
AB7
PB11B
AA6
PB17A
5
GND
GND5
5
C
AB5
PB17B
5
T
AA8
PB18A
5
C
AA7
PB18B
5
5
T
AB6
PB19A
5
T
AB6
PB19A
5
T
5
C
AB7
PB19B
5
C
AB7
PB19B
5
C
AA6
PB17A
5
GND
GND5
5
C
AB5
PB17B
5
T
AA8
PB18A
5
T
C
AA7
PB18B
5
C
Y10
PB12A
5
T
Y10
PB20A
5
T
Y10
PB20A
5
T
PB12B
5
C
W11
PB20B
5
C
W11
PB20B
5
C
T
AB8
PB21A
5
T
T
GND
GND5
5
AB8
PB13A
5
GND5
5
AB9
PB13B
5
C
AA10
PB14A
5
T
AA9
PB14B
5
C
BDQS14
AB9
PB21B
5
C
AA10
PB22A
5
T
AA9
PB22B
5
C
BDQS22
AB8
PB21A
5
GND
GND5
5
AB9
PB21B
5
AA10
PB22A
5
C
T
AA9
PB22B
5
C
Y11
PB15A
5
T
Y11
PB23A
5
T
Y11
PB23A
5
T
AA11
PB15B
5
C
AA11
PB23B
5
C
AA11
PB23B
5
C
V11
PB16A
5
T
V11
PB24A
5
T
V11
PB24A
5
T
VREF2_5
4-40
VREF2_5
BDQS14
C
W11
GND
BDQS6
C
V9
BDQS14
Dual
Function
BDQS22
VREF2_5
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
V12
PB16B
5
C
AB10
PB17A
5
T
Bank LVDS
LFECP10/LFEC10
Dual
Function
LFECP/LFEC15
Ball
Number
Ball
Function
VREF1_5
V12
PB24B
5
C
VREF1_5
V12
PB24B
5
C
VREF1_5
PCLKT5_0
AB10
PB25A
5
T
PCLKT5_0
AB10
PB25A
5
T
PCLKT5_0
Bank LVDS
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
Dual
Function
GND
GND5
5
GND
GND5
5
GND
GND5
5
AB11
PB17B
5
C
PCLKC5_0
AB11
PB25B
5
C
PCLKC5_0
AB11
PB25B
5
C
PCLKC5_0
Y12
PB18A
4
T
WRITEN
Y12
PB26A
4
T
WRITEN
Y12
PB26A
4
T
WRITEN
U11
PB18B
4
C
CS1N
U11
PB26B
4
C
CS1N
U11
PB26B
4
C
CS1N
W12
PB19A
4
T
VREF1_4
W12
PB27A
4
T
VREF1_4
W12
PB27A
4
T
VREF1_4
U12
PB19B
4
C
CSN
U12
PB27B
4
C
CSN
U12
PB27B
4
C
CSN
W13
PB20A
4
T
VREF2_4
W13
PB28A
4
T
VREF2_4
W13
PB28A
4
T
VREF2_4
U13
PB20B
4
C
D0/SPID7
U13
PB28B
4
C
D0/SPID7
U13
PB28B
4
C
D0/SPID7
AA12
PB21A
4
T
D2/SPID5
AA12
PB29A
4
T
D2/SPID5
AA12
PB29A
4
T
D2/SPID5
GND
GND4
4
GND
GND4
4
GND
GND4
4
D1/SPID6
AB12
PB21B
4
C
D1/SPID6
AB12
PB29B
4
C
D1/SPID6
AB12
PB29B
4
C
T13
PB22A
4
T
BDQS22
T13
PB30A
4
T
BDQS30
T13
PB30A
4
T
BDQS30
V13
PB22B
4
C
D3/SPID4
V13
PB30B
4
C
D3/SPID4
V13
PB30B
4
C
D3/SPID4
W14
PB23A
4
T
W14
PB31A
4
T
W14
PB31A
4
T
U14
PB23B
4
C
U14
PB31B
4
C
U14
PB31B
4
C
Y13
PB24A
4
T
Y13
PB32A
4
T
Y13
PB32A
4
T
V14
PB24B
4
C
AA13
PB25A
4
T
GND
GND4
4
AB13
PB25B
4
C
AA14
PB26A
4
Y14
PB26B
Y15
PB27A
W15
PB27B
D4/SPID3
D5/SPID2
V14
PB32B
4
C
AA13
PB33A
4
T
GND
GND4
4
AB13
PB33B
4
C
T
AA14
PB34A
4
4
C
Y14
PB34B
4
T
Y15
PB35A
4
C
W15
PB35B
D6/SPID1
D4/SPID3
D5/SPID2
V14
PB32B
4
C
AA13
PB33A
4
T
4
GND
GND4
AB13
PB33B
4
C
T
AA14
PB34A
4
T
4
C
Y14
PB34B
4
C
4
T
Y15
PB35A
4
T
4
C
W15
PB35B
4
C
D6/SPID1
V15
PB28A
4
T
V15
PB36A
4
T
V15
PB36A
4
T
T14
PB28B
4
C
T14
PB36B
4
C
T14
PB36B
4
C
AB14
PB29A
4
T
AB14
PB37A
4
T
AB14
PB37A
4
T
GND
GND4
4
GND
GND4
4
GND
GND4
4
AB15
PB29B
4
C
AB16
PB30A
4
T
AB15
PB37B
4
C
AB16
PB38A
4
T
AA15
PB30B
4
C
AA15
PB38B
4
C
AB17
PB31A
AA16
PB31B
4
T
AB17
PB39A
4
T
AB17
PB39A
4
T
4
C
AA16
PB39B
4
C
AA16
PB39B
4
C
AB18
PB32A
AA17
PB32B
4
T
AB18
PB40A
4
T
AB18
PB40A
4
T
4
C
AA17
PB40B
4
C
AA17
PB40B
4
C
AB19
GND
PB33A
4
T
AB19
PB41A
4
T
AB19
PB41A
4
T
-
-
GND
-
-
GND
GND4
4
AA18
PB33B
4
AA18
PB41B
4
AA18
PB41B
4
W16
NC
-
W16
NC
-
W16
PB42A
4
T
U15
NC
-
U15
NC
-
U15
PB42B
4
C
C
BDQS30
C
BDQS38
AB15
PB37B
4
AB16
PB38A
4
T
AA15
PB38B
4
C
D5/SPID2
D6/SPID1
C
BDQS38
C
V16
NC
-
V16
NC
-
V16
PB43A
4
T
U16
NC
-
U16
NC
-
U16
PB43B
4
C
Y17
NC
-
Y17
NC
-
Y17
PB44A
4
T
V17
NC
-
V17
NC
-
V17
PB44B
4
C
AB20
NC
-
AB20
NC
-
AB20
PB45A
4
T
GND
-
-
GND
-
-
GND
GND4
4
AA19
NC
-
AA19
NC
-
AA19
PB45B
4
C
Y16
NC
-
Y16
NC
-
Y16
PB46A
4
T
4-41
D4/SPID3
BDQS46
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
Bank LVDS
LFECP10/LFEC10
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
LFECP/LFEC15
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
W17
NC
-
W17
NC
-
W17
PB46B
4
AA20
NC
-
AA20
NC
-
AA20
PB47A
4
T
Y19
NC
-
Y19
NC
-
Y19
PB47B
4
C
Dual
Function
C
Y18
NC
-
Y18
NC
-
Y18
PB48A
4
T
W18
NC
-
W18
NC
-
W18
PB48B
4
C
T17
NC
-
T17
NC
-
T17
PB49A
4
T
U17
NC
-
U17
NC
-
U17
PB49B
4
C
GND
GND4
4
GND
GND4
4
GND
GND4
4
GND
GND3
3
GND
GND3
3
GND
GND3
3
W20
PR27B
3
C
VREF2_3
W20
PR36B
3
C
VREF2_3
W20
PR44B
3
C
VREF2_3
Y20
PR27A
3
T
VREF1_3
Y20
PR36A
3
T
VREF1_3
Y20
PR44A
3
T
VREF1_3
AA21
PR26B
3
C
AA21
PR35B
3
C
AA21
PR43B
3
C
AB21
PR26A
3
T
AB21
PR35A
3
T
AB21
PR43A
3
T
W19
PR25B
3
C
W19
PR34B
3
C
W19
PR42B
3
C
V19
PR25A
3
T
V19
PR34A
3
T
V19
PR42A
3
T
Y21
PR24B
3
C
Y21
PR33B
3
C
Y21
PR41B
3
C
AA22
PR24A
3
T
RDQS24
AA22
PR33A
3
T
RDQS33
AA22
PR41A
3
T
RDQS41
V20
PR23B
3
C
RLM0_PLLC_FB_A
V20
PR32B
3
C
RLM0_PLLC_FB_A
V20
PR40B
3
C
RLM0_PLLC_FB_A
GND
GND3
3
GND
GND3
3
GND
GND3
3
U20
PR23A
3
T
RLM0_PLLT_FB_A
U20
PR32A
3
T
RLM0_PLLT_FB_A
U20
PR40A
3
T
RLM0_PLLT_FB_A
W21
PR22B
3
C
RLM0_PLLC_IN_A
W21
PR31B
3
C
RLM0_PLLC_IN_A
W21
PR39B
3
C
RLM0_PLLC_IN_A
Y22
PR22A
3
T
RLM0_PLLT_IN_A
Y22
PR31A
3
T
RLM0_PLLT_IN_A
Y22
PR39A
3
T
RLM0_PLLT_IN_A
V21
PR21B
3
C
DI/CSSPIN
V21
PR30B
3
C
DI/CSSPIN
V21
PR38B
3
C
DI/CSSPIN
W22
PR21A
3
T
DOUT/CSON
W22
PR30A
3
T
DOUT/CSON
W22
PR38A
3
T
DOUT/CSON
U21
PR20B
3
C
BUSY/SISPI
U21
PR29B
3
C
BUSY/SISPI
U21
PR37B
3
C
BUSY/SISPI
V22
PR20A
3
T
D7/SPID0
V22
PR29A
3
T
D7/SPID0
V22
PR37A
3
T
D7/SPID0
T19
CFG2
3
T19
CFG2
3
T19
CFG2
3
U19
CFG1
3
U19
CFG1
3
U19
CFG1
3
U18
CFG0
3
U18
CFG0
3
U18
CFG0
3
V18
PROGRAMN
3
V18
PROGRAMN
3
V18
PROGRAMN
3
T20
CCLK
3
T20
CCLK
3
T20
CCLK
3
T21
INITN
3
T21
INITN
3
T21
INITN
3
R20
DONE
3
R20
DONE
3
R20
DONE
3
T18
NC
-
T18
NC
-
T18
NC
-
R17
NC
-
R17
NC
-
R17
NC
-
R19
NC
-
R19
NC
-
R19
NC
-
R18
NC
-
R18
NC
-
R18
NC
-
U22
NC
-
U22
NC
-
U22
PR35B
3
GND
-
-
GND
-
-
GND
GND3
3
C
T22
NC
-
T22
NC
-
T22
PR35A
3
T
R21
NC
-
R21
NC
-
R21
PR34B
3
C
R22
NC
-
R22
NC
-
R22
PR34A
3
T
P20
NC
-
P20
NC
-
P20
PR33B
3
C
N20
NC
-
N20
NC
-
N20
PR33A
3
T
P19
NC
-
P19
NC
-
P19
PR32B
3
C
P18
NC
-
P21
PR18B
3
C
P18
NC
-
P21
PR27B
3
C
P18
PR32A
3
T
P21
PR31B
3
C
3
GND
GND3
3
GND
GND3
3
GND
GND3
P22
PR18A
3
T
P22
PR27A
3
T
P22
PR31A
3
T
N21
PR17B
3
C
N21
PR26B
3
C
N21
PR30B
3
C
4-42
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
N22
PR17A
3
N19
PR16B
3
LFECP10/LFEC10
LFECP/LFEC15
Ball
Number
Ball
Function
T
N22
PR26A
3
T
N22
PR30A
3
T
C
N19
PR25B
3
C
N19
PR29B
3
C
Bank LVDS
Dual
Function
Bank LVDS
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
N18
PR16A
3
T
N18
PR25A
3
T
N18
PR29A
3
T
M21
PR15B
3
C
M21
PR24B
3
C
M21
PR28B
3
C
L20
PR15A
3
T
L21
PR14B
3
C
RDQS15
L20
PR24A
3
T
L21
PR23B
3
C
RDQS24
L20
PR28A
3
T
L21
PR27B
3
C
GND
GND3
3
GND
GND3
3
GND
GND3
3
M20
PR14A
3
T
M20
PR23A
3
T
M20
PR27A
3
T
M18
PR13B
3
C
M18
PR22B
3
C
M18
PR26B
3
C
M19
PR13A
3
T
M19
PR22A
3
T
M19
PR26A
3
T
M22
PR12B
3
C
M22
PR21B
3
C
M22
PR25B
3
C
Dual
Function
RDQS28
L22
PR12A
3
T
L22
PR21A
3
T
L22
PR25A
3
T
K22
PR11B
3
C
K22
PR20B
3
C
K22
PR24B
3
C
K21
PR11A
3
T
K21
PR20A
3
T
K21
PR24A
3
T
J22
PR9B
2
C
J22
PR18B
2
C
J22
PR22B
2
C
PCLKC2_0
GND
GND2
2
GND
GND2
2
GND
GND2
2
PCLKT2_0
PCLKC2_0
PCLKT2_0
PCLKC2_0
J21
PR9A
2
T
J21
PR18A
2
T
J21
PR22A
2
T
H22
PR8B
2
C
H22
PR17B
2
C
PCLKT2_0
H22
PR21B
2
C
H21
PR8A
2
T
H21
PR17A
2
T
H21
PR21A
2
T
L19
PR7B
2
C
L19
PR16B
2
C
L19
PR20B
2
C
L18
PR7A
2
T
L18
PR16A
2
T
L18
PR20A
2
T
K20
PR6B
2
C
K20
PR15B
2
C
K20
PR19B
2
C
J20
PR6A
2
T
J20
PR15A
2
T
J20
PR19A
2
T
K19
PR5B
2
C
K19
PR14B
2
C
K19
PR18B
2
C
RDQS6
RDQS15
GND
-
-
GND
GND2
2
GND
GND2
2
K18
PR5A
2
T
K18
PR14A
2
T
K18
PR18A
2
T
G22
PR4B
2
C
G22
PR13B
2
C
G22
PR17B
2
C
F22
PR4A
2
T
F22
PR13A
2
T
F22
PR17A
2
T
F21
PR3B
2
C
F21
PR12B
2
C
F21
PR16B
2
C
E22
PR3A
2
T
E22
PR12A
2
T
E22
PR16A
2
T
E21
NC
-
E21
PR11B
2
C
E21
PR15B
2
C
T
D22
NC
-
D22
PR11A
2
D22
PR15A
2
T
G21
NC
-
G21
NC
-
G21
PR14B
2
C
2
G20
NC
-
G20
NC
-
GND
GND2
GND
-
-
-
-
-
G20
PR14A
2
T
J18
NC
-
J18
NC
-
J18
PR13B
2
C
H19
NC
-
H19
NC
-
H19
PR13A
2
T
J19
NC
-
J19
NC
-
J19
PR12B
2
C
H20
NC
-
H20
NC
-
H20
PR12A
2
T
H17
NC
-
H17
NC
-
H17
PR11B
2
C
H18
NC
-
H18
NC
-
D21
NC
-
D21
PR9B
2
GND
-
-
GND
GND2
2
C
RUM0_PLLC_FB_A
RDQS19
H18
PR11A
2
T
D21
PR9B
2
C
RUM0_PLLC_FB_A
GND
GND2
2
C22
NC
-
C22
PR9A
2
T
RUM0_PLLT_FB_A
C22
PR9A
2
T
RUM0_PLLT_FB_A
G19
NC
-
G19
PR8B
2
C
RUM0_PLLC_IN_A
G19
PR8B
2
C
RUM0_PLLC_IN_A
G18
NC
-
G18
PR8A
2
T
RUM0_PLLT_IN_A
G18
PR8A
2
T
RUM0_PLLT_IN_A
F20
NC
-
F20
PR7B
2
C
F20
PR7B
2
C
F19
NC
-
F19
PR7A
2
T
F19
PR7A
2
T
E20
NC
-
E20
PR6B
2
C
E20
PR6B
2
C
D20
NC
-
D20
PR6A
2
T
D20
PR6A
2
T
4-43
RDQS6
RDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
C21
NC
C20
NC
F18
LFECP10/LFEC10
LFECP/LFEC15
Ball
Number
Ball
Function
-
C21
PR5B
2
-
C20
PR5A
2
NC
-
F18
PR4B
2
E18
NC
-
E18
PR4A
2
T
E18
PR4A
2
T
B22
NC
-
B22
PR3B
2
C
B22
PR3B
2
C
Bank LVDS
Dual
Function
Ball
Number
Ball
Function
C
C21
PR5B
2
T
C20
PR5A
2
T
C
F18
PR4B
2
C
Bank LVDS
Dual
Function
Bank LVDS
Dual
Function
C
B21
NC
-
B21
PR3A
2
T
B21
PR3A
2
T
E19
PR2B
2
C
VREF1_2
E19
PR2B
2
C
VREF1_2
E19
PR2B
2
C
VREF1_2
D19
PR2A
2
T
VREF2_2
D19
PR2A
2
T
VREF2_2
D19
PR2A
2
T
VREF2_2
GND
GND2
2
GND
GND2
2
GND
GND2
2
GND
GND1
1
GND
GND1
1
GND
GND1
1
G17
NC
-
G17
NC
-
G17
PT49B
1
F17
NC
-
F17
NC
-
F17
PT49A
1
T
D18
NC
-
D18
NC
-
D18
PT48B
1
C
C18
NC
-
C18
NC
-
C18
PT48A
1
T
C19
NC
-
C19
NC
-
C19
PT47B
1
C
C
B20
NC
-
B20
NC
-
B20
PT47A
1
T
D17
NC
-
D17
NC
-
D17
PT46B
1
C
C16
NC
-
C16
NC
-
C16
PT46A
1
T
B19
NC
-
B19
NC
-
B19
PT45B
1
C
GND
-
-
GND
-
-
GND
GND1
1
A20
NC
-
A20
NC
-
A20
PT45A
1
T
E17
NC
-
E17
NC
-
E17
PT44B
1
C
C17
NC
-
C17
NC
-
C17
PT44A
1
T
F16
NC
-
F16
NC
-
F16
PT43B
1
C
E16
NC
-
E16
NC
-
E16
PT43A
1
T
F15
NC
-
F15
NC
-
F15
PT42B
1
C
D16
PT42A
1
T
B18
PT41B
1
C
D16
NC
-
B18
PT33B
1
C
D16
NC
-
B18
PT41B
1
C
GND
-
-
GND
-
-
GND
GND1
1
A19
PT33A
1
T
A19
PT41A
1
T
A19
PT41A
1
T
B17
PT32B
1
C
B17
PT40B
1
C
B17
PT40B
1
C
A18
PT32A
1
T
A18
PT40A
1
T
A18
PT40A
1
T
B16
PT31B
1
C
B16
PT39B
1
C
B16
PT39B
1
C
A17
PT31A
1
T
A17
PT39A
1
T
A17
PT39A
1
T
B15
PT30B
1
C
B15
PT38B
1
C
B15
PT38B
1
C
A16
PT30A
1
T
A15
PT29B
1
C
GND
GND1
1
A14
PT29A
1
T
G14
PT28B
1
C
TDQS30
A16
PT38A
1
T
A15
PT37B
1
C
GND
GND1
1
A14
PT37A
1
T
G14
PT36B
1
C
TDQS38
A16
PT38A
1
T
A15
PT37B
1
C
GND
GND1
1
A14
PT37A
1
T
G14
PT36B
1
C
E15
PT28A
1
T
E15
PT36A
1
T
E15
PT36A
1
T
D15
PT27B
1
C
D15
PT35B
1
C
D15
PT35B
1
C
C15
PT27A
1
T
C15
PT35A
1
T
C15
PT35A
1
T
C14
PT26B
1
C
C14
PT34B
1
C
C14
PT34B
1
C
B14
PT26A
1
T
B14
PT34A
1
T
B14
PT34A
1
T
A13
PT25B
1
C
A13
PT33B
1
C
A13
PT33B
1
C
GND
GND1
1
GND
GND1
1
GND
GND1
1
B13
PT25A
1
T
B13
PT33A
1
T
B13
PT33A
1
T
E14
PT24B
1
C
E14
PT32B
1
C
E14
PT32B
1
C
C13
PT24A
1
T
C13
PT32A
1
T
C13
PT32A
1
T
4-44
TDQS46
TDQS38
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
Bank LVDS
LFECP10/LFEC10
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
LFECP/LFEC15
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
F14
PT23B
1
C
F14
PT31B
1
C
F14
PT31B
1
D14
PT23A
1
T
D14
PT31A
1
T
D14
PT31A
1
T
E13
PT22B
1
C
E13
PT30B
1
C
E13
PT30B
1
C
G13
PT22A
1
T
A12
PT21B
1
C
TDQS22
GND
GND1
1
B12
PT21A
1
T
F13
PT20B
1
C
D13
PT20A
1
T
F12
PT19B
1
C
VREF2_1
D12
PT19A
1
T
VREF1_1
G13
PT30A
1
T
A12
PT29B
1
C
TDQS30
GND
GND1
1
B12
PT29A
1
T
F13
PT28B
1
C
D13
PT28A
1
T
F12
PT27B
1
C
VREF2_1
D12
PT27A
1
T
VREF1_1
Dual
Function
C
G13
PT30A
1
T
A12
PT29B
1
C
TDQS30
GND
GND1
1
B12
PT29A
1
T
F13
PT28B
1
C
D13
PT28A
1
T
F12
PT27B
1
C
VREF2_1
D12
PT27A
1
T
VREF1_1
C
F11
PT18B
1
C
F11
PT26B
1
C
F11
PT26B
1
C12
PT18A
1
T
C12
PT26A
1
T
C12
PT26A
1
T
A11
PT17B
0
C
A11
PT25B
0
C
A11
PT25B
0
C
PCLKC0_0
GND
GND0
0
GND
GND0
0
GND
GND0
0
A10
PT17A
0
T
PCLKT0_0
A10
PT25A
0
T
PCLKT0_0
A10
PT25A
0
T
PCLKT0_0
E12
PT16B
0
C
VREF1_0
E12
PT24B
0
C
VREF1_0
E12
PT24B
0
C
VREF1_0
E11
PT16A
0
T
VREF2_0
E11
PT24A
0
T
VREF2_0
E11
PT24A
0
T
VREF2_0
B11
PT15B
0
C
B11
PT23B
0
C
B11
PT23B
0
C
C11
PT15A
0
T
C11
PT23A
0
T
C11
PT23A
0
T
B9
PT14B
0
C
B9
PT22B
0
C
B9
PT22B
0
C
B10
PT14A
0
T
A9
PT13B
0
C
PCLKC0_0
TDQS14
B10
PT22A
0
T
A9
PT21B
0
C
PCLKC0_0
TDQS22
B10
PT22A
0
T
A9
PT21B
0
C
GND
GND0
0
GND
GND0
0
GND
GND0
0
A8
PT13A
0
T
A8
PT21A
0
T
A8
PT21A
0
T
D11
PT12B
0
C
D11
PT20B
0
C
D11
PT20B
0
C
C10
PT12A
0
T
C10
PT20A
0
T
C10
PT20A
0
T
A7
PT11B
0
C
A7
PT19B
0
C
A7
PT19B
0
C
A6
PT11A
0
T
A6
PT19A
0
T
A6
PT19A
0
T
B7
PT10B
0
C
B7
PT18B
0
C
B7
PT18B
0
C
B8
PT10A
0
T
B8
PT18A
0
T
B8
PT18A
0
T
A5
PT9B
0
C
A5
PT17B
0
C
A5
PT17B
0
C
GND
GND0
0
GND
GND0
0
GND
GND0
0
B6
PT9A
0
T
B6
PT17A
0
T
B6
PT17A
0
T
G10
PT8B
0
C
G10
PT16B
0
C
G10
PT16B
0
C
E10
PT8A
0
T
E10
PT16A
0
T
E10
PT16A
0
T
F10
PT7B
0
C
F10
PT15B
0
C
F10
PT15B
0
C
D10
PT7A
0
T
D10
PT15A
0
T
D10
PT15A
0
T
G9
PT6B
0
C
G9
PT14B
0
C
G9
PT14B
0
C
E9
PT14A
0
T
E9
PT14A
0
T
C9
PT13B
0
C
C9
PT13B
0
C
0
E9
PT6A
0
T
C9
PT5B
0
C
TDQS6
TDQS14
GND
-
-
GND
GND0
0
GND
GND0
C8
PT5A
0
T
C8
PT13A
0
T
C8
PT13A
0
T
F9
PT4B
0
C
F9
PT12B
0
C
F9
PT12B
0
C
D9
PT4A
0
T
D9
PT12A
0
T
D9
PT12A
0
T
F8
PT3B
0
C
F8
PT11B
0
C
F8
PT11B
0
C
D7
PT3A
0
T
D7
PT11A
0
T
D7
PT11A
0
T
D8
PT2B
0
C
D8
PT10B
0
C
D8
PT10B
0
C
C7
PT2A
0
T
C7
PT10A
0
T
C7
PT10A
0
T
GND
GND0
0
GND
GND0
0
GND
GND0
0
4-45
TDQS22
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
A4
NC
B4
NC
C4
LFECP10/LFEC10
LFECP/LFEC15
Ball
Number
Ball
Function
-
A4
PT9B
0
-
B4
PT9A
0
NC
-
C4
PT8B
0
C5
NC
-
C5
PT8A
0
T
C5
PT8A
0
T
D6
NC
-
D6
PT7B
0
C
D6
PT7B
0
C
B5
NC
-
B5
PT7A
0
T
B5
PT7A
0
T
E6
NC
-
E6
PT6B
0
C
E6
PT6B
0
C
C6
NC
-
C6
PT6A
0
T
C6
PT6A
0
T
A3
NC
-
A3
PT5B
0
C
A3
PT5B
0
C
Bank LVDS
Dual
Function
Ball
Number
Ball
Function
C
A4
PT9B
0
T
B4
PT9A
0
T
C
C4
PT8B
0
C
Bank LVDS
Dual
Function
TDQS6
Bank LVDS
C
B3
NC
-
B3
PT5A
0
T
B3
PT5A
0
T
F6
NC
-
F6
PT4B
0
C
F6
PT4B
0
C
D5
NC
-
D5
PT4A
0
T
D5
PT4A
0
T
F7
NC
-
F7
PT3B
0
C
F7
PT3B
0
C
E8
NC
-
E8
PT3A
0
T
E8
PT3A
0
T
G6
NC
-
G6
PT2B
0
C
G6
PT2B
0
C
T
T
E7
NC
-
E7
PT2A
0
GND
-
-
GND
GND0
0
E7
PT2A
0
GND
GND0
0
-
A1
GND
-
A1
GND
-
A1
GND
A22
GND
-
A22
GND
-
A22
GND
-
AB1
GND
-
AB1
GND
-
AB1
GND
-
AB22
GND
-
AB22
GND
-
AB22
GND
-
H15
GND
-
H15
GND
-
H15
GND
-
H8
GND
-
H8
GND
-
H8
GND
-
J10
GND
-
J10
GND
-
J10
GND
-
J11
GND
-
J11
GND
-
J11
GND
-
J12
GND
-
J12
GND
-
J12
GND
-
J13
GND
-
J13
GND
-
J13
GND
-
J14
GND
-
J14
GND
-
J14
GND
-
J9
GND
-
J9
GND
-
J9
GND
-
K10
GND
-
K10
GND
-
K10
GND
-
K11
GND
-
K11
GND
-
K11
GND
-
K12
GND
-
K12
GND
-
K12
GND
-
K13
GND
-
K13
GND
-
K13
GND
-
K14
GND
-
K14
GND
-
K14
GND
-
K9
GND
-
K9
GND
-
K9
GND
-
L10
GND
-
L10
GND
-
L10
GND
-
L11
GND
-
L11
GND
-
L11
GND
-
L12
GND
-
L12
GND
-
L12
GND
-
L13
GND
-
L13
GND
-
L13
GND
-
L14
GND
-
L14
GND
-
L14
GND
-
L9
GND
-
L9
GND
-
L9
GND
-
M10
GND
-
M10
GND
-
M10
GND
-
M11
GND
-
M11
GND
-
M11
GND
-
M12
GND
-
M12
GND
-
M12
GND
-
M13
GND
-
M13
GND
-
M13
GND
-
M14
GND
-
M14
GND
-
M14
GND
-
M9
GND
-
M9
GND
-
M9
GND
-
N10
GND
-
N10
GND
-
N10
GND
-
N11
GND
-
N11
GND
-
N11
GND
-
N12
GND
-
N12
GND
-
N12
GND
-
4-46
Dual
Function
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
N13
GND
N14
GND
N9
LFECP10/LFEC10
Ball
Number
Ball
Function
-
N13
GND
-
N14
GND
GND
-
N9
P10
GND
-
P11
GND
-
P12
GND
P13
LFECP/LFEC15
Ball
Number
Ball
Function
-
N13
GND
-
N14
GND
-
GND
-
N9
GND
-
P10
GND
-
P10
GND
-
P11
GND
-
P11
GND
-
-
P12
GND
-
P12
GND
-
GND
-
P13
GND
-
P13
GND
-
P14
GND
-
P14
GND
-
P14
GND
-
P9
GND
-
P9
GND
-
P9
GND
-
Bank LVDS
Dual
Function
Bank LVDS
Dual
Function
Bank LVDS
-
R15
GND
-
R15
GND
-
R15
GND
-
R8
GND
-
R8
GND
-
R8
GND
-
J16
VCC
-
J16
VCC
-
J16
VCC
-
J7
VCC
-
J7
VCC
-
J7
VCC
-
K16
VCC
-
K16
VCC
-
K16
VCC
-
K17
VCC
-
K17
VCC
-
K17
VCC
-
K6
VCC
-
K6
VCC
-
K6
VCC
-
K7
VCC
-
K7
VCC
-
K7
VCC
-
L17
VCC
-
L17
VCC
-
L17
VCC
-
L6
VCC
-
L6
VCC
-
L6
VCC
M17
VCC
-
M17
VCC
-
M17
VCC
-
M6
VCC
-
M6
VCC
-
M6
VCC
-
N16
VCC
-
N16
VCC
-
N16
VCC
-
N17
VCC
-
N17
VCC
-
N17
VCC
-
N6
VCC
-
N6
VCC
-
N6
VCC
-
N7
VCC
-
N7
VCC
-
N7
VCC
P16
VCC
-
P16
VCC
-
P16
VCC
-
P7
VCC
-
P7
VCC
-
P7
VCC
-
G11
VCCIO0
0
G11
VCCIO0
0
G11
VCCIO0
0
H10
VCCIO0
0
H10
VCCIO0
0
H10
VCCIO0
0
H11
VCCIO0
0
H11
VCCIO0
0
H11
VCCIO0
0
H9
VCCIO0
0
H9
VCCIO0
0
H9
VCCIO0
0
G12
VCCIO1
1
G12
VCCIO1
1
G12
VCCIO1
1
H12
VCCIO1
1
H12
VCCIO1
1
H12
VCCIO1
1
H13
VCCIO1
1
H13
VCCIO1
1
H13
VCCIO1
1
H14
VCCIO1
1
H14
VCCIO1
1
H14
VCCIO1
1
J15
VCCIO2
2
J15
VCCIO2
2
J15
VCCIO2
2
K15
VCCIO2
2
K15
VCCIO2
2
K15
VCCIO2
2
L15
VCCIO2
2
L15
VCCIO2
2
L15
VCCIO2
2
L16
VCCIO2
2
L16
VCCIO2
2
L16
VCCIO2
2
M15
VCCIO3
3
M15
VCCIO3
3
M15
VCCIO3
3
M16
VCCIO3
3
M16
VCCIO3
3
M16
VCCIO3
3
N15
VCCIO3
3
N15
VCCIO3
3
N15
VCCIO3
3
P15
VCCIO3
3
P15
VCCIO3
3
P15
VCCIO3
3
R12
VCCIO4
4
R12
VCCIO4
4
R12
VCCIO4
4
R13
VCCIO4
4
R13
VCCIO4
4
R13
VCCIO4
4
R14
VCCIO4
4
R14
VCCIO4
4
R14
VCCIO4
4
T12
VCCIO4
4
T12
VCCIO4
4
T12
VCCIO4
4
R10
VCCIO5
5
R10
VCCIO5
5
R10
VCCIO5
5
R11
VCCIO5
5
R11
VCCIO5
5
R11
VCCIO5
5
R9
VCCIO5
5
R9
VCCIO5
5
R9
VCCIO5
5
4-47
Dual
Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC6, LFECP/EC10, LFECP/EC15 Logic Signal Connections:
484 fpBGA (Cont.)
LFECP6/LFEC6
Ball
Number
Ball
Function
Bank LVDS
LFECP10/LFEC10
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
LFECP/LFEC15
Dual
Function
Ball
Number
Ball
Function
Bank LVDS
T11
VCCIO5
5
T11
VCCIO5
5
T11
VCCIO5
5
M7
VCCIO6
6
M7
VCCIO6
6
M7
VCCIO6
6
M8
VCCIO6
6
M8
VCCIO6
6
M8
VCCIO6
6
N8
VCCIO6
6
N8
VCCIO6
6
N8
VCCIO6
6
P8
VCCIO6
6
P8
VCCIO6
6
P8
VCCIO6
6
7
J8
VCCIO7
7
J8
VCCIO7
7
J8
VCCIO7
K8
VCCIO7
7
K8
VCCIO7
7
K8
VCCIO7
7
L7
VCCIO7
7
L7
VCCIO7
7
L7
VCCIO7
7
L8
VCCIO7
7
L8
VCCIO7
7
L8
VCCIO7
7
G15
VCCAUX
-
G15
VCCAUX
-
G15
VCCAUX
-
G16
VCCAUX
-
G16
VCCAUX
-
G16
VCCAUX
-
G7
VCCAUX
-
G7
VCCAUX
-
G7
VCCAUX
-
G8
VCCAUX
-
G8
VCCAUX
-
G8
VCCAUX
-
H16
VCCAUX
-
H16
VCCAUX
-
H16
VCCAUX
-
H7
VCCAUX
-
H7
VCCAUX
-
H7
VCCAUX
-
R16
VCCAUX
-
R16
VCCAUX
-
R16
VCCAUX
-
R7
VCCAUX
-
R7
VCCAUX
-
R7
VCCAUX
-
T15
VCCAUX
-
T15
VCCAUX
-
T15
VCCAUX
-
T16
VCCAUX
-
T16
VCCAUX
-
T16
VCCAUX
-
T7
VCCAUX
-
T7
VCCAUX
-
T7
VCCAUX
-
T8
VCCAUX
-
T8
VCCAUX
-
T8
VCCAUX
-
J6
VCC
-
J6
VCC
-
J6
VCC
-
J17
VCC
-
J17
VCC
-
J17
VCC
-
P6
VCC
-
P6
VCC
-
P6
VCC
-
P17
VCC
-
P17
VCC
-
P17
VCC
-
A2
NC
-
A2
NC
-
A2
NC
-
AB2
NC
-
AB2
NC
-
AB2
NC
-
A21
NC
-
A21
NC
-
A21
NC
-
4-48
Dual
Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA
LFECP20/LFEC20
Ball Number
LVD
Ball Function Bank S
LFECP/LFEC33
Dual Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
C
VREF1_7
E4
PL2B
7
GND
-
-
C3
PL3A
7
B2
PL3B
E5
PL4A
F5
Ball Number Ball Function Bank
LVD
S
Dual Function
GND
GND7
7
D4
PL2A
7
T
VREF2_7
C
VREF1_7
E4
PL2B
7
GND
GND7
7
T
C3
PL10A
7
T
7
C
B2
PL10B
7
C
7
T
E5
PL11A
7
T
PL4B
7
C
F5
PL11B
7
C
D3
PL5A
7
T
D3
PL12A
7
T
C2
PL5B
7
C
C2
PL12B
7
C
GND
GND7
7
F4
PL14A
7
T
G4
PL14B
7
C
GND
-
-
F4
PL6A
7
T
G4
PL6B
7
C
LDQS6
E3
PL7A
7
T
E3
PL15A
7
T
D2
PL7B
7
C
D2
PL15B
7
C
B1
PL8A
7
T
LUM0_PLLT_IN_A
B1
PL16A
7
T
LDQS14
LUM0_PLLT_IN_A
C1
PL8B
7
C
LUM0_PLLC_IN_A
C1
PL16B
7
C
LUM0_PLLC_IN_A
F3
PL9A
7
T
LUM0_PLLT_FB_A
F3
PL17A
7
T
LUM0_PLLT_FB_A
GND
GND7
7
GND
GND7
7
E2
PL9B
7
C
LUM0_PLLC_FB_A
E2
PL17B
7
C
LUM0_PLLC_FB_A
GND
-
-
GND
GND7
7
G5
PL11A
7
T
G5
PL23A
7
T
LDQS23
H6
PL11B
7
C
H6
PL23B
7
C
G3
PL12A
7
T
G3
PL24A
7
T
H4
PL12B
7
C
H4
PL24B
7
C
J5
PL13A
7
T
J5
PL25A
7
T
H5
PL13B
7
C
H5
PL25B
7
C
F2
PL14A
7
T
F2
PL26A
7
T
GND
GND7
7
GND
GND7
7
F1
PL14B
7
C
F1
PL26B
7
E1
PL15A
7
T
E1
PL27A
7
C
T
D1
PL15B
7
C
D1
PL27B
7
C
H3
PL16A
7
T
H3
PL28A
7
T
G2
PL16B
7
C
G2
PL28B
7
C
H2
PL17A
7
T
H2
PL29A
7
T
G1
PL17B
7
C
G1
PL29B
7
C
J4
PL18A
7
T
J4
PL30A
7
T
GND
GND7
7
GND
GND7
7
J3
PL18B
7
C
J3
PL30B
7
C
J2
PL19A
7
T
J2
PL31A
7
T
LDQS19
H1
PL19B
7
C
H1
PL31B
7
C
K4
PL20A
7
T
K4
PL32A
7
T
K5
PL20B
7
C
K5
PL32B
7
C
4-49
LDQS31
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
K3
PL21A
K2
J1
LVD
S
7
T
PL21B
7
C
PL22A
7
T
GND
GND7
7
K1
PL22B
7
L3
XRES
6
L4
PL24A
6
L5
PL24B
6
L2
PL25A
6
T
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
T
PL33B
7
C
PL34A
7
T
PCLKT7_0
GND
GND7
7
K1
PL34B
7
C
PCLKC7_0
L3
XRES
6
T
L4
PL36A
6
T
C
L5
PL36B
6
C
L2
PL37A
6
T
C
C
PCLKC7_0
PL33A
K2
J1
L1
PL25B
6
C
L1
PL37B
6
M4
PL26A
6
T
M4
PL38A
6
T
M5
PL26B
6
C
M5
PL38B
6
C
T
T
M1
PL27A
6
GND
GND6
6
M2
PL27B
6
C
N3
PL28A
6
T
M3
PL28B
6
C
N5
PL29A
6
T
N4
PL29B
6
C
N1
PL30A
6
T
N1
LDQS28
M1
PL39A
6
GND
GND6
6
M2
PL39B
6
N3
PL40A
6
T
M3
PL40B
6
C
N5
PL41A
6
T
N4
PL41B
6
C
PL42A
6
T
C
N2
PL30B
6
C
N2
PL42B
6
C
P1
PL31A
6
T
P1
PL43A
6
T
GND
GND6
6
GND
GND6
6
P2
PL31B
6
C
P2
PL43B
6
C
R6
PL32A
6
T
R6
PL44A
6
T
P5
PL32B
6
C
P5
PL44B
6
C
P3
PL33A
6
T
P3
PL45A
6
T
P4
PL33B
6
C
P4
PL45B
6
C
R1
PL34A
6
T
R1
PL46A
6
T
R2
PL34B
6
C
R2
PL46B
6
C
T
T
R5
PL35A
6
GND
GND6
6
R4
PL35B
6
T1
PL36A
6
T
T2
PL36B
6
C
R3
PL37A
6
T
C
T3
PL37B
6
GND
GND6
6
Dual Function
7
PCLKT7_0
K3
LVD
S
C
LDQS36
R5
PL47A
6
GND
GND6
6
R4
PL47B
6
T1
PL48A
6
T
T2
PL48B
6
C
R3
PL49A
6
T
C
T3
PL49B
6
GND
GND6
6
T5
TCK
6
T5
TCK
6
U5
TDI
6
U5
TDI
6
T4
TMS
6
T4
TMS
6
U1
TDO
6
U1
TDO
6
U2
VCCJ
6
U2
VCCJ
6
V1
PL41A
6
V1
PL53A
6
T
LLM0_PLLT_IN_A
4-50
LDQS40
C
T
LDQS48
LLM0_PLLT_IN_A
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
LFECP/LFEC33
LVD
S
Dual Function
C
LLM0_PLLC_IN_A
V2
PL53B
6
Ball Number Ball Function Bank
LVD
S
Dual Function
C
LLM0_PLLC_IN_A
V2
PL41B
6
U3
PL42A
6
T
LLM0_PLLT_FB_A
U3
PL54A
6
T
LLM0_PLLT_FB_A
V3
PL42B
6
C
LLM0_PLLC_FB_A
V3
PL54B
6
C
LLM0_PLLC_FB_A
U4
PL43A
6
T
U4
PL55A
6
T
V5
PL43B
6
C
V5
PL55B
6
C
W1
PL44A
6
T
W1
PL56A
6
T
GND
GND6
6
W2
PL56B
6
C
Y1
PL57A
6
T
C
GND
GND6
6
W2
PL44B
6
C
Y1
PL45A
6
T
LDQS45
LDQS57
Y2
PL45B
6
C
Y2
PL57B
6
AA1
PL46A
6
T
AA1
PL58A
6
T
AA2
PL46B
6
C
AA2
PL58B
6
C
W4
PL47A
6
T
W4
PL59A
6
T
V4
PL47B
6
C
V4
PL59B
6
C
W3
PL48A
6
T
VREF1_6
W3
PL68A
6
T
VREF1_6
Y3
PL48B
6
C
VREF2_6
Y3
PL68B
6
C
VREF2_6
GND
GND6
6
GND
GND6
6
GND
GND5
5
GND
GND6
6
GND
-
GND
GND6
6
GND
-
GND
GND5
5
GND
GND5
5
V7
PB10A
5
T
C
GND
GND5
5
V7
PB10A
5
T
T6
PB10B
5
C
T6
PB10B
5
V8
PB11A
5
T
V8
PB11A
5
T
U7
PB11B
5
C
U7
PB11B
5
C
W5
PB12A
5
T
W5
PB12A
5
T
U6
PB12B
5
C
U6
PB12B
5
C
AA3
PB13A
5
T
AA3
PB13A
5
T
GND
GND5
5
GND
GND5
5
AB3
PB13B
5
AB3
PB13B
5
Y6
PB14A
5
T
Y6
PB14A
5
T
V6
PB14B
5
C
V6
PB14B
5
C
AA5
PB15A
5
T
AA5
PB15A
5
T
W6
PB15B
5
C
W6
PB15B
5
C
Y5
PB16A
5
T
Y5
PB16A
5
T
Y4
PB16B
5
C
Y4
PB16B
5
C
AA4
PB17A
5
T
AA4
PB17A
5
T
GND
GND5
5
GND
GND5
5
AB4
PB17B
5
C
AB4
PB17B
5
Y7
PB18A
5
T
Y7
PB18A
5
T
W8
PB18B
5
C
W8
PB18B
5
C
W7
PB19A
5
T
W7
PB19A
5
T
U8
PB19B
5
C
U8
PB19B
5
C
W9
PB20A
5
T
W9
PB20A
5
T
C
BDQS14
4-51
C
C
BDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
U9
PB20B
LVD
S
5
C
T
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
U9
PB20B
LVD
S
5
C
T
Y8
PB21A
5
GND
GND5
5
Y9
PB21B
5
V9
PB22A
5
T
V9
PB22A
5
T
T9
PB22B
5
C
T9
PB22B
5
C
W10
PB23A
5
T
W10
PB23A
5
T
U10
PB23B
5
C
U10
PB23B
5
C
V10
PB24A
5
T
V10
PB24A
5
T
C
BDQS22
Y8
PB21A
5
GND
GND5
5
Y9
PB21B
5
C
T10
PB24B
5
C
T10
PB24B
5
C
AA6
PB25A
5
T
AA6
PB25A
5
T
GND
GND5
5
GND
GND5
5
AB5
PB25B
5
C
AB5
PB25B
5
C
AA8
PB26A
5
T
AA8
PB26A
5
T
AA7
PB26B
5
C
AA7
PB26B
5
C
AB6
PB27A
5
T
AB6
PB27A
5
T
AB7
PB27B
5
C
AB7
PB27B
5
C
Y10
PB28A
5
T
Y10
PB28A
5
T
W11
PB28B
5
C
W11
PB28B
5
C
AB8
PB29A
5
T
AB8
PB29A
5
T
GND
GND5
5
GND
GND5
5
AB9
PB29B
5
AB9
PB29B
5
AA10
PB30A
5
T
AA10
PB30A
5
T
AA9
PB30B
5
C
AA9
PB30B
5
C
Y11
PB31A
5
T
Y11
PB31A
5
T
C
C
BDQS30
Dual Function
BDQS22
C
BDQS30
AA11
PB31B
5
C
AA11
PB31B
5
V11
PB32A
5
T
VREF2_5
V11
PB32A
5
T
VREF2_5
V12
PB32B
5
C
VREF1_5
V12
PB32B
5
C
VREF1_5
AB10
PB33A
5
T
PCLKT5_0
AB10
PB33A
5
T
PCLKT5_0
GND
GND5
5
GND
GND5
5
AB11
PB33B
5
C
PCLKC5_0
AB11
PB33B
5
C
PCLKC5_0
Y12
PB34A
4
T
WRITEN
Y12
PB34A
4
T
WRITEN
U11
PB34B
4
C
CS1N
U11
PB34B
4
C
CS1N
W12
PB35A
4
T
VREF1_4
W12
PB35A
4
T
VREF1_4
U12
PB35B
4
C
CSN
U12
PB35B
4
C
CSN
W13
PB36A
4
T
VREF2_4
W13
PB36A
4
T
VREF2_4
U13
PB36B
4
C
D0/SPID7
U13
PB36B
4
C
D0/SPID7
AA12
PB37A
4
T
D2/SPID5
AA12
PB37A
4
T
D2/SPID5
GND
GND4
4
GND
GND4
4
AB12
PB37B
4
C
D1/SPID6
AB12
PB37B
4
C
D1/SPID6
T13
PB38A
4
T
BDQS38
T13
PB38A
4
T
BDQS38
D3/SPID4
D3/SPID4
V13
PB38B
4
C
W14
PB39A
4
T
U14
PB39B
4
C
D4/SPID3
4-52
V13
PB38B
4
C
W14
PB39A
4
T
U14
PB39B
4
C
D4/SPID3
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
LVD
S
Y13
PB40A
4
T
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
D5/SPID2
LVD
S
Y13
PB40A
4
T
V14
PB40B
4
C
AA13
PB41A
4
T
GND
GND4
4
AB13
PB41B
4
C
AA14
PB42A
4
T
Y14
PB42B
4
C
Y14
Y15
PB43A
4
T
Y15
W15
PB43B
4
C
W15
PB43B
V15
PB44A
4
T
V15
PB44A
4
T
T14
PB44B
4
C
T14
PB44B
4
C
AB14
PB45A
4
T
AB14
PB45A
4
T
GND
GND4
4
GND
GND4
4
AB15
PB45B
4
C
AB15
PB45B
4
D6/SPID1
BDQS46
V14
PB40B
4
C
AA13
PB41A
4
T
GND
GND4
4
AB13
PB41B
4
C
AA14
PB42A
4
T
PB42B
4
C
PB43A
4
T
4
C
PB46A
4
T
AB16
PB46A
4
T
AA15
PB46B
4
C
AA15
PB46B
4
C
AB17
PB47A
4
T
AB17
PB47A
4
T
AA16
PB47B
4
C
AA16
PB47B
4
C
AB18
PB48A
4
T
AB18
PB48A
4
T
AA17
PB48B
4
C
AA17
PB48B
4
C
AB19
PB49A
4
T
AB19
PB49A
4
T
GND
GND4
4
GND
GND4
4
AA18
PB49B
4
C
AA18
PB49B
4
W16
PB50A
4
T
W16
PB50A
4
T
U15
PB50B
4
C
U15
PB50B
4
C
V16
PB51A
4
T
V16
PB51A
4
T
PB51B
4
C
U16
PB51B
4
C
Y17
PB52A
4
T
Y17
PB52A
4
T
V17
PB52B
4
C
V17
PB52B
4
C
AB20
PB53A
4
T
AB20
PB53A
4
T
GND
GND4
4
AA19
PB53B
4
C
Y16
PB54A
4
T
C
GND4
4
PB53B
4
C
Y16
PB54A
4
T
BDQS54
W17
PB54B
4
C
W17
PB54B
4
AA20
PB55A
4
T
AA20
PB55A
4
T
Y19
PB55B
4
C
Y19
PB55B
4
C
Y18
PB56A
4
T
Y18
PB56A
4
T
W18
PB56B
4
C
W18
PB56B
4
C
T17
PB57A
4
T
T17
PB57A
4
T
U17
PB57B
4
C
U17
PB57B
4
C
GND
-
-
GND
GND4
4
GND
GND4
4
GND
GND4
4
GND
GND3
3
GND
GND4
4
GND
-
-
GND
GND3
3
4-53
D6/SPID1
BDQS46
C
U16
GND
D5/SPID2
C
AB16
AA19
Dual Function
BDQS54
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
LFECP/LFEC33
LVD
S
Dual Function
W20
PR48B
3
C
VREF2_3
T
VREF1_3
Ball Number Ball Function Bank
LVD
S
Dual Function
W20
PR68B
3
C
VREF2_3
T
VREF1_3
Y20
PR48A
3
Y20
PR68A
3
GND
-
-
GND
GND3
3
GND
-
-
GND
GND3
3
AA21
PR47B
3
C
AA21
PR59B
3
C
AB21
PR47A
3
T
AB21
PR59A
3
T
C
W19
PR46B
3
C
W19
PR58B
3
V19
PR46A
3
T
V19
PR58A
3
T
Y21
PR45B
3
C
Y21
PR57B
3
C
AA22
PR45A
3
T
RDQS45
AA22
PR57A
3
T
RDQS57
V20
PR44B
3
C
RLM0_PLLC_IN_A
V20
PR56B
3
C
RLM0_PLLC_IN_A
GND
GND3
3
GND
GND3
3
U20
PR44A
3
T
RLM0_PLLT_IN_A
U20
PR56A
3
T
RLM0_PLLT_IN_A
W21
PR43B
3
C
RLM0_PLLC_FB_A
W21
PR55B
3
C
RLM0_PLLC_FB_A
RLM0_PLLT_FB_A
Y22
PR43A
3
T
RLM0_PLLT_FB_A
Y22
PR55A
3
T
V21
PR42B
3
C
DI/CSSPIN
V21
PR54B
3
C
DI/CSSPIN
W22
PR42A
3
T
DOUT/CSON
W22
PR54A
3
T
DOUT/CSON
U21
PR41B
3
C
BUSY/SISPI
U21
PR53B
3
C
BUSY/SISPI
V22
PR41A
3
T
D7/SPID0
V22
PR53A
3
T
D7/SPID0
T19
CFG2
3
T19
CFG2
3
U19
CFG1
3
U19
CFG1
3
U18
CFG0
3
U18
CFG0
3
V18
PROGRAMN
3
V18
PROGRAMN
3
T20
CCLK
3
T20
CCLK
3
T21
INITN
3
T21
INITN
3
R20
DONE
3
R20
DONE
3
GND
GND3
3
GND
GND3
3
T18
PR37B
3
C
T18
PR49B
3
R17
PR37A
3
T
R17
PR49A
3
T
R19
PR36B
3
C
R19
PR48B
3
C
R18
PR36A
3
T
U22
PR35B
3
C
GND
GND3
3
RDQS36
C
R18
PR48A
3
T
U22
PR47B
3
C
GND
GND3
3
T22
PR35A
3
T
T22
PR47A
3
T
R21
PR34B
3
C
R21
PR46B
3
C
R22
PR34A
3
T
R22
PR46A
3
T
P20
PR33B
3
C
P20
PR45B
3
C
N20
PR33A
3
T
N20
PR45A
3
T
P19
PR32B
3
C
P19
PR44B
3
C
P18
PR32A
3
T
P18
PR44A
3
T
P21
PR31B
3
C
P21
PR43B
3
C
GND
GND3
3
GND
GND3
3
P22
PR31A
3
T
P22
PR43A
3
T
N21
PR30B
3
C
N21
PR42B
3
C
4-54
RDQS48
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
LVD
S
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
LVD
S
N22
PR30A
3
T
N22
PR42A
3
T
N19
PR29B
3
C
N19
PR41B
3
C
N18
PR29A
3
T
N18
PR41A
3
T
M21
PR28B
3
C
M21
PR40B
3
C
L20
PR28A
3
T
L21
PR27B
3
C
GND
GND3
3
M20
PR27A
3
T
M18
PR26B
3
C
M19
PR26A
3
T
M19
PR38A
3
T
M22
PR25B
3
C
M22
PR37B
3
C
L22
PR25A
3
T
L22
PR37A
3
T
K22
PR24B
3
C
K22
PR36B
3
C
K21
PR24A
3
T
K21
PR36A
3
T
C
C
PCLKC2_0
PCLKT2_0
J22
PR22B
2
GND
GND2
2
J21
PR22A
2
T
H22
PR21B
2
H21
PR21A
2
L19
PR20B
2
RDQS28
PCLKC2_0
L20
PR40A
3
T
L21
PR39B
3
C
GND
GND3
3
M20
PR39A
3
T
M18
PR38B
3
C
Dual Function
J22
PR34B
2
GND
GND2
2
J21
PR34A
2
T
C
H22
PR33B
2
C
T
H21
PR33A
2
T
C
L19
PR32B
2
C
PCLKT2_0
L18
PR20A
2
T
L18
PR32A
2
T
K20
PR19B
2
C
K20
PR31B
2
C
J20
PR19A
2
T
K19
PR18B
2
C
GND
GND2
2
RDQS19
J20
PR31A
2
T
K19
PR30B
2
C
GND
GND2
2
K18
PR18A
2
T
K18
PR30A
2
T
G22
PR17B
2
C
G22
PR29B
2
C
F22
PR17A
2
T
F22
PR29A
2
T
F21
PR16B
2
C
F21
PR28B
2
C
E22
PR16A
2
T
E22
PR28A
2
T
C
E21
PR15B
2
C
E21
PR27B
2
D22
PR15A
2
T
D22
PR27A
2
T
G21
PR14B
2
C
G21
PR26B
2
C
T
T
G20
PR14A
2
GND
GND2
2
J18
PR13B
2
G20
PR26A
2
GND
GND2
2
C
J18
PR25B
2
RDQS40
RDQS31
C
H19
PR13A
2
T
H19
PR25A
2
T
J19
PR12B
2
C
J19
PR24B
2
C
H20
PR12A
2
T
H20
PR24A
2
T
H17
PR11B
2
C
H17
PR23B
2
C
H18
PR11A
2
T
H18
PR23A
2
T
RDQS23
C
C
RUM0_PLLC_FB_A
D21
PR9B
2
D21
PR17B
2
GND
GND2
2
RUM0_PLLC_FB_A
GND
GND2
2
GND
-
-
GND
GND2
2
4-55
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
C22
LVD
S
Dual Function
2
T
RUM0_PLLT_FB_A
C22
PR17A
Ball Function Bank
PR9A
LFECP/LFEC33
LVD
S
Dual Function
2
T
RUM0_PLLT_FB_A
Ball Number Ball Function Bank
G19
PR8B
2
C
RUM0_PLLC_IN_A
G19
PR16B
2
C
RUM0_PLLC_IN_A
G18
PR8A
2
T
RUM0_PLLT_IN_A
G18
PR16A
2
T
RUM0_PLLT_IN_A
F20
PR7B
2
C
F20
PR15B
2
C
F19
PR7A
2
T
F19
PR15A
2
T
E20
PR6B
2
C
E20
PR14B
2
C
D20
PR6A
2
T
C21
PR5B
2
C
GND
-
-
RDQS6
D20
PR14A
2
T
C21
PR13B
2
C
GND
GND2
2
C20
PR5A
2
T
C20
PR13A
2
T
F18
PR4B
2
C
F18
PR12B
2
C
E18
PR4A
2
T
E18
PR12A
2
T
B22
PR3B
2
C
B22
PR11B
2
C
B21
PR3A
2
T
B21
PR11A
2
T
RDQS14
GND
-
-
GND
GND2
2
E19
PR2B
2
C
VREF1_2
E19
PR2B
2
C
VREF1_2
D19
PR2A
2
T
VREF2_2
D19
PR2A
2
T
VREF2_2
GND
GND2
2
GND
GND2
2
GND
GND1
1
GND
GND1
1
GND
-
-
GND
GND1
1
G17
PT57B
1
GND
-
-
C
G17
PT57B
1
GND
GND1
1
C
F17
PT57A
1
T
F17
PT57A
1
T
D18
PT56B
1
C
D18
PT56B
1
C
C18
PT56A
1
T
C18
PT56A
1
T
C
C19
PT55B
1
C
C19
PT55B
1
B20
PT55A
1
T
B20
PT55A
1
T
D17
PT54B
1
C
D17
PT54B
1
C
C16
PT54A
1
T
B19
PT53B
1
C
TDQS54
C16
PT54A
1
T
B19
PT53B
1
C
GND
GND1
1
GND
GND1
1
A20
PT53A
1
T
A20
PT53A
1
T
E17
PT52B
1
C
E17
PT52B
1
C
C17
PT52A
1
T
C17
PT52A
1
T
F16
PT51B
1
C
F16
PT51B
1
C
E16
PT51A
1
T
E16
PT51A
1
T
F15
PT50B
1
C
F15
PT50B
1
C
D16
PT50A
1
T
D16
PT50A
1
T
C
C
B18
PT49B
1
GND
GND1
1
B18
PT49B
1
GND
GND1
1
A19
PT49A
1
T
A19
PT49A
1
T
B17
PT48B
A18
PT48A
1
C
B17
PT48B
1
C
1
T
A18
PT48A
1
B16
PT47B
T
1
C
B16
PT47B
1
C
4-56
TDQS54
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
LVD
S
A17
PT47A
1
T
B15
PT46B
1
C
A16
PT46A
1
T
A15
PT45B
1
C
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
A17
TDQS46
PT47A
LVD
S
1
T
C
B15
PT46B
1
A16
PT46A
1
T
A15
PT45B
1
C
GND
GND1
1
GND
GND1
1
A14
PT45A
1
T
A14
PT45A
1
T
C
G14
PT44B
1
C
G14
PT44B
1
E15
PT44A
1
T
E15
PT44A
1
T
D15
PT43B
1
C
D15
PT43B
1
C
C15
PT43A
1
T
C15
PT43A
1
T
C14
PT42B
1
C
C14
PT42B
1
C
B14
PT42A
1
T
B14
PT42A
1
T
C
C
A13
PT41B
1
GND
GND1
1
A13
PT41B
1
GND
GND1
1
B13
PT41A
1
E14
PT40B
1
T
B13
PT41A
1
T
C
E14
PT40B
1
C
C13
PT40A
1
T
C13
PT40A
1
T
C
F14
PT39B
1
C
F14
PT39B
1
D14
PT39A
1
T
D14
PT39A
1
T
E13
PT38B
1
C
E13
PT38B
1
C
G13
PT38A
1
T
A12
PT37B
1
C
TDQS38
G13
PT38A
1
T
A12
PT37B
1
C
1
GND
GND1
1
GND
GND1
B12
PT37A
1
T
B12
PT37A
1
T
F13
PT36B
1
C
F13
PT36B
1
C
Dual Function
TDQS46
TDQS38
D13
PT36A
1
T
D13
PT36A
1
T
F12
PT35B
1
C
VREF2_1
F12
PT35B
1
C
VREF2_1
D12
PT35A
1
T
VREF1_1
D12
PT35A
1
T
VREF1_1
F11
PT34B
1
C
F11
PT34B
1
C
C12
PT34A
1
T
C12
PT34A
1
T
C
C
PCLKC0_0
PCLKT0_0
A11
PT33B
0
GND
GND0
0
A10
PT33A
0
T
E12
PT32B
0
E11
PT32A
0
B11
PT31B
0
C11
PT31A
B9
PT30B
B10
PT30A
0
T
A9
PT29B
0
C
GND
GND0
0
PCLKC0_0
A11
PT33B
0
GND
GND0
0
PCLKT0_0
A10
PT33A
0
T
C
VREF1_0
E12
PT32B
0
C
VREF1_0
T
VREF2_0
E11
PT32A
0
T
VREF2_0
C
B11
PT31B
0
C
0
T
C11
PT31A
0
T
0
C
B9
PT30B
0
C
B10
PT30A
0
T
A9
PT29B
0
C
GND
GND0
0
TDQS30
A8
PT29A
0
T
A8
PT29A
0
T
D11
PT28B
0
C
D11
PT28B
0
C
C10
PT28A
0
T
C10
PT28A
0
T
4-57
TDQS30
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
A7
PT27B
0
A6
PT27A
B7
PT26B
B8
PT26A
LVD
S
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
LVD
S
C
A7
PT27B
0
0
T
A6
PT27A
0
T
0
C
B7
PT26B
0
C
0
T
B8
PT26A
0
T
C
C
A5
PT25B
0
GND
GND0
0
A5
PT25B
0
GND
GND0
0
B6
PT25A
0
T
B6
PT25A
0
T
G10
PT24B
0
C
G10
PT24B
0
C
E10
PT24A
0
T
E10
PT24A
0
T
C
F10
PT23B
0
C
F10
PT23B
0
D10
PT23A
0
T
D10
PT23A
0
T
G9
PT22B
0
C
G9
PT22B
0
C
E9
PT22A
0
T
E9
PT22A
0
T
C9
PT21B
0
C
C9
PT21B
0
C
GND
GND0
0
GND
GND0
0
C8
PT21A
0
T
C8
PT21A
0
T
F9
PT20B
0
C
F9
PT20B
0
C
TDQS22
D9
PT20A
0
T
D9
PT20A
0
T
F8
PT19B
0
C
F8
PT19B
0
C
D7
PT19A
0
T
D7
PT19A
0
T
D8
PT18B
0
C
D8
PT18B
0
C
C7
PT18A
0
T
C7
PT18A
0
T
GND
GND0
0
GND
GND0
0
A4
PT17B
0
C
A4
PT17B
0
C
B4
PT17A
0
T
B4
PT17A
0
T
C4
PT16B
0
C
C4
PT16B
0
C
C5
PT16A
0
T
C5
PT16A
0
T
D6
PT15B
0
C
D6
PT15B
0
C
B5
PT15A
0
T
B5
PT15A
0
T
E6
PT14B
0
C
E6
PT14B
0
C
C6
PT14A
0
T
A3
PT13B
0
C
GND
GND0
0
C6
PT14A
0
T
A3
PT13B
0
C
GND
GND0
0
TDQS14
B3
PT13A
0
T
B3
PT13A
0
T
F6
PT12B
0
C
F6
PT12B
0
C
D5
PT12A
0
T
D5
PT12A
0
T
F7
PT11B
0
C
F7
PT11B
0
C
E8
PT11A
0
T
E8
PT11A
0
T
G6
PT10B
0
C
G6
PT10B
0
C
E7
PT10A
0
T
E7
PT10A
0
T
GND
GND0
0
GND
GND0
0
GND
GND0
0
GND
GND0
0
A1
GND
-
A1
GND
-
A22
GND
-
A22
GND
-
4-58
Dual Function
C
TDQS22
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
AB1
Ball Function Bank
GND
LVD
S
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
-
AB1
GND
-
AB22
GND
-
AB22
GND
-
H15
GND
-
H15
GND
-
H8
GND
-
H8
GND
-
J10
GND
-
J10
GND
-
J11
GND
-
J11
GND
-
J12
GND
-
J12
GND
-
J13
GND
-
J13
GND
-
J14
GND
-
J14
GND
-
J9
GND
-
J9
GND
-
K10
GND
-
K10
GND
-
K11
GND
-
K11
GND
-
K12
GND
-
K12
GND
-
K13
GND
-
K13
GND
-
K14
GND
-
K14
GND
K9
GND
-
K9
GND
-
L10
GND
-
L10
GND
-
L11
GND
-
L11
GND
-
L12
GND
-
L12
GND
-
L13
GND
-
L13
GND
-
L14
GND
-
L14
GND
-
L9
GND
-
L9
GND
-
M10
GND
-
M10
GND
-
M11
GND
-
M11
GND
-
M12
GND
-
M12
GND
-
M13
GND
-
M13
GND
-
M14
GND
-
M14
GND
-
M9
GND
-
M9
GND
-
N10
GND
-
N10
GND
-
N11
GND
-
N11
GND
-
N12
GND
-
N12
GND
-
N13
GND
-
N13
GND
-
N14
GND
-
N14
GND
-
N9
GND
-
N9
GND
-
P10
GND
-
P10
GND
-
P11
GND
-
P11
GND
-
P12
GND
-
P12
GND
-
P13
GND
-
P13
GND
-
P14
GND
-
P14
GND
-
P9
GND
-
P9
GND
-
R15
GND
-
R15
GND
-
R8
GND
-
R8
GND
-
J16
VCC
-
J16
VCC
-
J7
VCC
-
J7
VCC
-
4-59
LVD
S
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
K16
VCC
K17
K6
LVD
S
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
-
K16
VCC
-
VCC
-
K17
VCC
-
VCC
-
K6
VCC
-
K7
VCC
-
K7
VCC
-
L17
VCC
-
L17
VCC
-
L6
VCC
-
L6
VCC
-
M17
VCC
-
M17
VCC
-
M6
VCC
-
M6
VCC
-
N16
VCC
-
N16
VCC
-
N17
VCC
-
N17
VCC
-
N6
VCC
-
N6
VCC
-
N7
VCC
-
N7
VCC
-
P16
VCC
-
P16
VCC
-
P7
VCC
-
P7
VCC
-
G11
VCCIO0
0
G11
VCCIO0
0
H10
VCCIO0
0
H10
VCCIO0
0
H11
VCCIO0
0
H11
VCCIO0
0
H9
VCCIO0
0
H9
VCCIO0
0
G12
VCCIO1
1
G12
VCCIO1
1
H12
VCCIO1
1
H12
VCCIO1
1
H13
VCCIO1
1
H13
VCCIO1
1
H14
VCCIO1
1
H14
VCCIO1
1
J15
VCCIO2
2
J15
VCCIO2
2
K15
VCCIO2
2
K15
VCCIO2
2
L15
VCCIO2
2
L15
VCCIO2
2
L16
VCCIO2
2
L16
VCCIO2
2
M15
VCCIO3
3
M15
VCCIO3
3
M16
VCCIO3
3
M16
VCCIO3
3
N15
VCCIO3
3
N15
VCCIO3
3
P15
VCCIO3
3
P15
VCCIO3
3
R12
VCCIO4
4
R12
VCCIO4
4
R13
VCCIO4
4
R13
VCCIO4
4
R14
VCCIO4
4
R14
VCCIO4
4
T12
VCCIO4
4
T12
VCCIO4
4
R10
VCCIO5
5
R10
VCCIO5
5
R11
VCCIO5
5
R11
VCCIO5
5
R9
VCCIO5
5
R9
VCCIO5
5
T11
VCCIO5
5
T11
VCCIO5
5
M7
VCCIO6
6
M7
VCCIO6
6
M8
VCCIO6
6
M8
VCCIO6
6
N8
VCCIO6
6
N8
VCCIO6
6
P8
VCCIO6
6
P8
VCCIO6
6
J8
VCCIO7
7
J8
VCCIO7
7
K8
VCCIO7
7
K8
VCCIO7
7
4-60
LVD
S
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20 and LFECP/EC33 Logic Signal Connections: 484 fpBGA (Cont.)
LFECP20/LFEC20
Ball Number
Ball Function Bank
L7
VCCIO7
7
LVD
S
LFECP/LFEC33
Dual Function
Ball Number Ball Function Bank
L7
VCCIO7
7
L8
VCCIO7
7
L8
VCCIO7
7
G15
VCCAUX
-
G15
VCCAUX
-
G16
VCCAUX
-
G16
VCCAUX
-
G7
VCCAUX
-
G7
VCCAUX
-
G8
VCCAUX
-
G8
VCCAUX
-
H16
VCCAUX
-
H16
VCCAUX
-
H7
VCCAUX
-
H7
VCCAUX
-
R16
VCCAUX
-
R16
VCCAUX
-
R7
VCCAUX
-
R7
VCCAUX
-
T15
VCCAUX
-
T15
VCCAUX
-
T16
VCCAUX
-
T16
VCCAUX
-
T7
VCCAUX
-
T7
VCCAUX
-
T8
VCCAUX
-
T8
VCCAUX
-
J6
VCC
1
-
J6
VCCPLL
-
J17
VCC1
-
J17
VCCPLL
-
P6
VCC1
-
P6
VCCPLL
-
1
P17
VCC
-
P17
VCCPLL
-
A2
NC
-
A2
NC
-
AB2
NC
-
AB2
NC
-
A21
NC
-
A21
NC
-
1. Tied to VCCPLL.
4-61
LVD
S
Dual Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA
LFEC20/LFECP20
LFECP/EC33
Ball
Number
Ball
Function
GND
GND7
7
E3
PL2A
7
T
VREF2_7
E3
PL2A
7
T
VREF2_7
E4
PL2B
7
C
VREF1_7
E4
PL2B
7
C
VREF1_7
LDQS6
Bank LVDS
Dual Function
Ball
Number
Ball
Function
Bank
GND
GND7
7
LVDS
E5
NC
-
E5
PL6A
7
T
D5
NC
-
D5
PL6B
7
C
F4
NC
-
F4
PL7A
7
T
C
F5
NC
-
F5
PL7B
7
C3
NC
-
C3
PL8A
7
T
D3
NC
-
D3
PL8B
7
C
C2
NC
-
C2
PL9A
7
T
-
-
-
GND
GND7
7
B2
NC
-
B2
PL9B
7
C
B1
PL3A
7
T
B1
PL10A
7
T
C1
PL3B
7
C
C1
PL10B
7
C
F3
PL4A
7
T
F3
PL11A
7
T
G3
PL4B
7
C
G3
PL11B
7
C
D2
PL5A
7
T
D2
PL12A
7
T
E2
PL5B
7
C
E2
PL12B
7
C
GND
GND7
7
D1
PL14A
7
T
E1
PL14B
7
C
-
-
-
D1
PL6A
7
T
E1
PL6B
7
C
LDQS6
Dual
Function
LDQS14
F2
PL7A
7
T
F2
PL15A
7
T
G2
PL7B
7
C
G2
PL15B
7
C
F6
PL8A
7
T
LUM0_PLLT_IN_A
F6
PL16A
7
T
G6
PL8B
7
C
LUM0_PLLC_IN_A
G6
PL16B
7
C
LUM0_PLLC_IN_A
H4
PL9A
7
T
LUM0_PLLT_FB_A
H4
PL17A
7
T
LUM0_PLLT_FB_A
GND
GND7
7
GND
GND7
7
G4
PL9B
7
G4
PL17B
7
C
LUM0_PLLC_FB_A
H6
NC
-
H6
PL19A
7
T
J7
NC
-
J7
PL19B
7
C
G5
NC
-
G5
PL20A
7
T
H5
NC
-
H5
PL20B
7
C
H3
NC
-
H3
PL21A
7
T
C
LUM0_PLLC_FB_A
J3
NC
-
J3
PL21B
7
C
H2
NC
-
H2
PL22A
7
T
-
-
-
GND
GND7
7
J2
PL22B
7
C
J4
PL23A
7
T
C
J2
NC
-
J4
PL11A
7
T
J5
PL11B
7
C
J5
PL23B
7
K4
PL12A
7
T
K4
PL24A
7
T
K5
PL12B
7
C
K5
PL24B
7
C
J6
PL13A
7
T
J6
PL25A
7
T
4-62
LUM0_PLLT_IN_A
LDQS23
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
K6
PL13B
7
C
T
Bank LVDS
F1
PL14A
7
GND
GND7
7
G1
PL14B
7
H1
PL15A
J1
PL15B
K2
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
K6
PL25B
7
C
T
F1
PL26A
7
GND
GND7
7
C
G1
PL26B
7
7
T
H1
PL27A
7
T
7
C
J1
PL27B
7
C
PL16A
7
T
K2
PL28A
7
T
K1
PL16B
7
C
K1
PL28B
7
C
K3
PL17A
7
T
K3
PL29A
7
T
L3
PL17B
7
C
L3
PL29B
7
C
T
T
L2
PL18A
7
GND
GND7
7
L1
PL18B
7
M3
PL19A
7
T
M4
PL19B
7
C
M1
PL20A
7
M2
PL20B
L4
PL21A
L5
PL21B
Dual
Function
C
L2
PL30A
7
GND
GND7
7
L1
PL30B
7
M3
PL31A
7
T
M4
PL31B
7
C
T
M1
PL32A
7
T
7
C
M2
PL32B
7
C
7
T
L4
PL33A
7
T
7
C
L5
PL33B
7
C
T
T
PCLKT7_0
C
PCLKC7_0
C
N2
PL22A
7
GND
GND7
7
N1
PL22B
7
N3
XRES
6
P1
PL24A
6
T
P2
PL24B
6
L7
PL25A
L6
PL25B
N4
LDQS19
N2
PL34A
7
GND
GND7
7
N1
PL34B
7
N3
XRES
6
P1
PL36A
6
T
C
P2
PL36B
6
C
6
T
L7
PL37A
6
T
6
C
L6
PL37B
6
C
PL26A
6
T
N4
PL38A
6
T
N5
PL26B
6
C
N5
PL38B
6
C
R1
PL27A
6
T
R1
PL39A
6
T
GND
GND6
6
GND
GND6
6
R2
PL27B
6
C
R2
PL39B
6
P4
PL28A
6
T
P4
PL40A
6
T
P3
PL28B
6
C
P3
PL40B
6
C
M5
PL29A
6
T
M5
PL41A
6
T
M6
PL29B
6
C
M6
PL41B
6
C
T1
PL30A
6
T
T1
PL42A
6
T
T2
PL30B
6
C
T2
PL42B
6
C
R4
PL31A
6
T
R4
PL43A
6
T
GND
GND6
6
GND
GND6
6
R3
PL31B
6
C
R3
PL43B
6
C
N6
PL32A
6
T
N6
PL44A
6
T
C
PCLKT7_0
C
PCLKC7_0
LDQS28
4-63
LDQS31
C
LDQS40
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
P5
PL32B
Bank LVDS
6
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
P5
PL44B
6
C
C
P6
PL33A
6
T
P6
PL45A
6
T
R5
PL33B
6
C
R5
PL45B
6
C
U1
PL34A
6
T
U1
PL46A
6
T
U2
PL34B
6
C
U2
PL46B
6
C
T3
PL35A
6
T
T3
PL47A
6
T
GND
GND6
6
GND
GND6
6
T4
PL35B
6
C
R6
PL36A
6
T
T5
PL36B
6
C
LDQS36
T4
PL47B
6
R6
PL48A
6
T
T5
PL48B
6
C
C
T6
PL37A
6
T
T6
PL49A
6
T
U5
PL37B
6
C
U5
PL49B
6
C
U3
PL38A
6
T
U3
PL50A
6
T
U4
PL38B
6
C
U4
PL50B
6
C
V1
PL39A
6
T
V1
PL51A
6
T
GND
GND6
6
GND
GND6
6
V2
PL39B
6
V2
PL51B
6
U7
TCK
6
C
U7
TCK
6
V4
TDI
6
V4
TDI
6
V5
TMS
6
V5
TMS
6
V3
TDO
6
V3
TDO
6
U6
VCCJ
6
U6
VCCJ
6
Dual
Function
LDQS48
C
W1
PL41A
6
T
LLM0_PLLT_IN_A
W1
PL53A
6
T
LLM0_PLLT_IN_A
W2
PL41B
6
C
LLM0_PLLC_IN_A
W2
PL53B
6
C
LLM0_PLLC_IN_A
V6
PL42A
6
T
LLM0_PLLT_FB_A
V6
PL54A
6
T
LLM0_PLLT_FB_A
LLM0_PLLC_FB_A
LLM0_PLLC_FB_A
W6
PL42B
6
C
W6
PL54B
6
C
Y1
PL43A
6
T
Y1
PL55A
6
T
Y2
PL43B
6
C
Y2
PL55B
6
C
T
T
W3
PL44A
6
GND
GND6
6
W4
PL44B
6
AA1
PL45A
6
T
AB1
PL45B
6
C
Y4
PL46A
6
T
C
LDQS45
W3
PL56A
6
GND
GND6
6
W4
PL56B
6
AA1
PL57A
6
T
AB1
PL57B
6
C
Y4
PL58A
6
T
C
Y3
PL46B
6
C
Y3
PL58B
6
C
AC1
PL47A
6
T
AC1
PL59A
6
T
AB2
PL47B
6
C
AB2
PL59B
6
C
AA2
NC
-
AA2
PL60A
6
T
-
-
-
GND
GND6
6
AA3
NC
-
AA3
PL60B
6
W5
NC
-
W5
PL61A
6
T
Y5
NC
-
Y5
PL61B
6
C
4-64
C
LDQS57
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
Y6
NC
Bank LVDS
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
Y6
PL62A
6
T
C
-
W7
NC
-
W7
PL62B
6
AA4
NC
-
AA4
PL63A
6
T
AB3
NC
-
AB3
PL63B
6
C
AC2
NC
-
AC2
PL64A
6
T
-
-
-
GND
GND6
6
AC3
NC
-
AC3
PL64B
6
AA5
NC
-
AA5
PL65A
6
T
AB5
NC
-
AB5
PL65B
6
C
AD3
NC
-
AD3
PL66A
6
T
AD2
NC
-
AD2
PL66B
6
C
AE1
NC
-
AE1
PL67A
6
T
AD1
NC
-
AD1
PL67B
6
C
Dual
Function
C
LDQS65
AB4
PL48A
6
T
VREF1_6
AB4
PL68A
6
T
VREF1_6
AC4
PL48B
6
C
VREF2_6
AC4
PL68B
6
C
VREF2_6
GND
GND6
6
GND
GND6
6
GND
GND5
5
GND
GND5
5
AB6
PB2A
5
T
AB6
PB2A
5
T
AA6
PB2B
5
C
AA6
PB2B
5
C
AC7
PB3A
5
T
AC7
PB3A
5
T
Y8
PB3B
5
C
Y8
PB3B
5
C
AB7
PB4A
5
T
AB7
PB4A
5
T
AA7
PB4B
5
C
AA7
PB4B
5
C
AC6
PB5A
5
T
AC6
PB5A
5
T
AC5
PB5B
5
C
AC5
PB5B
5
C
AB8
PB6A
5
T
AB8
PB6A
5
T
AC8
PB6B
5
C
AC8
PB6B
5
C
AE2
PB7A
5
T
AE2
PB7A
5
T
AA8
PB7B
5
C
AA8
PB7B
5
C
AF2
PB8A
5
T
AF2
PB8A
5
T
Y9
PB8B
5
C
Y9
PB8B
5
C
T
T
AD5
PB9A
5
GND
GND5
5
AD4
PB9B
5
AD8
PB10A
AC9
PB10B
AE3
PB11A
AB9
AF3
BDQS6
AD5
PB9A
5
GND
GND5
5
C
AD4
PB9B
5
5
T
AD8
PB10A
5
T
5
C
AC9
PB10B
5
C
5
T
AE3
PB11A
5
T
PB11B
5
C
AB9
PB11B
5
C
PB12A
5
T
AF3
PB12A
5
T
AD9
PB12B
5
C
AD9
PB12B
5
C
AE4
PB13A
5
T
AE4
PB13A
5
T
GND
GND5
5
GND
GND5
5
4-65
C
BDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
AF4
PB13B
5
AE5
PB14A
5
T
AA9
PB14B
5
C
AF5
PB15A
5
T
Bank LVDS
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
AF4
PB13B
5
C
AE5
PB14A
5
T
AA9
PB14B
5
C
AF5
PB15A
5
T
C
BDQS14
Y10
PB15B
5
C
Y10
PB15B
5
C
AD6
PB16A
5
T
AD6
PB16A
5
T
AC10
PB16B
5
C
AC10
PB16B
5
C
T
T
AF6
PB17A
5
GND
GND5
5
AE6
PB17B
5
C
AF6
PB17A
5
GND
GND5
5
AE6
PB17B
5
AF7
PB18A
5
T
AF7
PB18A
5
T
PB18B
5
C
AB10
PB18B
5
C
AE7
PB19A
5
T
AE7
PB19A
5
T
C
AD10
PB19B
5
C
AD10
PB19B
5
AD7
PB20A
5
T
AD7
PB20A
5
T
AA10
PB20B
5
C
AA10
PB20B
5
C
T
T
AF8
PB21A
5
GND5
5
AF9
PB21B
5
AF8
PB21A
5
GND
GND5
5
AF9
PB21B
5
AD11
PB22A
5
T
Y11
PB22B
5
C
AD11
PB22A
5
T
Y11
PB22B
5
C
AE8
PB23A
5
T
AE8
PB23A
5
T
AC11
PB23B
AF10
PB24A
5
C
AC11
PB23B
5
C
5
T
AF10
PB24A
5
T
AB11
PB24B
5
C
AB11
PB24B
5
C
AE10
PB25A
5
T
AE10
PB25A
5
T
GND
GND5
5
GND
GND5
5
AE9
PB25B
5
C
AE9
PB25B
5
AA11
PB26A
5
T
AA11
PB26A
5
T
Y12
PB26B
5
C
Y12
PB26B
5
C
AE11
PB27A
5
T
AE11
PB27A
5
T
AF11
PB27B
5
C
AF11
PB27B
5
C
AF12
PB28A
5
T
AF12
PB28A
5
T
AE12
PB28B
5
C
AE12
PB28B
5
C
AD12
PB29A
5
T
AD12
PB29A
5
T
GND
GND5
5
GND
GND5
5
AC12
PB29B
5
AC12
PB29B
5
AA12
PB30A
5
T
AA12
PB30A
5
T
AB12
PB30B
5
C
AB12
PB30B
5
C
AE13
PB31A
5
T
AE13
PB31A
5
T
AF13
PB31B
5
C
AF13
PB31B
5
C
AD13
PB32A
5
T
AD13
PB32A
5
T
C
BDQS22
C
BDQS30
VREF2_5
4-66
BDQS14
C
AB10
GND
Dual
Function
C
BDQS22
C
C
BDQS30
VREF2_5
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
AC13
PB32B
5
AF14
PB33A
5
GND
GND5
5
AE14
PB33B
5
AA13
PB34A
AB13
PB34B
AD14
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
Dual
Function
C
VREF1_5
AC13
PB32B
5
C
VREF1_5
T
PCLKT5_0
AF14
PB33A
5
T
PCLKT5_0
GND
GND5
5
AE14
PB33B
5
C
PCLKC5_0
Bank LVDS
C
PCLKC5_0
4
T
WRITEN
AA13
PB34A
4
T
WRITEN
4
C
CS1N
AB13
PB34B
4
C
CS1N
PB35A
4
T
VREF1_4
AD14
PB35A
4
T
VREF1_4
AA14
PB35B
4
C
CSN
AA14
PB35B
4
C
CSN
AC14
PB36A
4
T
VREF2_4
AC14
PB36A
4
T
VREF2_4
AB14
PB36B
4
C
D0/SPID7
AB14
PB36B
4
C
D0/SPID7
AF15
PB37A
4
T
D2/SPID5
AF15
PB37A
4
T
D2/SPID5
GND
GND4
4
GND
GND4
4
AE15
PB37B
4
D1/SPID6
AE15
PB37B
4
C
D1/SPID6
AD15
PB38A
4
T
BDQS38
AD15
PB38A
4
T
BDQS38
AC15
PB38B
4
C
D3/SPID4
AC15
PB38B
4
C
D3/SPID4
AF16
PB39A
4
T
AF16
PB39A
4
T
C
Y14
PB39B
4
C
AE16
PB40A
4
T
AB15
PB40B
4
C
AF17
PB41A
4
T
GND
GND4
4
AE17
PB41B
4
C
D4/SPID3
D5/SPID2
D6/SPID1
Y14
PB39B
4
C
AE16
PB40A
4
T
AB15
PB40B
4
C
AF17
PB41A
4
T
GND
GND4
4
AE17
PB41B
4
C
Y15
PB42A
4
T
Y15
PB42A
4
T
AA15
PB42B
4
C
AA15
PB42B
4
C
AD17
PB43A
4
T
AD17
PB43A
4
T
C
Y16
PB43B
4
C
Y16
PB43B
4
AD18
PB44A
4
T
AD18
PB44A
4
T
AC16
PB44B
4
C
AC16
PB44B
4
C
AE18
PB45A
4
T
AE18
PB45A
4
T
GND
GND4
4
GND
GND4
4
AF18
PB45B
4
AF18
PB45B
4
AD16
PB46A
4
T
AD16
PB46A
4
T
AB16
PB46B
4
C
AB16
PB46B
4
C
AF19
PB47A
4
T
AF19
PB47A
4
T
AA16
PB47B
4
C
AA16
PB47B
4
C
AA17
PB48A
4
T
AA17
PB48A
4
T
Y17
PB48B
4
C
Y17
PB48B
4
C
AF21
PB49A
4
T
AF21
PB49A
4
T
GND
GND4
4
GND
GND4
4
C
BDQS46
D5/SPID2
D6/SPID1
C
AF20
PB49B
4
C
AF20
PB49B
4
AE21
PB50A
4
T
AE21
PB50A
4
T
AC17
PB50B
4
C
AC17
PB50B
4
C
4-67
D4/SPID3
C
BDQS46
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
LFECP/EC33
Ball
Number
Ball
Function
AF22
PB51A
4
T
AB17
PB51B
4
C
AB17
AE22
PB52A
4
T
AE22
AA18
PB52B
4
C
AA18
PB52B
AE19
PB53A
4
T
AE19
GND
GND4
4
GND
AE20
PB53B
4
AA19
PB54A
4
T
Y18
PB54B
4
C
AF23
PB55A
4
T
Bank LVDS
Dual Function
C
BDQS54
Ball
Number
Ball
Function
Bank
LVDS
AF22
PB51A
4
T
PB51B
4
C
PB52A
4
T
4
C
PB53A
4
T
GND4
4
AE20
PB53B
4
AA19
PB54A
4
T
Y18
PB54B
4
C
AF23
PB55A
4
T
C
AA20
PB55B
4
C
AA20
PB55B
4
C
AC18
PB56A
4
T
AC18
PB56A
4
T
AB18
PB56B
4
C
AB18
PB56B
4
C
AF24
PB57A
4
T
AF24
PB57A
4
T
-
-
-
GND
GND4
4
AE23
PB57B
4
AE23
PB57B
4
AD19
NC
-
AD19
PB58A
4
T
AD20
NC
-
AD20
PB58B
4
C
AC19
NC
-
AC19
PB59A
4
T
C
C
Dual
Function
BDQS54
C
AB19
NC
-
AB19
PB59B
4
AD21
NC
-
AD21
PB60A
4
T
AC20
NC
-
AC20
PB60B
4
C
AF25
NC
-
AF25
PB61A
4
T
-
-
-
GND
GND4
4
AE25
NC
-
AE25
PB61B
4
AB21
NC
-
AB21
PB62A
4
T
AB20
NC
-
AB20
PB62B
4
C
AE24
NC
-
AE24
PB63A
4
T
AD23
NC
-
AD23
PB63B
4
C
AD22
NC
-
AD22
PB64A
4
T
AC21
NC
-
AC21
PB64B
4
C
C
AC22
NC
-
AC22
PB65A
4
T
AB22
NC
-
AB22
PB65B
4
C
GND
GND4
4
GND
GND4
4
BDQS62
GND
GND3
3
GND
GND3
3
AC23
PR48B
3
C
VREF2_3
AC23
PR68B
3
C
VREF2_3
AC24
PR48A
3
T
VREF1_3
AC24
PR68A
3
T
VREF1_3
AD24
NC
-
AD24
PR67B
3
C
AD25
NC
-
AD25
PR67A
3
T
C
AE26
NC
-
AE26
PR66B
3
AD26
NC
-
AD26
PR66A
3
T
Y20
NC
-
Y20
PR65B
3
C
4-68
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
Y19
NC
AA23
-
LFECP/EC33
Ball
Number
Ball
Function
Bank
LVDS
Dual
Function
-
Y19
PR65A
3
T
RDQS65
NC
-
AA23
PR64B
3
C
-
-
GND
GND3
3
AA22
NC
-
AA22
PR64A
3
T
AB23
NC
-
AB23
PR63B
3
C
AB24
NC
-
AB24
PR63A
3
T
Y21
NC
-
Y21
PR62B
3
C
AA21
NC
-
AA21
PR62A
3
T
Y23
NC
-
Y23
PR61B
3
C
Y22
NC
-
Y22
PR61A
3
T
AA24
NC
-
AA24
PR60B
3
C
-
-
-
GND
GND3
3
Y24
NC
-
Y24
PR60A
3
T
AC25
PR47B
3
C
AC25
PR59B
3
C
AC26
PR47A
3
T
AC26
PR59A
3
T
AB25
PR46B
3
C
AB25
PR58B
3
C
AA25
PR46A
3
T
AA25
PR58A
3
T
AB26
PR45B
3
C
AB26
PR57B
3
C
AA26
PR45A
3
T
RDQS45
AA26
PR57A
3
T
RDQS57
C
RLM0_PLLC_IN_A
C
RLM0_PLLC_IN_A
Bank LVDS
Dual Function
W23
PR44B
3
GND
GND3
3
W24
PR44A
3
T
RLM0_PLLT_IN_A
W23
PR56B
3
GND
GND3
3
W24
PR56A
3
T
RLM0_PLLT_IN_A
W22
PR43B
3
C
RLM0_PLLC_FB_A
W22
PR55B
3
C
RLM0_PLLC_FB_A
W21
PR43A
3
T
RLM0_PLLT_FB_A
W21
PR55A
3
T
RLM0_PLLT_FB_A
Y25
PR42B
3
C
DI/CSSPIN
Y25
PR54B
3
C
DI/CSSPIN
Y26
PR42A
3
T
DOUT/CSON
Y26
PR54A
3
T
DOUT/CSON
W25
PR41B
3
C
BUSY/SISPI
W25
PR53B
3
C
BUSY/SISPI
W26
PR41A
3
T
D7/SPID0
W26
PR53A
3
T
D7/SPID0
V24
CFG2
3
V24
CFG2
3
V21
CFG1
3
V21
CFG1
3
V23
CFG0
3
V23
CFG0
3
V22
PROGRAMN
3
V22
PROGRAMN
3
V20
CCLK
3
V20
CCLK
3
V25
INITN
3
V25
INITN
3
U20
DONE
3
U20
DONE
3
V26
PR39B
3
V26
PR51B
3
GND
GND3
3
GND
GND3
3
U26
PR39A
3
T
U26
PR51A
3
T
U24
PR38B
3
C
U24
PR50B
3
C
U25
PR38A
3
T
U25
PR50A
3
T
U23
PR37B
3
C
U23
PR49B
3
C
U22
PR37A
3
T
U22
PR49A
3
T
C
4-69
C
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
U21
PR36B
Bank LVDS
3
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
U21
PR48B
3
C
C
T21
PR36A
3
T
T25
PR35B
3
C
GND
GND3
3
T26
PR35A
3
T22
PR34B
3
T23
PR34A
3
T
RDQS36
T21
PR48A
3
T
T25
PR47B
3
C
GND
GND3
3
T
T26
PR47A
3
T
C
T22
PR46B
3
C
T23
PR46A
3
T
C
T24
PR33B
3
C
T24
PR45B
3
R23
PR33A
3
T
R23
PR45A
3
T
R25
PR32B
3
C
R25
PR44B
3
C
R24
PR32A
3
T
R24
PR44A
3
T
R26
PR31B
3
C
R26
PR43B
3
C
GND
GND3
3
GND
GND3
3
P26
PR31A
3
T
P26
PR43A
3
T
R21
PR30B
3
C
R21
PR42B
3
C
R22
PR30A
3
T
R22
PR42A
3
T
P25
PR29B
3
C
P25
PR41B
3
C
P24
PR29A
3
T
P24
PR41A
3
T
P23
PR28B
3
C
P23
PR40B
3
C
P22
PR28A
3
T
N26
PR27B
3
C
GND
GND3
3
M26
PR27A
3
N21
PR26B
3
P21
PR26A
3
N23
PR25B
N22
PR25A
N25
PR24B
N24
PR24A
3
T
L26
PR22B
2
C
GND
GND2
2
RDQS28
P22
PR40A
3
T
N26
PR39B
3
C
GND
GND3
3
T
M26
PR39A
3
T
C
N21
PR38B
3
C
T
P21
PR38A
3
T
3
C
N23
PR37B
3
C
3
T
N22
PR37A
3
T
3
C
N25
PR36B
3
C
PCLKC2_0
PCLKT2_0
RDQS40
PR36A
3
T
L26
PR34B
2
C
PCLKC2_0
GND
GND2
2
PCLKT2_0
K26
PR22A
2
T
K26
PR34A
2
T
PR21B
2
C
M22
PR33B
2
C
M23
PR21A
2
T
M23
PR33A
2
T
M25
PR20B
2
C
M25
PR32B
2
C
M24
PR20A
2
T
M24
PR32A
2
T
M21
PR19B
2
C
M21
PR31B
2
C
L21
PR19A
2
T
L21
PR31A
2
T
L22
PR18B
2
C
L22
PR30B
2
C
GND
GND2
2
GND
GND2
2
L23
PR18A
2
T
L23
PR30A
2
T
L25
PR17B
2
C
L25
PR29B
2
C
4-70
RDQS48
N24
M22
RDQS19
Dual
Function
RDQS31
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
L24
PR17A
Bank LVDS
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
2
T
C
2
T
L24
PR29A
K25
PR16B
2
C
K25
PR28B
2
J25
PR16A
2
T
J25
PR28A
2
T
J26
PR15B
2
C
J26
PR27B
2
C
H26
PR15A
2
T
H26
PR27A
2
T
H25
PR14B
2
C
H25
PR26B
2
C
GND
GND2
2
GND
GND2
2
J24
PR14A
2
T
J24
PR26A
2
T
K21
PR13B
2
C
K21
PR25B
2
C
K22
PR13A
2
T
K22
PR25A
2
T
K20
PR12B
2
C
K20
PR24B
2
C
J20
PR12A
2
T
J20
PR24A
2
T
K23
PR11B
2
C
K23
PR23B
2
C
K24
PR11A
2
T
K24
PR23A
2
T
J21
NC
-
J21
PR22B
2
C
-
-
-
GND
GND2
2
J22
NC
-
J22
PR22A
2
T
J23
NC
-
J23
PR21B
2
C
H22
NC
-
H22
PR21A
2
T
G26
NC
-
G26
PR20B
2
C
F26
NC
-
F26
PR20A
2
T
E26
NC
-
E26
PR19B
2
C
E25
NC
-
F25
PR9B
2
GND
GND2
2
G25
PR9A
2
T
RUM0_PLLT_FB_A
G25
PR17A
H23
PR8B
2
C
RUM0_PLLC_IN_A
H23
PR16B
H24
PR8A
2
T
RUM0_PLLT_IN_A
H24
PR16A
C
RUM0_PLLC_FB_A
PR19A
2
T
F25
PR17B
2
C
RUM0_PLLC_FB_A
GND
GND2
2
2
T
RUM0_PLLT_FB_A
2
C
RUM0_PLLC_IN_A
2
T
RUM0_PLLT_IN_A
H21
PR7B
2
C
H21
PR15B
2
C
PR7A
2
T
G21
PR15A
2
T
D26
PR6B
2
C
D26
PR14B
2
C
D25
PR6A
2
T
F21
PR5B
2
C
-
-
-
G22
PR5A
2
G24
PR4B
2
G23
PR4A
2
C26
PR3B
C25
PR3A
F24
NC
-
-
-
-
F23
NC
-
F23
D25
PR14A
2
T
F21
PR13B
2
C
GND
GND2
2
T
G22
PR13A
2
T
C
G24
PR12B
2
C
T
G23
PR12A
2
T
2
C
C26
PR11B
2
C
2
T
C25
PR11A
2
T
F24
PR9B
2
C
GND
GND2
2
PR9A
2
4-71
RDQS23
E25
G21
RDQS6
Dual
Function
T
RDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
E24
NC
D24
E22
LFECP/EC33
Ball
Number
Ball
Function
Bank
LVDS
-
E24
PR8B
2
C
NC
-
D24
PR8A
2
T
NC
-
E22
PR7B
2
C
F22
NC
-
F22
PR7A
2
T
Bank LVDS
Dual Function
Dual
Function
E21
NC
-
E21
PR6B
2
C
D22
NC
-
D22
PR6A
2
T
RDQS6
E23
PR2B
2
C
VREF1_2
E23
PR2B
2
C
VREF1_2
T
VREF2_2
T
VREF2_2
D23
PR2A
2
D23
PR2A
2
GND
GND2
2
GND
GND2
2
GND
GND1
1
GND
GND1
1
G20
NC
-
G20
PT65B
1
C
F20
NC
-
F20
PT65A
1
T
D21
NC
-
D21
PT64B
1
C
C21
NC
-
C21
PT64A
1
T
C23
NC
-
C23
PT63B
1
C
C22
NC
-
C22
PT63A
1
T
B23
NC
-
B23
PT62B
1
C
C24
NC
-
C24
PT62A
1
T
D20
NC
-
D20
PT61B
1
C
-
-
-
GND
GND1
1
E19
NC
-
E19
PT61A
1
T
B25
NC
-
B25
PT60B
1
C
B24
NC
-
B24
PT60A
1
T
B26
NC
-
B26
PT59B
1
C
A25
NC
-
A25
PT59A
1
T
C20
NC
-
C20
PT58B
1
C
C19
NC
-
C19
PT58A
1
T
A24
PT57B
1
A24
PT57B
1
C
C
-
-
-
GND
GND1
1
A23
PT57A
1
T
A23
PT57A
1
T
E18
PT56B
1
C
E18
PT56B
1
C
D19
PT56A
1
T
D19
PT56A
1
T
F19
PT55B
1
C
F19
PT55B
1
C
B22
PT55A
1
T
B22
PT55A
1
T
G19
PT54B
1
C
B21
PT54A
1
T
D18
PT53B
1
C
GND
GND1
1
C18
PT53A
1
T
TDQS54
G19
PT54B
1
C
B21
PT54A
1
T
D18
PT53B
1
C
GND
GND1
1
C18
PT53A
1
T
C
F18
PT52B
1
C
F18
PT52B
1
A22
PT52A
1
T
A22
PT52A
1
T
G18
PT51B
1
C
G18
PT51B
1
C
4-72
TDQS62
TDQS54
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
A21
PT51A
1
E17
PT50B
B17
PT50A
C17
PT49B
LFECP/EC33
Ball
Number
Ball
Function
Bank
LVDS
T
A21
PT51A
1
T
1
C
E17
PT50B
1
C
1
T
B17
PT50A
1
T
1
C
C17
PT49B
1
C
Bank LVDS
Dual Function
GND
GND1
1
GND
GND1
1
D17
PT49A
1
T
D17
PT49A
1
T
F17
PT48B
1
C
F17
PT48B
1
C
E20
PT48A
1
T
E20
PT48A
1
T
G17
PT47B
1
C
G17
PT47B
1
C
B20
PT47A
1
T
B20
PT47A
1
T
E16
PT46B
1
C
A20
PT46A
1
T
A19
PT45B
1
C
TDQS46
E16
PT46B
1
C
A20
PT46A
1
T
A19
PT45B
1
C
1
GND
GND1
1
GND
GND1
B19
PT45A
1
T
B19
PT45A
1
T
D16
PT44B
1
C
D16
PT44B
1
C
C16
PT44A
1
T
C16
PT44A
1
T
F16
PT43B
1
C
F16
PT43B
1
C
A18
PT43A
1
T
A18
PT43A
1
T
G16
PT42B
1
C
G16
PT42B
1
C
B18
PT42A
1
T
B18
PT42A
1
T
A17
PT41B
1
C
A17
PT41B
1
C
GND
GND1
1
GND
GND1
1
A16
PT41A
1
T
A16
PT41A
1
T
D15
PT40B
1
C
D15
PT40B
1
C
B16
PT40A
1
T
B16
PT40A
1
T
E15
PT39B
1
C
E15
PT39B
1
C
C15
PT39A
1
T
C15
PT39A
1
T
F15
PT38B
1
C
G15
PT38A
1
T
B15
PT37B
1
C
TDQS38
F15
PT38B
1
C
G15
PT38A
1
T
B15
PT37B
1
C
GND
GND1
1
GND
GND1
1
A15
PT37A
1
T
A15
PT37A
1
T
E14
PT36B
1
C
E14
PT36B
1
C
Dual
Function
TDQS46
TDQS38
G14
PT36A
1
T
G14
PT36A
1
T
D14
PT35B
1
C
VREF2_1
D14
PT35B
1
C
VREF2_1
E13
PT35A
1
T
VREF1_1
E13
PT35A
1
T
VREF1_1
F14
PT34B
1
C
F14
PT34B
1
C
C14
PT34A
1
T
C14
PT34A
1
T
C
C
PCLKC0_0
T
PCLKT0_0
B14
PT33B
0
GND
GND0
0
A14
PT33A
0
T
PCLKC0_0
PCLKT0_0
4-73
B14
PT33B
0
GND
GND0
0
A14
PT33A
0
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
D13
PT32B
0
C13
PT32A
A13
PT31B
B13
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
Dual
Function
C
VREF1_0
D13
PT32B
0
C
VREF1_0
0
T
VREF2_0
C13
PT32A
0
T
VREF2_0
0
C
A13
PT31B
0
C
PT31A
0
T
B13
PT31A
0
T
F13
PT30B
0
C
F13
PT30B
0
C
F12
PT30A
0
T
F12
PT30A
0
T
A12
PT29B
0
C
A12
PT29B
0
C
Bank LVDS
TDQS30
GND
GND0
0
GND
GND0
0
B12
PT29A
0
T
B12
PT29A
0
T
A11
PT28B
0
C
A11
PT28B
0
C
B11
PT28A
0
T
B11
PT28A
0
T
D12
PT27B
0
C
D12
PT27B
0
C
C12
PT27A
0
T
C12
PT27A
0
T
B10
PT26B
0
C
B10
PT26B
0
C
A10
PT26A
0
T
A10
PT26A
0
T
G12
PT25B
0
C
G12
PT25B
0
C
GND
GND0
0
GND
GND0
0
A9
PT25A
0
T
A9
PT25A
0
T
E12
PT24B
0
C
E12
PT24B
0
C
B9
PT24A
0
T
B9
PT24A
0
T
F11
PT23B
0
C
F11
PT23B
0
C
A8
PT23A
0
T
A8
PT23A
0
T
D11
PT22B
0
C
D11
PT22B
0
C
C11
PT22A
0
T
C11
PT22A
0
T
B8
PT21B
0
C
B8
PT21B
0
C
TDQS22
GND
GND0
0
GND
GND0
0
B7
PT21A
0
T
B7
PT21A
0
T
E11
PT20B
0
C
E11
PT20B
0
C
A7
PT20A
0
T
A7
PT20A
0
T
G11
PT19B
0
C
G11
PT19B
0
C
C7
PT19A
0
T
C7
PT19A
0
T
G10
PT18B
0
C
G10
PT18B
0
C
C6
PT18A
0
T
C6
PT18A
0
T
C10
PT17B
0
C
C10
PT17B
0
C
GND
GND0
0
GND
GND0
0
D10
PT17A
0
T
D10
PT17A
0
T
F10
PT16B
0
C
F10
PT16B
0
C
A6
PT16A
0
T
A6
PT16A
0
T
E10
PT15B
0
C
E10
PT15B
0
C
C9
PT15A
0
T
C9
PT15A
0
T
G9
PT14B
0
C
G9
PT14B
0
C
D9
PT14A
0
T
D9
PT14A
0
T
TDQS14
4-74
TDQS30
TDQS22
TDQS14
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
A5
PT13B
Bank LVDS
0
LFECP/EC33
Dual Function
Ball
Number
Ball
Function
Bank
LVDS
A5
PT13B
0
C
0
C
GND
GND0
0
GND
GND0
A4
PT13A
0
T
A4
PT13A
0
T
F9
PT12B
0
C
F9
PT12B
0
C
B6
PT12A
0
T
B6
PT12A
0
T
E9
PT11B
0
C
E9
PT11B
0
C
C8
PT11A
0
T
C8
PT11A
0
T
G8
PT10B
0
C
G8
PT10B
0
C
B5
PT10A
0
T
B5
PT10A
0
T
A3
PT9B
0
C
A3
PT9B
0
C
GND
GND0
0
GND
GND0
0
A2
PT9A
0
T
A2
PT9A
0
T
F8
PT8B
0
C
F8
PT8B
0
C
B4
PT8A
0
T
B4
PT8A
0
T
E8
PT7B
0
C
E8
PT7B
0
C
B3
PT7A
0
T
B3
PT7A
0
T
D8
PT6B
0
C
G7
PT6A
0
T
D8
PT6B
0
C
G7
PT6A
0
T
C4
PT5B
0
C
C4
PT5B
0
C
C5
PT5A
E7
PT4B
0
T
C5
PT5A
0
T
0
C
E7
PT4B
0
C
D4
PT4A
0
T
D4
PT4A
0
T
TDQS6
F7
PT3B
0
C
F7
PT3B
0
C
D6
PT3A
0
T
D6
PT3A
0
T
D7
PT2B
0
C
D7
PT2B
0
C
T
T
E6
PT2A
0
E6
PT2A
0
GND
GND0
0
GND
GND0
0
K10
GND
-
K10
GND
-
K11
GND
-
K11
GND
-
K12
GND
-
K12
GND
-
K13
GND
-
K13
GND
-
K14
GND
-
K14
GND
-
K15
GND
-
K15
GND
-
K16
GND
-
K16
GND
-
L10
GND
-
L10
GND
-
L11
GND
-
L11
GND
-
L12
GND
-
L12
GND
-
L13
GND
-
L13
GND
-
L14
GND
-
L14
GND
-
L15
GND
-
L15
GND
-
L16
GND
-
L16
GND
-
L17
GND
-
L17
GND
-
4-75
Dual
Function
TDQS6
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
M10
GND
M11
M12
LFECP/EC33
Ball
Number
Ball
Function
Bank
-
M10
GND
-
GND
-
M11
GND
-
GND
-
M12
GND
-
M13
GND
-
M13
GND
-
M14
GND
-
M14
GND
-
M15
GND
-
M15
GND
-
M16
GND
-
M16
GND
-
M17
GND
-
M17
GND
-
N10
GND
-
N10
GND
-
N11
GND
-
N11
GND
-
N12
GND
-
N12
GND
-
N13
GND
-
N13
GND
-
N14
GND
-
N14
GND
-
N15
GND
-
N15
GND
-
N16
GND
-
N16
GND
-
N17
GND
-
N17
GND
-
P10
GND
-
P10
GND
-
P11
GND
-
P11
GND
-
P12
GND
-
P12
GND
-
P13
GND
-
P13
GND
-
P14
GND
-
P14
GND
-
P15
GND
-
P15
GND
-
P16
GND
-
P16
GND
-
P17
GND
-
P17
GND
-
R10
GND
-
R10
GND
-
R11
GND
-
R11
GND
-
R12
GND
-
R12
GND
-
R13
GND
-
R13
GND
-
R14
GND
-
R14
GND
-
R15
GND
-
R15
GND
-
R16
GND
-
R16
GND
-
R17
GND
-
R17
GND
-
T10
GND
-
T10
GND
-
T11
GND
-
T11
GND
-
T12
GND
-
T12
GND
-
T13
GND
-
T13
GND
-
T14
GND
-
T14
GND
-
T15
GND
-
T15
GND
-
T16
GND
-
T16
GND
-
Bank LVDS
Dual Function
T17
GND
-
T17
GND
-
U10
GND
-
U10
GND
-
U11
GND
-
U11
GND
-
4-76
LVDS
Dual
Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
U12
GND
U13
U14
LFECP/EC33
Ball
Number
Ball
Function
Bank
-
U12
GND
-
GND
-
U13
GND
-
GND
-
U14
GND
-
U15
GND
-
U15
GND
-
U16
GND
-
U16
GND
-
U17
GND
-
U17
GND
-
H10
VCC
-
H10
VCC
-
H11
VCC
-
H11
VCC
-
H16
VCC
-
H16
VCC
-
H17
VCC
-
H17
VCC
-
H18
VCC
-
H18
VCC
-
H19
VCC
-
H19
VCC
-
H8
VCC
-
H8
VCC
-
Bank LVDS
Dual Function
H9
VCC
-
H9
VCC
-
J18
VCC
-
J18
VCC
-
J9
VCC
-
J9
VCC
-
K8
VCC
-
K8
VCC
-
L19
VCC
-
L19
VCC
-
M19
VCC
-
M19
VCC
-
N7
VCC
-
N7
VCC
R20
VCC
-
R20
VCC
-
R7
VCC
-
R7
VCC
-
T19
VCC
-
T19
VCC
-
V18
VCC
-
V18
VCC
-
V8
VCC
-
V8
VCC
-
V9
VCC
-
V9
VCC
-
W10
VCC
-
W10
VCC
-
W11
VCC
-
W11
VCC
-
W16
VCC
-
W16
VCC
-
W17
VCC
-
W17
VCC
-
W18
VCC
-
W18
VCC
-
W19
VCC
-
W19
VCC
-
W8
VCC
-
W8
VCC
-
W9
VCC
-
W9
VCC
-
H12
VCCIO0
0
H12
VCCIO0
0
H13
VCCIO0
0
H13
VCCIO0
0
J10
VCCIO0
0
J10
VCCIO0
0
J11
VCCIO0
0
J11
VCCIO0
0
J12
VCCIO0
0
J12
VCCIO0
0
J13
VCCIO0
0
J13
VCCIO0
0
H14
VCCIO1
1
H14
VCCIO1
1
H15
VCCIO1
1
H15
VCCIO1
1
4-77
LVDS
Dual
Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
J14
VCCIO1
J15
J16
LFECP/EC33
Ball
Number
Ball
Function
Bank
1
J14
VCCIO1
1
VCCIO1
1
J15
VCCIO1
1
VCCIO1
1
J16
VCCIO1
1
J17
VCCIO1
1
J17
VCCIO1
1
K17
VCCIO2
2
K17
VCCIO2
2
K18
VCCIO2
2
K18
VCCIO2
2
L18
VCCIO2
2
L18
VCCIO2
2
M18
VCCIO2
2
M18
VCCIO2
2
N18
VCCIO2
2
N18
VCCIO2
2
N19
VCCIO2
2
N19
VCCIO2
2
P18
VCCIO3
3
P18
VCCIO3
3
P19
VCCIO3
3
P19
VCCIO3
3
R18
VCCIO3
3
R18
VCCIO3
3
R19
VCCIO3
3
R19
VCCIO3
3
T18
VCCIO3
3
T18
VCCIO3
3
U18
VCCIO3
3
U18
VCCIO3
3
V14
VCCIO4
4
V14
VCCIO4
4
V15
VCCIO4
4
V15
VCCIO4
4
V16
VCCIO4
4
V16
VCCIO4
4
Bank LVDS
Dual Function
V17
VCCIO4
4
V17
VCCIO4
4
W14
VCCIO4
4
W14
VCCIO4
4
W15
VCCIO4
4
W15
VCCIO4
4
V10
VCCIO5
5
V10
VCCIO5
5
V11
VCCIO5
5
V11
VCCIO5
5
V12
VCCIO5
5
V12
VCCIO5
5
V13
VCCIO5
5
V13
VCCIO5
5
W12
VCCIO5
5
W12
VCCIO5
5
W13
VCCIO5
5
W13
VCCIO5
5
P8
VCCIO6
6
P8
VCCIO6
6
P9
VCCIO6
6
P9
VCCIO6
6
R8
VCCIO6
6
R8
VCCIO6
6
R9
VCCIO6
6
R9
VCCIO6
6
T9
VCCIO6
6
T9
VCCIO6
6
U9
VCCIO6
6
U9
VCCIO6
6
K9
VCCIO7
7
K9
VCCIO7
7
L9
VCCIO7
7
L9
VCCIO7
7
M8
VCCIO7
7
M8
VCCIO7
7
M9
VCCIO7
7
M9
VCCIO7
7
N8
VCCIO7
7
N8
VCCIO7
7
N9
VCCIO7
7
N9
VCCIO7
7
G13
VCCAUX
-
G13
VCCAUX
-
H20
VCCAUX
-
H20
VCCAUX
-
4-78
LVDS
Dual
Function
Pinout Information
LatticeECP/EC Family Data Sheet
LFECP/EC20, LFECP/EC33 Logic Signal Connections: 672 fpBGA (Cont.)
LFEC20/LFECP20
Ball
Number
Ball
Function
H7
VCCAUX
J19
J8
K7
LFECP/EC33
Ball
Number
Ball
Function
Bank
-
H7
VCCAUX
-
VCCAUX
-
J19
VCCAUX
-
VCCAUX
-
J8
VCCAUX
-
VCCAUX
-
K7
VCCAUX
-
Bank LVDS
Dual Function
L20
VCCAUX
-
L20
VCCAUX
-
M20
VCCAUX
-
M20
VCCAUX
-
M7
VCCAUX
-
M7
VCCAUX
-
N20
VCCAUX
-
N20
VCCAUX
-
P20
VCCAUX
-
P20
VCCAUX
-
P7
VCCAUX
-
P7
VCCAUX
-
T20
VCCAUX
-
T20
VCCAUX
-
T7
VCCAUX
-
T7
VCCAUX
-
T8
VCCAUX
-
T8
VCCAUX
-
V19
VCCAUX
-
V19
VCCAUX
-
V7
VCCAUX
-
V7
VCCAUX
-
W20
VCCAUX
-
W20
VCCAUX
-
Y13
VCCAUX
-
Y13
VCCAUX
-
Y7
VCCAUX
-
Y7
VCCAUX
-
1
-
K19
VCCPLL
-
L8
1
VCC
-
L8
VCCPLL
-
U19
VCC1
-
U19
VCCPLL
-
U8
VCC1
-
U8
VCCPLL
-
K19
VCC
1. Tied to VCCPLL.
4-79
LVDS
Dual
Function
Pinout Information
LatticeECP/EC Family Data Sheet
Thermal Management
Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal
characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets.
Designers must complete a thermal analysis of their specific design to ensure that the device and package do not
exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package
specific thermal values.
For Further Information
For further information regarding Thermal Management, refer to the following located on the Lattice website at
www.latticesemi.com.
• Thermal Management document
• Technical Note TN1052 - Power Estimation and Management for LatticeECP/EC and LatticeXP Devices
• Power Calculator tool included with Lattice’s ispLEVER design tool, or as a standalone download from
www.latticesemi.com/software
4-80
LatticeECP/EC Family Data Sheet
Ordering Information
September 2012
Data Sheet
Part Number Description
LFXXX XX X – X XXXX X
Device Family
Lattice EC (FPGA)
Lattice ECP (EC FPGA + DSP Blocks)
Grade
C = Commercial
I = Industrial
Logic Capacity
1* = 1.5K LUTs
3* = 3K LUTs
6 = 6K LUTs
10 = 10K LUTs
15 = 15K LUTs
20 = 20K LUTs
33 = 33K LUTs
Package
T100 = 100-pin TQFP*
T144 = 144-pin TQFP
Q208 = 208-pin PQFP
F256 = 256-ball fpBGA
F484 = 484-ball fpBGA
F672 = 672-ball fpBGA
TN100 = 100-pin Lead-free TQFP*
TN144 = 144-pin Lead-free TQFP
QN208 = 208-pin Lead-free PQFP
FN256 = 256-ball Lead-free fpBGA
FN484 = 484-ball Lead-free fpBGA
FN672 = 672-ball Lead-free fpBGA
Supply Voltage
E = 1.2V
Speed
3 = Slowest
4
5 = Fastest
*Not available in the LatticeECP Family.
Ordering Information
Note:þLatticeECP/EC devices are dual marked. For example, the commercial speed grade LFEC20E-4F484C is
also marked with industrial grade -3I (LFEC20E-3F484I). The commercial grade is one speed grade faster than the
associated dual mark industrial grade. The slowest commercial speed grade does not have industrial markings.
The markings appear as follows:
EC
LFEC20E4F484C-3I
Datecode
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
5-1
Order Info_02.4
Ordering Information
LatticeECP/EC Family Data Sheet
Conventional Packaging
LatticeEC Commercial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC1E-3Q208C
112
-3
PQFP
208
COM
1.5K
LFEC1E-4Q208C
112
-4
PQFP
208
COM
1.5K
LFEC1E-5Q208C
112
-5
PQFP
208
COM
1.5K
LFEC1E-3T144C
97
-3
TQFP
144
COM
1.5K
LFEC1E-4T144C
97
-4
TQFP
144
COM
1.5K
LFEC1E-5T144C
97
-5
TQFP
144
COM
1.5K
LFEC1E-3T100C
67
-3
TQFP
100
COM
1.5K
LFEC1E-4T100C
67
-4
TQFP
100
COM
1.5K
LFEC1E-5T100C
67
-5
TQFP
100
COM
1.5K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC3E-3F256C
Part Number
160
-3
fpBGA
256
COM
3.1K
LFEC3E-4F256C
160
-4
fpBGA
256
COM
3.1K
LFEC3E-5F256C
160
-5
fpBGA
256
COM
3.1K
LFEC3E-3Q208C
145
-3
PQFP
208
COM
3.1K
LFEC3E-4Q208C
145
-4
PQFP
208
COM
3.1K
LFEC3E-5Q208C
145
-5
PQFP
208
COM
3.1K
LFEC3E-3T144C
97
-3
TQFP
144
COM
3.1K
LFEC3E-4T144C
97
-4
TQFP
144
COM
3.1K
LFEC3E-5T144C
97
-5
TQFP
144
COM
3.1K
LFEC3E-3T100C
67
-3
TQFP
100
COM
3.1K
LFEC3E-4T100C
67
-4
TQFP
100
COM
3.1K
LFEC3E-5T100C
67
-5
TQFP
100
COM
3.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC6E-3F484C
Part Number
224
-3
fpBGA
484
COM
6.1K
LFEC6E-4F484C
224
-4
fpBGA
484
COM
6.1K
LFEC6E-5F484C
224
-5
fpBGA
484
COM
6.1K
LFEC6E-3F256C
195
-3
fpBGA
256
COM
6.1K
LFEC6E-4F256C
195
-4
fpBGA
256
COM
6.1K
LFEC6E-5F256C
195
-5
fpBGA
256
COM
6.1K
LFEC6E-3Q208C
147
-3
PQFP
208
COM
6.1K
LFEC6E-4Q208C
147
-4
PQFP
208
COM
6.1K
LFEC6E-5Q208C
147
-5
PQFP
208
COM
6.1K
LFEC6E-3T144C
97
-3
TQFP
144
COM
6.1K
LFEC6E-4T144C
97
-4
TQFP
144
COM
6.1K
LFEC6E-5T144C
97
-5
TQFP
144
COM
6.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC10E-3F484C
Part Number
288
-3
fpBGA
484
COM
10.2K
LFEC10E-4F484C
288
-4
fpBGA
484
COM
10.2K
LFEC10E-5F484C
288
-5
fpBGA
484
COM
10.2K
LFEC10E-3F256C
195
-3
fpBGA
256
COM
10.2K
5-2
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeEC Commercial (Continued)
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC10E-4F256C
195
-4
fpBGA
256
COM
10.2K
LFEC10E-5F256C
195
-5
fpBGA
256
COM
10.2K
LFEC10E-3Q208C
147
-3
PQFP
208
COM
10.2K
LFEC10E-4Q208C
147
-4
PQFP
208
COM
10.2K
LFEC10E-5Q208C
147
-5
PQFP
208
COM
10.2K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC15E-3F484C
Part Number
352
-3
fpBGA
484
COM
15.3K
LFEC15E-4F484C
352
-4
fpBGA
484
COM
15.3K
LFEC15E-5F484C
352
-5
fpBGA
484
COM
15.3K
LFEC15E-3F256C
195
-3
fpBGA
256
COM
15.3K
LFEC15E-4F256C
195
-4
fpBGA
256
COM
15.3K
LFEC15E-5F256C
195
-5
fpBGA
256
COM
15.3K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC20E-3F672C
400
-3
fpBGA
672
COM
19.7K
LFEC20E-4F672C
400
-4
fpBGA
672
COM
19.7K
LFEC20E-5F672C
400
-5
fpBGA
672
COM
19.7K
LFEC20E-3F484C
360
-3
fpBGA
484
COM
19.7K
LFEC20E-4F484C
360
-4
fpBGA
484
COM
19.7K
LFEC20E-5F484C
360
-5
fpBGA
484
COM
19.7K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC33E-3F672C
Part Number
496
-3
fpBGA
672
COM
32.8K
LFEC33E-4F672C
496
-4
fpBGA
672
COM
32.8K
LFEC33E-5F672C
496
-5
fpBGA
672
COM
32.8K
LFEC33E-3F484C
360
-3
fpBGA
484
COM
32.8K
LFEC33E-4F484C
360
-4
fpBGA
484
COM
32.8K
LFEC33E-5F484C
360
-5
fpBGA
484
COM
32.8K
5-3
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeECP Commercial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP6E-3F484C
224
-3
fpBGA
484
COM
6.1K
LFECP6E-4F484C
224
-4
fpBGA
484
COM
6.1K
LFECP6E-5F484C
224
-5
fpBGA
484
COM
6.1K
LFECP6E-3F256C
195
-3
fpBGA
256
COM
6.1K
LFECP6E-4F256C
195
-4
fpBGA
256
COM
6.1K
LFECP6E-5F256C
195
-5
fpBGA
256
COM
6.1K
LFECP6E-3Q208C
147
-3
PQFP
208
COM
6.1K
LFECP6E-4Q208C
147
-4
PQFP
208
COM
6.1K
LFECP6E-5Q208C
147
-5
PQFP
208
COM
6.1K
LFECP6E-3T144C
97
-3
TQFP
144
COM
6.1K
LFECP6E-4T144C
97
-4
TQFP
144
COM
6.1K
LFECP6E-5T144C
97
-5
TQFP
144
COM
6.1K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP10E-3F484C
288
-3
fpBGA
484
COM
10.2K
LFECP10E-4F484C
288
-4
fpBGA
484
COM
10.2K
LFECP10E-5F484C
288
-5
fpBGA
484
COM
10.2K
LFECP10E-3F256C
195
-3
fpBGA
256
COM
10.2K
LFECP10E-4F256C
195
-4
fpBGA
256
COM
10.2K
LFECP10E-5F256C
195
-5
fpBGA
256
COM
10.2K
LFECP10E-3Q208C
147
-3
PQFP
208
COM
10.2K
LFECP10E-4Q208C
147
-4
PQFP
208
COM
10.2K
LFECP10E-5Q208C
147
-5
PQFP
208
COM
10.2K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP15E-3F484C
352
-3
fpBGA
484
COM
15.3K
LFECP15E-4F484C
352
-4
fpBGA
484
COM
15.3K
LFECP15E-5F484C
352
-5
fpBGA
484
COM
15.3K
LFECP15E-3F256C
195
-3
fpBGA
256
COM
15.3K
LFECP15E-4F256C
195
-4
fpBGA
256
COM
15.3K
LFECP15E-5F256C
195
-5
fpBGA
256
COM
15.3K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP20E-3F672C
400
-3
fpBGA
672
COM
19.7K
LFECP20E-4F672C
400
-4
fpBGA
672
COM
19.7K
LFECP20E-5F672C
400
-5
fpBGA
672
COM
19.7K
LFECP20E-3F484C
360
-3
fpBGA
484
COM
19.7K
LFECP20E-4F484C
360
-4
fpBGA
484
COM
19.7K
LFECP20E-5F484C
360
-5
fpBGA
484
COM
19.7K
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP33E-3F672C
496
-3
fpBGA
672
COM
32.8K
LFECP33E-4F672C
496
-4
fpBGA
672
COM
32.8K
LFECP33E-5F672C
496
-5
fpBGA
672
COM
32.8K
5-4
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeECP Commercial (Continued)
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP33E-3F484C
360
-3
fpBGA
484
COM
32.8K
LFECP33E-4F484C
360
-4
fpBGA
484
COM
32.8K
LFECP33E-5F484C
360
-5
fpBGA
484
COM
32.8K
LatticeEC Industrial
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC1E-3Q208I
Part Number
112
-3
PQFP
208
IND
1.5K
LFEC1E-4Q208I
112
-4
PQFP
208
IND
1.5K
LFEC1E-3T144I
97
-3
TQFP
144
IND
1.5K
LFEC1E-4T144I
97
-4
TQFP
144
IND
1.5K
LFEC1E-3T100I
67
-3
TQFP
100
IND
1.5K
LFEC1E-4T100I
67
-4
TQFP
100
IND
1.5K
I/Os
Grade
Package
Pins
Temp.
LUTs
160
-3
fpBGA
256
IND
3.1K
Part Number
LFEC3E-3F256I
LFEC3E-4F256I
160
-4
fpBGA
256
IND
3.1K
LFEC3E-3Q208I
145
-3
PQFP
208
IND
3.1K
LFEC3E-4Q208I
145
-4
PQFP
208
IND
3.1K
LFEC3E-3T144I
97
-3
TQFP
144
IND
3.1K
LFEC3E-4T144I
97
-4
TQFP
144
IND
3.1K
LFEC3E-3T100I
67
-3
TQFP
100
IND
3.1K
LFEC3E-4T100I
67
-4
TQFP
100
IND
3.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC6E-3F484I
Part Number
224
-3
fpBGA
484
IND
6.1K
LFEC6E-4F484I
224
-4
fpBGA
484
IND
6.1K
LFEC6E-3F256I
195
-3
fpBGA
256
IND
6.1K
LFEC6E-4F256I
195
-4
fpBGA
256
IND
6.1K
LFEC6E-3Q208I
147
-3
PQFP
208
IND
6.1K
LFEC6E-4Q208I
147
-4
PQFP
208
IND
6.1K
LFEC6E-3T144I
97
-3
TQFP
144
IND
6.1K
LFEC6E-4T144I
97
-4
TQFP
144
IND
6.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC10E-3F484I
Part Number
288
-3
fpBGA
484
IND
10.2K
LFEC10E-4F484I
288
-4
fpBGA
484
IND
10.2K
LFEC10E-3F256I
195
-3
fpBGA
256
IND
10.2K
LFEC10E-4F256I
195
-4
fpBGA
256
IND
10.2K
LFEC10E-3 P208I
147
-3
PQFP
208
IND
10.2K
LFEC10E-4 P208I
147
-4
PQFP
208
IND
10.2K
5-5
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeEC Industrial (Continued)
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC15E-3F484I
352
-3
fpBGA
484
IND
15.3K
LFEC15E-4F484I
352
-4
fpBGA
484
IND
15.3K
LFEC15E-3F256I
195
-3
fpBGA
256
IND
15.3K
LFEC15E-4F256I
195
-4
fpBGA
256
IND
15.3K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC20E-3F672I
400
-3
fpBGA
672
IND
19.7K
LFEC20E-4F672I
400
-4
fpBGA
672
IND
19.7K
LFEC20E-3F484I
360
-3
fpBGA
484
IND
19.7K
LFEC20E-4F484I
360
-4
fpBGA
484
IND
19.7K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFEC33E-3F672I
496
-3
fpBGA
672
IND
32.8
LFEC33E-4F672I
496
-4
fpBGA
672
IND
32.8
LFEC33E-3F484I
360
-3
fpBGA
484
IND
32.8
LFEC33E-4F484I
360
-4
fpBGA
484
IND
32.8
Part Number
Part Number
LatticeECP Industrial
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP6E-3F484I
224
-3
fpBGA
484
IND
6.1K
LFECP6E-4F484I
224
-4
fpBGA
484
IND
6.1K
LFECP6E-3F256I
195
-3
fpBGA
256
IND
6.1K
LFECP6E-4F256I
195
-4
fpBGA
256
IND
6.1K
LFECP6E-3Q208I
147
-3
PQFP
208
IND
6.1K
LFECP6E-4Q208I
147
-4
PQFP
208
IND
6.1K
LFECP6E-3T144I
97
-3
TQFP
144
IND
6.1K
LFECP6E-4T144I
97
-4
TQFP
144
IND
6.1K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP10E-3F484I
288
-3
fpBGA
484
IND
10.2K
LFECP10E-4F484I
288
-4
fpBGA
484
IND
10.2K
LFECP10E-3F256I
195
-3
fpBGA
256
IND
10.2K
LFECP10E-4F256I
195
-4
fpBGA
256
IND
10.2K
LFECP10E-3Q208I
147
-3
PQFP
208
IND
10.2K
LFECP10E-4Q208I
147
-4
PQFP
208
IND
10.2K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP15E-3F484I
352
-3
fpBGA
484
IND
15.3K
LFECP15E-4F484I
352
-4
fpBGA
484
IND
15.3K
LFECP15E-3F256I
195
-3
fpBGA
256
IND
15.3K
LFECP15E-4F256I
195
-4
fpBGA
256
IND
15.3K
Part Number
Part Number
5-6
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeECP Industrial (Continued)
Part Number
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP20E-3F672I
400
-3
fpBGA
672
IND
19.7K
LFECP20E-4F672I
400
-4
fpBGA
672
IND
19.7K
LFECP20E-3F484I
360
-3
fpBGA
484
IND
19.7K
LFECP20E-4F484I
360
-4
fpBGA
484
IND
19.7K
I/Os
Grade
Package
Pins
Temp.
LUTs
LFECP33E-3F672I
496
-3
fpBGA
672
IND
32.8K
LFECP33E-4F672I
496
-4
fpBGA
672
IND
32.8K
LFECP33E-3F484I
360
-3
fpBGA
484
IND
32.8K
LFECP33E-4F484I
360
-4
fpBGA
484
IND
32.8K
Part Number
5-7
Ordering Information
LatticeECP/EC Family Data Sheet
Lead-Free Packaging
LatticeEC Commercial
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC1E-3QN208C
112
-3
Lead-Free PQFP
208
COM
1.5K
LFEC1E-4QN208C
112
-4
Lead-Free PQFP
208
COM
1.5K
LFEC1E-5QN208C
112
-5
Lead-Free PQFP
208
COM
1.5K
LFEC1E-3TN144C
97
-3
Lead-Free TQFP
144
COM
1.5K
LFEC1E-4TN144C
97
-4
Lead-Free TQFP
144
COM
1.5K
LFEC1E-5TN144C
97
-5
Lead-Free TQFP
144
COM
1.5K
LFEC1E-3TN100C
67
-3
Lead-Free TQFP
100
COM
1.5K
LFEC1E-4TN100C
67
-4
Lead-Free TQFP
100
COM
1.5K
LFEC1E-5TN100C
67
-5
Lead-Free TQFP
100
COM
1.5K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC3E-3FN256C
Part Number
160
-3
Lead-Free fpBGA
256
COM
3.1K
LFEC3E-4FN256C
160
-4
Lead-Free fpBGA
256
COM
3.1K
LFEC3E-5FN256C
160
-5
Lead-Free fpBGA
256
COM
3.1K
LFEC3E-3QN208C
145
-3
Lead-Free PQFP
208
COM
3.1K
LFEC3E-4QN208C
145
-4
Lead-Free PQFP
208
COM
3.1K
LFEC3E-5QN208C
145
-5
Lead-Free PQFP
208
COM
3.1K
LFEC3E-3TN144C
97
-3
Lead-Free TQFP
144
COM
3.1K
LFEC3E-4TN144C
97
-4
Lead-Free TQFP
144
COM
3.1K
LFEC3E-5TN144C
97
-5
Lead-Free TQFP
144
COM
3.1K
LFEC3E-3TN100C
67
-3
Lead-Free TQFP
100
COM
3.1K
LFEC3E-4TN100C
67
-4
Lead-Free TQFP
100
COM
3.1K
LFEC3E-5TN100C
67
-5
Lead-Free TQFP
100
COM
3.1K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC6E-3FN484C
Part Number
224
-3
Lead-Free fpBGA
484
COM
6.1K
LFEC6E-4FN484C
224
-4
Lead-Free fpBGA
484
COM
6.1K
LFEC6E-5FN484C
224
-5
Lead-Free fpBGA
484
COM
6.1K
LFEC6E-3FN256C
195
-3
Lead-Free fpBGA
256
COM
6.1K
LFEC6E-4FN256C
195
-4
Lead-Free fpBGA
256
COM
6.1K
LFEC6E-5FN256C
195
-5
Lead-Free fpBGA
256
COM
6.1K
LFEC6E-3QN208C
147
-3
Lead-Free PQFP
208
COM
6.1K
LFEC6E-4QN208C
147
-4
Lead-Free PQFP
208
COM
6.1K
LFEC6E-5QN208C
147
-5
Lead-Free PQFP
208
COM
6.1K
LFEC6E-3TN144C
97
-3
Lead-Free TQFP
144
COM
6.1K
LFEC6E-4TN144C
97
-4
Lead-Free TQFP
144
COM
6.1K
LFEC6E-5TN144C
97
-5
Lead-Free TQFP
144
COM
6.1K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC10E-3FN484C
Part Number
288
-3
Lead-Free fpBGA
484
COM
10.2K
LFEC10E-4FN484C
288
-4
Lead-Free fpBGA
484
COM
10.2K
LFEC10E-5FN484C
288
-5
Lead-Free fpBGA
484
COM
10.2K
LFEC10E-3FN256C
195
-3
Lead-Free fpBGA
256
COM
10.2K
5-8
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeEC Commercial (Continued)
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC10E-4FN256C
195
-4
Lead-Free fpBGA
256
COM
10.2K
LFEC10E-5FN256C
195
-5
Lead-Free fpBGA
256
COM
10.2K
LFEC10E-3QN208C
147
-3
Lead-Free PQFP
208
COM
10.2K
LFEC10E-4QN208C
147
-4
Lead-Free PQFP
208
COM
10.2K
LFEC10E-5QN208C
147
-5
Lead-Free PQFP
208
COM
10.2K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC15E-3FN484C
352
-3
Lead-Free fpBGA
484
COM
15.3K
LFEC15E-4FN484C
352
-4
Lead-Free fpBGA
484
COM
15.3K
LFEC15E-5FN484C
352
-5
Lead-Free fpBGA
484
COM
15.3K
LFEC15E-3FN256C
195
-3
Lead-Free fpBGA
256
COM
15.3K
LFEC15E-4FN256C
195
-4
Lead-Free fpBGA
256
COM
15.3K
LFEC15E-5FN256C
195
-5
Lead-Free fpBGA
256
COM
15.3K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC20E-3FN672C
400
-3
Lead-Free fpBGA
672
COM
19.7K
LFEC20E-4FN672C
400
-4
Lead-Free fpBGA
672
COM
19.7K
LFEC20E-5FN672C
400
-5
Lead-Free fpBGA
672
COM
19.7K
LFEC20E-3FN484C
360
-3
Lead-Free fpBGA
484
COM
19.7K
LFEC20E-4FN484C
360
-4
Lead-Free fpBGA
484
COM
19.7K
LFEC20E-5FN484C
360
-5
Lead-Free fpBGA
484
COM
19.7K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC33E-3FN672C
Part Number
496
-3
Lead-Free fpBGA
672
COM
32.8K
LFEC33E-4FN672C
496
-4
Lead-Free fpBGA
672
COM
32.8K
LFEC33E-5FN672C
496
-5
Lead-Free fpBGA
672
COM
32.8K
LFEC33E-3FN484C
360
-3
Lead-Free fpBGA
484
COM
32.8K
LFEC33E-4FN484C
360
-4
Lead-Free fpBGA
484
COM
32.8K
LFEC33E-5FN484C
360
-5
Lead-Free fpBGA
484
COM
32.8K
5-9
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeECP Commercial
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP6E-3FN484C
224
-3
Lead-Free fpBGA
484
COM
6.1K
LFECP6E-4FN484C
224
-4
Lead-Free fpBGA
484
COM
6.1K
LFECP6E-5FN484C
224
-5
Lead-Free fpBGA
484
COM
6.1K
LFECP6E-3FN256C
195
-3
Lead-Free fpBGA
256
COM
6.1K
LFECP6E-4FN256C
195
-4
Lead-Free fpBGA
256
COM
6.1K
LFECP6E-5FN256C
195
-5
Lead-Free fpBGA
256
COM
6.1K
LFECP6E-3QN208C
147
-3
Lead-Free PQFP
208
COM
6.1K
LFECP6E-4QN208C
147
-4
Lead-Free PQFP
208
COM
6.1K
LFECP6E-5QN208C
147
-5
Lead-Free PQFP
208
COM
6.1K
LFECP6E-3TN144C
97
-3
Lead-Free TQFP
144
COM
6.1K
LFECP6E-4TN144C
97
-4
Lead-Free TQFP
144
COM
6.1K
LFECP6E-5TN144C
97
-5
Lead-Free TQFP
144
COM
6.1K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP10E-3FN484C
288
-3
Lead-Free fpBGA
484
COM
10.2K
LFECP10E-4FN484C
288
-4
Lead-Free fpBGA
484
COM
10.2K
LFECP10E-5FN484C
288
-5
Lead-Free fpBGA
484
COM
10.2K
LFECP10E-3FN256C
195
-3
Lead-Free fpBGA
256
COM
10.2K
LFECP10E-4FN256C
195
-4
Lead-Free fpBGA
256
COM
10.2K
LFECP10E-5FN256C
195
-5
Lead-Free fpBGA
256
COM
10.2K
LFECP10E-3QN208C
147
-3
Lead-Free PQFP
208
COM
10.2K
LFECP10E-4QN208C
147
-4
Lead-Free PQFP
208
COM
10.2K
LFECP10E-5QN208C
147
-5
Lead-Free PQFP
208
COM
10.2K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP15E-3FN484C
352
-3
Lead-Free fpBGA
484
COM
15.3K
LFECP15E-4FN484C
352
-4
Lead-Free fpBGA
484
COM
15.3K
LFECP15E-5FN484C
352
-5
Lead-Free fpBGA
484
COM
15.3K
LFECP15E-3FN256C
195
-3
Lead-Free fpBGA
256
COM
15.3K
LFECP15E-4FN256C
195
-4
Lead-Free fpBGA
256
COM
15.3K
LFECP15E-5FN256C
195
-5
Lead-Free fpBGA
256
COM
15.3K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP20E-3FN672C
400
-3
Lead-Free fpBGA
672
COM
19.7K
LFECP20E-4FN672C
400
-4
Lead-Free fpBGA
672
COM
19.7K
LFECP20E-5FN672C
400
-5
Lead-Free fpBGA
672
COM
19.7K
LFECP20E-3FN484C
400
-3
Lead-Free fpBGA
484
COM
19.7K
LFECP20E-4FN484C
400
-4
Lead-Free fpBGA
484
COM
19.7K
LFECP20E-5FN484C
400
-5
Lead-Free fpBGA
484
COM
19.7K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP33E-3FN672C
496
-3
Lead-Free fpBGA
672
COM
32.8K
LFECP33E-4FN672C
496
-4
Lead-Free fpBGA
672
COM
32.8K
LFECP33E-5FN672C
496
-5
Lead-Free fpBGA
672
COM
32.8K
5-10
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeECP Commercial (Continued)
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP33E-3FN484C
360
-3
Lead-Free fpBGA
484
COM
32.8K
LFECP33E-4FN484C
360
-4
Lead-Free fpBGA
484
COM
32.8K
LFECP33E-5FN484C
360
-5
Lead-Free fpBGA
484
COM
32.8K
LatticeEC Industrial
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC1E-3QN208I
112
-3
Lead-Free PQFP
208
IND
1.5K
LFEC1E-4QN208I
112
-4
Lead-Free PQFP
208
IND
1.5K
LFEC1E-3TN144I
97
-3
Lead-Free TQFP
144
IND
1.5K
LFEC1E-4TN144I
97
-4
Lead-Free TQFP
144
IND
1.5K
LFEC1E-3TN100I
67
-3
Lead-Free TQFP
100
IND
1.5K
LFEC1E-4TN100I
67
-4
Lead-Free TQFP
100
IND
1.5K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC3E-3FN256I
160
-3
Lead-Free fpBGA
256
IND
3.1K
LFEC3E-4FN256I
160
-4
Lead-Free fpBGA
256
IND
3.1K
LFEC3E-3QN208I
145
-3
Lead-Free PQFP
208
IND
3.1K
LFEC3E-4QN208I
145
-4
Lead-Free PQFP
208
IND
3.1K
LFEC3E-3TN144I
97
-3
Lead-Free TQFP
144
IND
3.1K
LFEC3E-4TN144I
97
-4
Lead-Free TQFP
144
IND
3.1K
LFEC3E-3TN100I
67
-3
Lead-Free TQFP
100
IND
3.1K
LFEC3E-4TN100I
67
-4
Lead-Free TQFP
100
IND
3.1K
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC6E-3FN484I
224
-3
Lead-Free fpBGA
484
IND
6.1K
LFEC6E-4FN484I
224
-4
Lead-Free fpBGA
484
IND
6.1K
LFEC6E-3FN256I
195
-3
Lead-Free fpBGA
256
IND
6.1K
LFEC6E-4FN256I
195
-4
Lead-Free fpBGA
256
IND
6.1K
LFEC6E-3QN208I
147
-3
Lead-Free PQFP
208
IND
6.1K
LFEC6E-4QN208I
147
-4
Lead-Free PQFP
208
IND
6.1K
LFEC6E-3TN144I
97
-3
Lead-Free TQFP
144
IND
6.1K
LFEC6E-4TN144I
97
-4
Lead-Free TQFP
144
IND
6.1K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC10E-3FN484I
Part Number
288
-3
Lead-Free fpBGA
484
IND
10.2K
LFEC10E-4FN484I
288
-4
Lead-Free fpBGA
484
IND
10.2K
LFEC10E-3FN256I
195
-3
Lead-Free fpBGA
256
IND
10.2K
LFEC10E-4FN256I
195
-4
Lead-Free fpBGA
256
IND
10.2K
LFEC10E-3QN208I
147
-3
Lead-Free PQFP
208
IND
10.2K
LFEC10E-4QN208I
147
-4
Lead-Free PQFP
208
IND
10.2K
5-11
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeEC Industrial (Continued)
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC15E-3FN484I
352
-3
Lead-Free fpBGA
484
IND
15.3K
LFEC15E-4FN484I
352
-4
Lead-Free fpBGA
484
IND
15.3K
LFEC15E-3FN256I
195
-3
Lead-Free fpBGA
256
IND
15.3K
LFEC15E-4FN256I
195
-4
Lead-Free fpBGA
256
IND
15.3K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC20E-3FN672I
400
-3
Lead-Free fpBGA
672
IND
19.7K
LFEC20E-4FN672I
400
-4
Lead-Free fpBGA
672
IND
19.7K
LFEC20E-3FN484I
400
-3
Lead-Free fpBGA
484
IND
19.7K
LFEC20E-4FN484I
400
-4
Lead-Free fpBGA
484
IND
19.7K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFEC33E-3FN672I
496
-3
Lead-Free fpBGA
672
IND
32.8K
LFEC33E-4FN672I
496
-4
Lead-Free fpBGA
672
IND
32.8K
LFEC33E-3FN484I
360
-3
Lead-Free fpBGA
484
IND
32.8K
LFEC33E-4FN484I
360
-4
Lead-Free fpBGA
484
IND
32.8K
Part Number
Part Number
LatticeECP Industrial
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP6E-3FN484I
224
-3
Lead-Free fpBGA
484
IND
6.1K
LFECP6E-4FN484I
224
-4
Lead-Free fpBGA
484
IND
6.1K
LFECP6E-3FN256I
195
-3
Lead-Free fpBGA
256
IND
6.1K
LFECP6E-4FN256I
195
-4
Lead-Free fpBGA
256
IND
6.1K
LFECP6E-3QN208I
147
-3
Lead-Free PQFP
208
IND
6.1K
LFECP6E-4QN208I
147
-4
Lead-Free PQFP
208
IND
6.1K
LFECP6E-3TN144I
97
-3
Lead-Free TQFP
144
IND
6.1K
LFECP6E-4TN144I
97
-4
Lead-Free TQFP
144
IND
6.1K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP10E-3FN484I
288
-3
Lead-Free fpBGA
484
IND
10.2K
LFECP10E-4FN484I
288
-4
Lead-Free fpBGA
484
IND
10.2K
LFECP10E-3FN256I
195
-3
Lead-Free fpBGA
256
IND
10.2K
LFECP10E-4FN256I
195
-4
Lead-Free fpBGA
256
IND
10.2K
LFECP10E-3QN208I
147
-3
Lead-Free PQFP
208
IND
10.2K
LFECP10E-4QN208I
147
-4
Lead-Free PQFP
208
IND
10.2K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP15E-3FN484I
352
-3
Lead-Free fpBGA
484
IND
15.3K
LFECP15E-4FN484I
352
-4
Lead-Free fpBGA
484
IND
15.3K
LFECP15E-3FN256I
195
-3
Lead-Free fpBGA
256
IND
15.3K
LFECP15E-4FN256I
195
-4
Lead-Free fpBGA
256
IND
15.3K
Part Number
Part Number
5-12
Ordering Information
LatticeECP/EC Family Data Sheet
LatticeECP Industrial (Continued)
Part Number
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP20E-3FN672I
400
-3
Lead-Free fpBGA
672
IND
19.7K
LFECP20E-4FN672I
400
-4
Lead-Free fpBGA
672
IND
19.7K
LFECP20E-3FN484I
400
-3
Lead-Free fpBGA
484
IND
19.7K
LFECP20E-4FN484I
400
-4
Lead-Free fpBGA
484
IND
19.7K
I/Os
Grade
Package
Pins/Balls
Temp.
LUTs
LFECP33E-3FN672I
496
-3
Lead-Free fpBGA
672
IND
32.8K
LFECP33E-4FN672I
496
-4
Lead-Free fpBGA
672
IND
32.8K
LFECP33E-3FN484I
360
-3
Lead-Free fpBGA
484
IND
32.8K
LFECP33E-4FN484I
360
-4
Lead-Free fpBGA
484
IND
32.8K
Part Number
5-13
LatticeECP/EC Family Data Sheet
Supplemental Information
September 2012
Data Sheet
For Further Information
A variety of technical notes for the LatticeECP/EC family are available on the Lattice web site at www.latticesemi.com.
• LatticeECP/EC sysIO Usage Guide (TN1056)
• LatticeECP/EC sysCLOCK PLL Design and Usage Guide (TN1049)
• Memory Usage Guide for LatticeECP/EC Devices (TN1051)
• LatticeECP/EC DDR Usage Guide (TN1050)
• Power Estimation and Management for LatticeECP/EC and LatticeXP Devices (TN1052)
• LatticeECP-DSP sysDSP Usage Guide (TN1057)
• LatticeECP/EC sysCONFIG Usage Guide (TN1053)
• IEEE 1149.1 Boundary Scan Testability in Lattice Devices
For further information about interface standards refer to the following web sites:
• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: ww.pcisig.com
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
6-1
Further Info_01.4
LatticeECP/EC Family Data Sheet
Revision History
September 2012
Data Sheet DS1000
Revision History
Date
Version
Section
June 2004
01.0
—
August 2004
01.1
Change Summary
Initial release.
Introduction
Added new device LFECP/LFEC33 in Table 1-1.
Architecture
Added New device LFECP/LFEC33 in Tables 2-9, 2-10 and 2-11.
DC & Switching
Characteristics
Added New device LFECP/LFEC33 on Supply current (Standby) tables.
Ordering Information
Added 33K Logic Capacity Device in Part Number Description section.
Added New device LFECP/LFEC33 on Initialization Supply current
tables.
Added EC33, ECP33 device: Industrial and Commercial to Part Number
table.
Corrected I/O counts in the part number tables for 100/144 TQFP and
208 PQFP packages to match Table 1-1 on page 1.
November 2004
01.3
Introduction
Changed DDR333 (166MHz) to DDR400 (200MHz)
Added “RSDS” offering to the Features list: Flexible I/O Buffer
Architecture
Added information about Secondary Clock Sources
Added information about DCS
Added a section on “Recommended Power-up Sequence”
Updated Figure 2-24 “DQS Routing”
Added DSP Block performance numbers to Table 2-11
Added another row for RSDS in Table 2-13 and Table 2-14
DC & Switching
Characteristics
Updated new timing numbers
Added numbers to derating table
Added DC conditions to RSDS table
Changed LVDS Max. VCCIO to 2.625
Added a row for RSDS in “Operating Condition” table
Updated standby and initialization current table
Added figure 3-12: sysConfig SPI port sequence
Added DDR Timing Table and DDR Timings Figure 3-6
Pinout Information
Added LFECP/EC6 to Pin Information
Added LFECP/EC6 to Power Supply and NC Connections
Added LFECP/EC6 144 TQFP Logic Signal Connections
Added LFECP/EC6 208 PQFP Logic Signal Connections
Added LFECP/EC6 256 fpBGA Logic Signal Connections
Added LFECP/EC6 484 fpBGA Logic Signal Connections
Ordering Information
Added 33K Logic Capacity Device in Part Number Description section.
Added Part Number table for Commercial EC33.
Added Part Number table for Commercial ECP33.
Added Part Number table for Industrial EC33.
Added Part Number table for Industrial ECP33.
© 2012 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
7-1
Revision History
LatticeECP/EC Family Data Sheet
Date
Version
Section
December 2004
01.4
Architecture
Pinout Information
Change Summary
Updated Hot Socketing Recommended Power Up Sequence section.
Added LFEC1, LFEC3, LFECP/EC10, LFECP/EC15 to Pin Information
Added LFEC1, LFEC3, LFECP/EC10, LFECP/EC15 to Power Supply
and NC Connections
Added LFEC1 and LFEC3 100 TQFP Pinout
Added LFEC1 and LFEC3 144 TQFP Pinout
Added LFEC1, LFEC3 and LFECP/EC10 208 PQFP Pinout
Added LFEC3, LFECP/EC10 and LFECP/EC15 256 fpBGA Pinout
Added LFECP/EC10 and LFECP/EC15 484 fpBGA Pinout
Ordering Information
Added Lead-Free Package Designators
Added Lead-Free Ordering Part Numbers
Supplemental
Information
April 2005
01.5
Architecture
Updated list of technical notes.
EBR memory support section has been updated with clarification.
Updated sysIO buffer pair section.
DC & Switching
Characteristics
Hot Socketing Specification has been updated.
DC Electrical Characteristics table (IIL, IIH) has been updated.
Supply Current (Standby) table has been updated.
Initialization Supply Current table has been updated.
External Switching Characteristics section has been updated.
Removed tRSTW spec. from PLL Parameter table.
tRST specifications have been updated.
sysCONFIG Port Timing Specifications (tBSCL, tIODISS, tPRGMRJ) have
been updated.
Pinout Information
Added LFECP/EC33 Pinout Information
Pin Information Summary table has been updated.
Power Supply and NC Connection table has been updated.
484-fpBGA logic connection has been updated (Ball # J6, J17, P6 and
P17 for ECP/EC33 are now called VCCPLL).
672-fpBGA logic connection has been updated (Ball # K19, L8, U19, U8
for ECP/EC33 are now called VCCPLL).
May 2005
01.6
Introduction
ECP/EC33 EBR SRAM Bits and Blocks have been updated to 498K and
54 respectively.
Architecture
Table 2-10 has been updated (ECP/EC33 EBR SRAM Bits and Blocks
have been updated to 498K and 54 respectively.)
Recommended Power Up Sequence section has been removed.
DC & Switching
Characteristics
Supply Current (Standby) table has been updated.
Initialization Supply Current table has been updated.
Vos test condition has been updated to (VOP+VOM)/2.
Register-to-Register performance table has been updated (rev. G 0.27).
External switching characteristics have been updated (rev. G 0.27).
Internal timing parameters have been updated (rev. G 0.27).
Timing adders have been updated (rev. G 0.27).
sysCONFIG port timing specifications have been updated.
Pinout Information
Pin Information Summary table has been updated.
Power Supply and NC Connection table has been updated.
Ordering Information
OPN list has been updated.
7-2
Revision History
LatticeECP/EC Family Data Sheet
Date
Version
Section
September 2005
02.0
Architecture
DC & Switching
Characteristics
Change Summary
sysIO section has been updated.
Recommended Operating Conditions has been updated with VCCPLL.
DC Electrical Characteristics table has been updated
Removed 5V Tolerant Input Buffer section.
Register-to-Register performance table has been updated (rev. G 0.28).
LatticeECP/EC External Switching Characteristics table has been
updated (rev. G 0.28).
LatticeECP/EC Internal Switching Characteristics table has been
updated (rev. G 0.28).
LatticeECP/EC Family Timing Adders have been updated (rev. G 0.28).
sysCLOCK PLL timing table has been updated (rev. G 0.28)
LatticeECP/EC sysCONFIG Port Timing specification table has been
updated (rev. G 0.28).
Master Clock table has been updated (rev. G 0.28).
JTAG Port Timing specification table has been updated (rev. G 0.28).
Pinout Information
November 2005
02.1
DC & Switching
Characteristics
Signal Description table has been updated with VCCPLL.
Pin-to-Pin Performance table has been updated (G 0.30)
- 4:1MUX, 8:1MUX, 16:1MUX, 32:1MUX
Register-to-Register Performance (G 0.30) - No timing number
changes.
External Switching Characteristics (G 0.30) - No timing number
changes.
Internal Switching Characteristics (G 0.30)
-tSUP_DSP, tHP_DSP, tSUO_DSP, tHO_DSP, tCOI_DSP, tCOD_DSP numbers
have been updated.
Family Timing Adders (G 0.30) - No timing number changes.
sysCLOCK PLL Timing (G 0.30) - No timing number changes.
sysCONFIG Port Timing Specifications (G 0.30) - No timing number
changes.
Master Clock (G 0.30) - No timing number changes.
JTAG Port Timing Specification (G 0.30) - No timing number changes.
Ordering Information
March 2006
02.2
DC & Switching
Characteristics
January 2007
02.3
Architecture
February 2007
02.4
Architecture
Added 208-PQFP lead-free part numbers.
Added footnote 3. to VCCAUX in the Recommended Operating Conditions table.
EBR Asynchronous Reset section added.
Updated EBR Asynchronous Reset section.
Updated Maximum Number of Elements in a Block table - MAC value for
x9 changed to 2.
May 2007
02.5
Architecture
November 2007
02.6
DC & Switching
Characteristics
Updated text in Ripple Mode section.
Added JTAG Port Waveforms diagram.
Updated tRST timing information in the sysCLOCK PLL Timing table.
Pinout Information
Supplemental
Information
February 2008
02.7
DC & Switching
Characteristics
September 2012
02.8
All
Added Thermal Management text section.
Updated title list.
Read/Write Mode (Normal) and Read/Write Mode with Input and Output
Registers waveforms in the EBR Memory Timing Diagrams section
have been updated.
Updated document with new corporate logo.
7-3