LatticeXP™ Advanced Evaluation Board
User’s Guide
September 2009
Revision: EB13_01.3
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Introduction
Traditional SRAM-based FPGA solutions require additional non-volatile memory components be placed onto the
printed circuit board (PCB), consuming additional resources and adding cost to the PCB solution. Alternatives to
the SRAM-based FPGA include fuse based FPGAs or ASIC devices. While these solutions provide a non-volatile
solution, they cannot be re-programmed.
The LatticeXP is a non-volatile, re-programmable FPGA solution, including both SRAM-based FPGA cells for easy
reconfiguration and Flash-based memory for non-volatility, all in one efficient package.
The LatticeXP Advanced Evaluation Board is designed to help the user examine key features of the LatticeXP
device and to aid in the development of custom designs. It is a ready-made, proven platform that includes a variety
of industry-standard memory and communication interfaces.
Please check the Lattice web site for updates to this user’s guide at: www.latticesemi.com/boards. Please note the
revision number on the front of this document.
Features
• Single board solution for evaluation of the LatticeXP FPGA
• LatticeXP FPGA in a 388-ball fpBGA package
• DDR SODIMM socket and DDR power generation
• FCRAM interface and memory
• 10/100/1000 Mbps Ethernet PHY to an RJ45 connector
• PCI plated finger connections
• Seven-segment LED
• Eight LEDs for visual feedback
• Eight-position switch input
• 1149.1 JTAG programming/boundary scan interface
• Built-in power supply operating from 5V external supply (AC adapter included)
• Selectable CORE voltage for the LatticeXP
• Selectable voltages for all eight I/O banks
• Built in oscillator for reference clocks
• SMA connectors to LatticeXP clock input and general purpose I/O pins
• 100mil center-center test point grid
General Description
The heart of the LatticeXP Advanced Evaluation board is the LatticeXP FPGA. Around this core device are several
industry standard interfaces and protocol devices.
The LatticeXP is manufactured to operate with multiple 1.2V to 5V voltage ranges. The LFXP10E device requires a
core voltage supply at 1.2V and an auxiliary I/O supply at 3.3V. The LFXP10C device requires a core voltage supply at 1.5V-3.3V, and an auxiliary 3.3V supply. The LatticeXP Advanced Evaluation Board provides four supply voltages, all sourced from a 5V external source. The board provides fixed 1.2V, 2.5V and 3.3V power rails, and a single
adjustable voltage that ranges from 1.2V to 3.3V. It is possible to use external power supplies to override the fixed
output levels, if it is required. The voltage supplied to the LatticeXP core is selectable using shunts.
2
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Once a correct set of supply voltages has been applied to the LatticeXP FPGA, the device is ready for programming. The LatticeXP FPGA is typically programmed and verified from the 1149.1 JTAG interface. A JTAG download
cable can be connected onto either a 1x10 SIP header or a 2x5 DIP header. The LatticeXP is typically programmed
using the Lattice ispVM® System software. The ispVM System software can be downloaded from the Lattice web
site at www.latticesemi.com/software. ispVM System 15.2 or later should be used to program the LatticeXP device.
The ispVM System software can be used to program either the SRAM memory or the Flash cells. The internal
Flash memory on the LatticeXP device can be reprogrammed in the background while the FPGA is operating.
LatticeXP devices can also be programmed using either serial or parallel interfaces. The parallel interface permits
either the SRAM or the Flash PROM memories to be programmed in the same manner as the JTAG port. The slave
serial and master serial modes available on the LatticeXP only program the SRAM memory. The LatticeXP
Advanced board does not support these alternate programming modes directly. Test points are provided on the
board for connecting to the serial programming points. The parallel programming interface is inaccessible since it is
connected to provide the FCRAM memory function.
Once programmed, the LatticeXP device has access to several interfaces designed to highlight FPGA features.
The LatticeXP directly interfaces to a set of switches, LEDs, a seven segment display, a prototype grid, a FCRAM
chip, Double-data-rate DRAM, a set of SMA connectors, a PCI bus and an Ethernet PHY device.
One of the key interfaces supported directly in the LatticeXP FPGA is easy support for DDR DRAM memories. The
evaluation board provides a DDR SODIMM socket for inserting SODIMM DDR modules. The LatticeXP directly
controls the address and memory strobes and connects to a 16-bit data bus. The data bus requires data qualification strobes (DQS) also be present. The LatticeXP FPGA series has an internal hardware assist for managing the
DQS signals. These signals are connected to the DDR SODIMM. The DDR interface is capable of running at
167MHz (333 DDR).
The FCRAM interface also uses the LatticeXP DQS hardware assist. The LatticeXP Advanced Evaluation board
provides a single FCRAM device, providing an eight-bit data bus. Data rates to between the FCRAM and the LatticeXP are equivalent to the DDR interface.
The evaluation board also provides a 3.3V 33MHz, 32-bit PCI interface. The board is designed to only be inserted
into 3.3V PCI backplanes. It is not recommended to install the board into a 5V backplane. The LatticeXP FPGA is
not directly 5V tolerant. In order for the device to be placed into a 5V system the PCI I/O clamp diodes must be
enabled, and series current limiting resistors need to be on each 5V I/O.
The evaluation board includes a 10/100/1000 Ethernet PHY device (National Semiconductor DP83865). All of the
necessary support components are provided to connect to a 10/100/1000 Base-T network. The physical side of the
PHY connects to an RJ45 connector with built-in isolation magnetics and a 3KV capacitor. The Media Independent
Interface (MII) is connected to the LatticeXP FPGA. The LatticeXP must be programmed with a Media Access Controller (MAC) before Ethernet traffic can be routed across the interface.
Additional features of the LatticeXP Advanced Evaluation board are described in detail in the following section.
Additional Resources
Additional resources related to this board can be downloaded from the web at www.latticesemi.com/boards. Click
on the appropriate evaluation board, then see the blue “Resources” box on the right of the screen for items such as:
updated documentation, software, sample designs, IP evaluation bitstreams, and more.
LatticeXP Advanced Evaluation Board Functional Description
The LatticeXP Advanced Evaluation Board is comprised of several primary functional blocks as shown in Figure 1.
In the descriptions below, locations of components and board features will be described relative to a compass symbol placed adjacent to the Lattice logo. For example, the seven-segment LED is on the northwest corner of the
board, and the trimmer potentiometer is on the southeast corner of the board.
3
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Figure 1. LatticeXP Advanced Evaluation Board Functional Blocks
Seven-Segment LEDs
and SMT LEDs
Prototype
Grid
FCRAM
Chip
0.1”
Center Pins
SMA
Connectors
0.1”
Center Pins
Program/Reset
Switches
Configuration
Switch
OSC
DIP
Switches
5V/GND
Posts
RJ45
Connector
DC Input
Jack
DDR
SODIMM
Ethernet
PHY
XP10
Device
0.1”
Center
Pins
DC Input
Connectors
Trimmer
POT
Power Supply
The LatticeXP Advanced Evaluation Board provides three locations to apply power. On the east side of the board
are a pair of banana jacks (J18 and J17), and a coaxial DC connector (J19), which receive power from either a
bench power supply or a brick style power supply. The third method for powering the board is to place it in a PCI
host. Do not provide a supply voltage from the other DC input sources when the board is plugged into a PCI host
backplane. In order to power the board, a DC source between 5V and 5.5V must be applied to the DC input jack or
the 5V/GND banana connectors. Alternately 3.3V must be supplied from the PCI interface.
The 5V DC input voltage is converted by DC-DC converters and switching power supplies to provide 3.3V, 2.5V,
1.2V, and an adjustable DC source. The output from these supplies travels through surface mounted fuse holders.
Fuses are supplied and prevent over-current conditions from damaging the power supply circuitry.
Each of the DC converters can be enabled and disabled independently. Jumpers JP15-18 control the conversion
system.
Table 1. Power Supply Enable/Disable
Jumper
Number
Supply Rail
Enabled/Disabled
JP15
VADJ
1-2: Disable
2-3: Enable
JP16
3.3V
1-2: Disable
2-3: Enable
JP17
2.5V
1-2: Disable
2-3: Enable
JP18
1.2V
1-2: Disable
2-3: Enable
Function
More banana jack inputs are located immediately next to (west of) the fuse blocks. These inputs provide an alternate means for applying DC voltage levels to the board. To apply voltages not supplied by the on-board power circuitry, simply remove the appropriate fuse from the fuse holder, then connect an alternate DC supply to the banana
jack associated with that fuse.
4
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Table 2. Power Supply Fuses
Fuse
Number
Supply Rail
Enabled/Disabled
Banana Jack
Input
F1
2.5V
J6
F2
1.2V
J7
F3
3.3V
J8
F4
VADJ
J9
A set of 2x4 100mil headers (JP7-JP11) are located next to (west of) the banana jacks (J13-J16). All but one of
these headers control the LatticeXP core voltage setting. JP10 connects to the Ethernet PHY (U2) and does not
connect to the core voltage of the LatticeXP device. JP10 is connected to VADJ on one side and to the PHY core
supply on the other. When using the PHY, VADJ must be set to 1.8V. Do not remove power from the Ethernet PHY
core. Doing so may damage the Ethernet PHY.
The remaining jumper blocks must have only one supply rail connected to the LatticeXP core voltage. The jumpers
placed on the jumper block must run in an east-west orientation. The jumper blocks assign the core voltage as follows:
Table 3. LatticeXP Core Voltage Selection
Jumper Block
Voltage Supplied to the LatticeXP Core
JP7
2.5V
JP8
1.2V ‘E’ series LatticeXP only
JP9
3.3V
JP11
VADJ
R29 is a trimmer potentiometer which controls the output level of the VADJ section of the power supply. R29 is
located in the southeast corner of the board. The VADJ can be set between 1.2V and 3.3V.
Programmability
Components and logic related to programming the LatticeXP FPGA are located in the northeast corner of the
board. These include a set of switches, jumpers, push buttons and header blocks that modify how the LatticeXP
programs itself when power is applied.
Figure 2. Programming Interface
PCI
JTAG
Serial
DIN
FPGA
Loader
JTAG
Programming
Configuration
Reset
Done
Program
SW4 Configuration
SW4 directs the LatticeXP to a programming data source used to configure the on-chip SRAM. SW4 is located on
the east side of the board. Table 4 shows the mode for each switch setting.
5
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Table 4. LatticeXP Programming Configuration
SW4 Setting
CFG1:CFG0
Mode
Up:up
Self-download mode
CPU Flash programming
Up:down
Slave parallel programming
Down:up
Master serial programming
Down:down
Slave serial programming
SW4 is typically set with both switches up. The LatticeXP loads configuration data from the on-chip internal Flash
memory.
The LatticeXP Advanced Evaluation board does not support the Slave Parallel programming mode since the data
bus and controls for this mode are dual-use pins, connected to the FCRAM interface.
Slave and Master Serial programming modes are also available. The serial mode interface is available using JP5
(Serial DIN) and JP13 (FPGA Loader). See the LatticeXP Evaluation Board schematic at the end of this document
for further details concerning the connectivity for the serial mode I/Os.
Table 5. LatticeXP Serial DIN Header Settings
Serial DIN Header
Action
1:2
JP13 DIN to XP DIN
2:3
Reserved
Open
XP DIN available for general purpose I/O
Push-buttons and Status LEDs
There are two push-buttons and three LEDs in the northeast corner of the evaluation board (see Figure 2). The
Program push-button asserts the PROGRAM pin on the LatticeXP device, erasing the SRAM and causing the LatticeXP to begin a programming sequence. Pushing the button also illuminates a yellow LED, giving confirmation
the switch has been closed.
The other push-button acts as a RESET input to the LatticeXP. The LatticeXP does not have a dedicated RESET
input. RESET must be assigned an I/O when the device is programmed. This is done by instantiating the Global
Reset macro in the HDL source. A red LED is illuminated whenever the RESET button is pushed.
The third LED is connected through a small amount of control circuitry to the LatticeXP DONE I/O. DONE is driven
high when the LatticeXP is successfully programmed. When DONE is driven high, this green LED turns on. This
LED is active when the LatticeXP is programmed using the JTAG header. When a JTAG programming sequence is
initiated, the LatticeXP I/Os are tristated. The tristated I/Os float high, which mimics the open-drain high assertion
of DONE following a successful programming sequence. At the completion of a JTAG programming sequence, the
DONE LED will stay illuminated if the programming sequence succeeded. It will turn off if the sequence did not succeed.
Programming Headers
The LatticeXP Advanced Evaluation Board provides two JTAG headers for programming the LatticeXP device.
These headers are wired in parallel, and only differ in form factor. JP12 is a 1x10 100mil header, and JP14 is a 2x5
100mil header. Either can be used with a Lattice USB or parallel port download cable. The download cable used
with ispVM System software may have either fly-wire JTAG wires, or the JTAG wires in a captive header. Figure 3
shows how the fly-wire JTAG wires are connected to the 1x10 header.
Important Note: The board must be un-powered when connecting, disconnecting, or reconnecting the ispDOWNLOAD Cable. Always connect the ispDOWNLOAD Cable's GND pin (black wire), before connecting any other JTAG
6
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
pins. Failure to follow these procedures can in result in damage to the LatticeXP FPGA device and render the
board inoperable.
Figure 3. JTAG Fly-wire Connections
Pin 10
Pin 1
VCC
RED
TDI
ORANGE
TDO
BROWN
TMS
PURPLE
GND
BLACK
TCK
TRST/DONE
INIT
WHITE
GREEN
BLUE
TMS
VCC
TDO
GND
TDI
TCK
DONE
INIT
The 2x5 programming header only connects the four basic JTAG signals, and the VCC source. The silkscreen provided on the board shows the connection points for each wire. All of the remaining fly-wires are left unconnected.
Regardless of which header is used, the ispVM System software is used to control the download cable. Configure
the ispVM software to use the cable type connected to the evaluation board (parallel port or USB). Select the bitstream to download, and the memory space to which the data will be written (SRAM or FLASH). See the ispVM
System Help for more information.
Table 6. Programming Interface Connection Summary
Function
LatticeXP
Pin Location
JP 13 Pin
BUSY
C11
JP13 (3)
CCLK
G4
JP13 (1)
DONE
B1
JP13 (9)
JP12 (9)
INITN
Y2
JP13 (8)
JP12 (10)
PROGRAMN
F4
JP13 (10)
JP 6 Pin
JP 12 Pin
JP 14 Pin
Note
D14 (Green
LED)
D15 (Yellow
LED)
TCK
D18
JP6 (8)
JP12 (8)
JP14 (1)
TDI
D20
JP6 (4)
JP12 (3)
JP14 (5)
TDO
F19
JP6 (2)
JP12 (2)
JP14 (7)
TMS
D19
JP6 (6)
JP12 (6)
JP14 (3)
Table 7. Supplemental Programming Interface Connection Summary
Schematic Name
LatticeXP
Pin Location
CFG0
C1
JP 5 Pin
CFG1
B2
D0
D10
DIN_2_D0
C13
JP5 (3)
DIN_2_SDIN
A7
JP5 (1)
Important: Use only ispVM System version 15.2 or later to program the LatticeXP device.
7
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
LatticeXP and Support Interfaces
The LatticeXP Advanced Evaluation Board includes advanced interfaces such as DDR, PCI, FCRAM and Ethernet.
These are complex either by the nature of the signaling interface, or by the internal programming required to operate them. Lattice provides bitstreams which can be used to evaluate the performance of the LatticeXP FPGA on
several of these interfaces. Lattice also provides precompiled intellectual property cores for controlling the FCRAM,
DDR, PCI and the Ethernet. These precompiled intellectual property cores can be used to design and simulate an
integrated solution. An intellectual property license is required to generate customized programming bitstreams.
Visit the Lattice web site at www.latticesemi.com/boards to find the latest available evaluation bitstreams for these
interfaces.
The LatticeXP Advanced Evaluation Board uses the following conventions.
• Devices are numbered in a consistent fashion. Each device starts at reference designator ‘1’ in the northwest
corner of the board (i.e. R1, C1, U1, L1, etc.). The component number increases by one in a columnar fashion
(i.e. southward). When the south edge of the board is reached, the count resumes slightly east, and at the north
side of the board. Thus the highest numbered components will always be in the southeast corner of the board.
This same numbering sequence is applied to the reverse side of the printed circuit board.
• Adjacent to the switch inputs, LED outputs, SMA connectors and test points is the alphanumeric position of the
pin on the LatticeXP FPGA. For example, next to the DIP oscillators (pin 10 in the silkscreen) is the designator
(A10). This indicates XU2 pin 10 is connected to the LatticeXP A10 pin.
• SMA connectors have a solid white rectangular area near them denoting the positive side of a matched pair. The
negative side of a matched pair has a white outline rectangle area.
For detailed information concerning the pin connections for these interfaces, see the appropriate connection summary tables in the following pages, and the LatticeXP Advanced Evaluation Board schematics in Appendix A.
VCCIO Power
The LatticeXP provides eight banks for configuring different input/output voltages and different input/output protocols. The LatticeXP Advanced Evaluation board permits four of these I/O banks to be statically configured based
on the requirements of the design. VCCIO bank 2/3 is fixed to 2.5V. These two banks interface to the DDR
SODIMM socket. The DDR memory only operates at 2.5V, so making these two banks I/O voltage adjustable is not
very useful. Banks 4/5 are set to 3.3V, which configures the I/O correctly for the PCI bus. Banks 0,1, 6, and 7 can
be configured to different I/O voltage levels. VCCIO power selection is made using the header in the north-central
section of the board (see Figure 4).
Figure 4. VCCIO Voltage Selection Header
VADJ
3.3V
1.2V
2.5V
VCCIO0
VCCIO1
VCCIO6
VCCIO7
Figure 4 shows how VCCIO6 would be configured to use a 2.5V supply for the output buffer drive level.
Prototype Grid
The board provides a small 100mil center-center prototype area just to the west of the VCCIO power selection
jumpers. This area is connected to FPGA I/Os primarily in banks 0, 1, 6 and 7. The silkscreen near the prototype
grid provides a map describing the FPGA alphanumeric grid number and bank of the I/O.
8
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Please note that some of the bank 7 I/Os are connected in parallel with the seven-segment LED. Also, H21 is one
of the PLL input pins, so an additional clock frequency can be injected into the FPGA from the prototype area.
Refer to Table 8 for a complete description of the prototype area connections.
Table 8. Prototype Area Connection Summary
Board Location
LatticeXP Pin Location
Schematic Name
J1 (1)
A2
TP_A2
J1 (2)
C5
TP_C5
J1 (3)
B12
TP_B12
J1 (4)
E2
SSEG_D
J1 (5)
G3
TP_G3
J2 (1)
A3
TP_A3
J2 (2)
D3
TP_D3
J2 (3)
B13
TP_B13
J2 (4)
E3
SSEG_DP
J2 (5)
H4
TP_H4
J4 (1)
A4
TP_A4
J4 (2)
D8
TP_D8
J4 (3)
B22
TP_B22
J4 (4)
F1
SSEG_C
J4 (5)
J4
TP_J4
J5 (1)
B3
TP_B3
Note
Also seven-segment display
Also seven-segment display
Also seven-segment display
Also DIN_2_SDIN
J5 (2)
D9
TP_D9
J5 (3)
D12
TP_D12
Also DIN_2_D0
J5 (4)
F2
SSEG_G
Also seven-segment display
J5 (5)
K4
TP_K4
J8 (1)
B4
TP_B4
J8 (2)
A12
TP_A12
J8 (3)
D1
SSEG_F
Also seven-segment display
J8 (4)
F3
SSEG_B
Also seven-segment display
J8 (5)
R2
TP_R2
J9 (1)
C3
TP_C3
J9 (2)
A13
TP_A13
J9 (3)
D2
SSEG_A
J9 (4)
G1
TP_G1
J9 (5)
T2
TP_T2
J10 (1)
C4
TP_C4
J10 (2)
A18
TP_A18
J10 (3)
E1
SSEG_E
J10 (4)
G2
TP_G2
J10 (5)
H21
TP_H21
Also seven-segment display
Also seven-segment display
Also PLL input
LED Displays
In the northwest corner of the board are two different types of LEDs. Eight chip-style LEDs are connected to I/O
pins dedicated to driving the LEDs. The silkscreen indicates the alphanumeric location of the driving I/O. These
locations are also indicated in Table 9. The LEDs illuminate when the corresponding I/O is driven to VOL.
9
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Table 9. LED Connection Summary
LED Number
LatticeXP Pin Location
Schematic Name
D1
H1
TP_H1
D2
B16
TP_B16
D3
B18
TP_B18
D4
C18
TP_C18
D5
C19
TP_C19
D6
C20
TP_C20
D7
W16
TP_W16
D8
A16
TP_A16
A seven-segment LED is located in the northwest corner of the board. Unlike the chip LEDs, the I/Os driving the
seven-segment display are not dedicated. These LED segments are also connected to the prototype grid. Illuminating one of the LED segments works in the same way as the chip LEDs. Each segment, when driven toward VOL,
will illuminate. Refer to Table 10 for a complete description of the seven-segment display connections.
Table 10. Seven-segment Display Connection Summary
Display Segment
LatticeXP Pin Location
Alternate Header
Connection
Schematic Name
SSEG_A
D2
J9 (3)
TP_D2
SSEG_B
F3
J8 (4)
TP_F3
SSEG_C
F1
J4 (4)
TP_F1
SSEG_D
E2
J1 (4)
TP_E2
SSEG_DP
E3
J2 (4)
TP_E3
SSEG_E
E1
J10 (3)
TP_E1
SSEG_F
D1
J8 (3)
TP_D1
SSEG_G
F2
J5 (4)
TP_F2
Switches
A set of eight simple toggle switches is located at the west edge of the board. The silkscreen indicates the alphanumeric location of the I/O on the FPGA. When in the up position, the switch is pulled to 3.3V through a 10K resistor.
When in the down position, the switch is tied to ground. Refer to Table 11 for a complete description of the switch
connections.
Table 11. Switch Connection Summary
Board Location
LatticeXP Pin Location
Schematic Name
SW1_1
C22
TP_C22
SW1_2
Y21
TP_Y21
SW1_3
AA22
TP_AA22
SW1_4
AA21
TP_AA21
SW1_5
AB21
TP_AB21
SW1_6
C21
TP_C21
SW1_7
W8
TP_W8
SW1_8
AB2
TP_AB2
10
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Oscillator and Clock Inputs
FPGA designs are nearly always created with logic synchronous to some reference frequency. The FPGA has four
PLLs and multiple primary clock inputs. Some of these clock inputs are dedicated to a particular interface on the
evaluation board. There are several ways to input reference clock frequencies.
LatticeXP pins U22 and T21 are connected to SMA connectors. These two SMAs are connected to the positive and
negative pairs of one of the four PLLs provided by the FPGA. The characteristic impedance of the traces is 50
ohms.
Two additional SMA connectors provide a matched pair (positive and negative) of traces to one of the Primary
Clock inputs. This pair of traces enter the FPGA at pins AB13 (positive) and AA13 (negative). The characteristic
impedance of the traces is 50 ohms.
Table 12. SMA Connection Summary
Board Location
LatticeXP Pin Location
Schematic Name
J6 SMA
AA13
PRI_CLK_N
J7 SMA
AB13
PRI_CLK_P
J11 SMA
U22
SMA_U22
J12 SMA
T21
SMA_T21
The PLL input and the Primary Clock are also programmable as general purpose I/Os. This permits these I/Os to
be evaluated in operation over coaxial cables.
The board also provides a 14-pin 3.3V clock oscillator device. The oscillator is in a 16-pin DIP socket. Using a
socket permits the use of an arbitrary input clock frequency and the use of oscillators with different accuracy and jitter characteristics.
The oscillator socket is also wired to permit the use of either full-size or half-size DIP oscillators. Figure 5 shows the
configuration options available.
Figure 5. Oscillator Input Options
Full-size
to primary
clock
Half-size
to primary
clock
Full-size
to PLL
Half-size
to PLL
OSC
OSC
OSC
OSC
The socket is wired such that pins 10 and 13 are connected to the same Primary Clock input (pin A10). Pin 9 is
connected to a PLL input (pin J2) in bank 7 on the FPGA.
The last location provided on the board for supplying external clock frequencies lies in the prototype area. FPGA
pin H21 is the positive side of one of the four PLL inputs. An arbitrary clock frequency can be supplied to the FPGA
from J10 pin 5 in the prototype grid.
11
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
10/100/1000 Ethernet PHY
In the southwest corner of the board is a National Semiconductor Gigabit Ethernet PHY (DP83865). The LatticeXP
FPGA interacts with the PHY over a Media Independent Interface (MII). The PHY is connected to an RJ45 header
on the Media Dependent Interface (MDI). The RJ45 connector has built-in magnetics and spark-gap capacitor. The
PHY is available on the board in order to demonstrate the Lattice Ethernet Media Access (MAC) IP core. However,
it is also possible to use the PHY to evaluate a custom MAC solution. Refer to the schematic and the National
Semiconductor DP83865 Data Sheet for detailed information about the operation of the Ethernet PHY interface on
this device. Refer to Table 13 for a description of the ethernet PHY connections.
Table 13. 10/100/1000 Ethernet PHY Connection Summary
Schematic Name
LatticeXP Pin Location
ETH_CLK_TO_MAC
L4
ETH_COL
W1
ETH_CRS
W2
ETH_EGP0
J1
ETH_EGP2
K2
ETH_EGP4
K3
ETH_EGP5
J3
ETH_EGP6
K1
ETH_EGP7
L2
ETH_GTX_CLK
N4
ETH_MAC_CLK_EN
L3
ETH_MDC
M1
ETH_MDIO
L1
ETH_RESET_N
Y1
ETH_RX_CLK
P1
ETH_RX_D0
T3
ETH_RX_D1
N2
ETH_RX_D2
U4
ETH_RX_D3
U3
ETH_RX_D4
U2
ETH_RX_D5
P2
ETH_RX_D6
V4
ETH_RX_D7
V3
ETH_RX_DV
V2
ETH_RX_ER
V1
ETH_TX_CLK
H2
ETH_TX_D0
M4
ETH_TX_D1
N3
ETH_TX_D2
R1
ETH_TX_D3
P4
ETH_TX_D4
P3
ETH_TX_D5
M3
ETH_TX_D6
T1
ETH_TX_D7
R4
ETH_TX_EN
R3
ETH_TX_ER
T4
12
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Required Board Modification
The LatticeXP Advanced Evaluation Board uses the National Semiconductor DP83865 GigaPhyter Ethernet PHY
to provide network access. Lattice has discovered that the circuit placed on the XP Advanced board prevents correct operation upon applying power to the board.
In order for the Ethernet PHY to operate it is mandatory to modify the evaluation board. The tuned crystal oscillator
circuit providing the 25MHz input clock to the GigaPhyter device is incorrect. A parallel termination resistor, R54,
was placed according to guidelines published by National Semiconductor. The value selected for the termination
resistor has been determined to be incorrect. The resistor attenuates the clock preventing the tuned circuit from
providing sufficient output swing to the DP83865. This termination resistor is optional. R54 must be removed for the
DP83865 to operate.
Putting the PHY into GMII Mode
Lattice has also determined the PHY device will power up in RGMII mode and the TX_CLK and RX_CLK signals
will not oscillate. The PHY needs to be put into GMII mode. The DP83865 enters GMII mode in one of two ways.
The first is by writing to the AUX_CTRL register using the MDIO interface. The second is by applying a pull-down
resistor to the RGMII_EN[1] configuration pin. The configuration pin is read at power up, placing the DP83865 into
GMII mode.
To make the DP83865 enter GMII mode at power up tie the DP83865 side of R71 to ground through a current limiting resistor. This rework is not mandatory. You can use MDIO transactions to write into the DP83865’s registers,
putting it into GMII mode. Using MDIO write the Auxiliary Control Register (AUX_CTRL) address 0x12, bits 13:12.
The register description is as follows:
RGMII ENABLE: These two bits control RGMII mode or MII/GMII mode.
RGMII_EN[1:0]
11 = RGMII - 3COM mode
10 = RGMII - HP mode
01 = GMII mode
00 = GMII mode
Lattice has tested putting a current-limiting pull-down resistor on the board. This will pull the TX_CLK /
RGMII_SEL[1] bit to a ‘0’ on power-up, putting the device automatically into GMII mode. This is based on the data
sheet:
RGMII_SEL1
RGMII_SEL0
0
0
GMII
MAC Interface
0
1
GMII
1
0
RGMII – HP
1
1
RGMII – 3COM
In this example, a current limiting resistor of 2.2K was used. You can see the picture below of the fix. A resistor was
soldered to R71 and a wire was soldered to the ground terminal of SMA J7.
13
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Figure 6. Board Fix, R71 to GND
From the Ethernet PHY schematic in EB13, LatticeXP Advanced Evaluation Board User’s Guide, the fix would look
like the figure below.
Figure 7. Schematic Diagram of R71 Fix
R71
[6] ETH_TX_CLK
33
CR0402
60
TX_CLK/RGMII_SEL0
PCI Interface
The LatticeXP Advanced Evaluation Board includes a PCI bus interface. The PCI interface is capable of 33MHz
operation, and provides a 32-bit data bus path. The board is designed to plug into 3.3V PCI systems exclusively
since the LatticeXP I/O pins are not 5V tolerant. Figure 8 shows the PCI plated fingers and the notches used to
prevent insertion into the wrong kind of backplane. Visit the Lattice web site at www.latticesemi.com/boards to
download a test evaluation package for the PCI interface. Refer to Table 14 for a description of the PCI connections.
Figure 8. PCI Backplane Keys
3.3V key slot
5V key slot
perforated
fiber filled
By default, the board is fabricated with the 5V cutout filled. In order to allow the board to be inserted into all PCI
backplanes the 5V cutout is fabricated to permit it to be cut away. If the 5V cutout fiberglass is removed, Lattice
does not take responsibility for damage to the FPGA, the evaluation board or the system the evaluation board is
inserted into, should it occur.
14
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
The PCI traces are routed to the bottom (banks 4 and 5) of the LatticeXP FPGA. The pins on the top and bottom of
the FPGA have PCI clamp diodes integrated into the I/O pins. The PCI clock, however, is routed to one of the PLL
input pins. The PLL input pins reside on the left and right sides of the FPGA. The left and right side of the device do
not have clamp diodes. To compensate for this, the board includes space to install PCI clamp diodes, if desired.
Visit the Lattice web site at www.latticesemi.com/boards to download a test evaluation package for the PCI interface. Refer to Table 14 for a description of the PCI connections.
Table 14. PCI Connection Summary
Schematic Name
LatticeXP Pin Location
PCI_ACK64_N
AA20
PCI_AD0
AB18
PCI_AD1
AA18
PCI_AD10
AB15
PCI_AD11
AA15
PCI_AD12
W13
PCI_AD13
W12
PCI_AD14
AB14
PCI_AD15
AA14
PCI_AD16
AA12
PCI_AD17
AA10
PCI_AD18
Y8
PCI_AD19
AB8
PCI_AD2
Y18
PCI_AD20
AA8
PCI_AD21
Y7
PCI_AD22
AB7
PCI_AD23
AA7
PCI_AD24
Y10
PCI_AD25
Y9
PCI_AD26
AB6
PCI_AD27
AA6
PCI_AD28
AB5
PCI_AD29
AA5
PCI_AD3
AB17
PCI_AD30
AB4
PCI_AD31
W9
PCI_AD4
Y14
PCI_AD5
Y13
PCI_AD6
AA17
PCI_AD7
Y17
PCI_AD8
AB16
PCI_AD9
AA16
PCI_CBE0_N
AA19
PCI_CBE1_N
Y20
PCI_CBE2_N
W14
PCI_CBE3_N
W15
PCI_CLK
U1
15
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Table 14. PCI Connection Summary (Continued)
Schematic Name
LatticeXP Pin Location
PCI_DEVSEL_N
AB10
PCI_FRAME_N
AB11
PCI_GNT_N
AB3
PCI_IDSEL
AB19
PCI_INTA_N
W6
PCI_INTB_N
Y6
PCI_INTC_N
Y4
PCI_INTD_N
Y5
PCI_IRDY_N
Y11
PCI_LOCK_N
AA9
PCI_PAR
W11
PCI_PERR_N
W10
PCI_PRSNT1_N
AB12
PCI_PRSNT2_N
Y19
PCI_REQ64_N
AB20
PCI_REQ_N
AA3
PCI_RST_N
AA4
PCI_SERR_N
AB9
PCI_STOP_N
AA11
PCI_TRDY_N
Y12
Double Data Rate SDRAM
The evaluation board includes a SODIMM DDR SDRAM socket. The LatticeXP is well suited to interfacing to DDR
SDRAM memories. The LatticeXP FPGA family has dedicated I/O pins for controlling the Data Qualification Strobe
(DQS) pin implemented in DDR. The DQS pin is used to signal valid data is present on the data bus. The FPGA
provides a dedicated DQS I/O pin for each eight data bits on the DDR bus. Each DQS I/O spans 13 other LatticeXP
I/O pins. Thus the eight data bits can be assigned to a wide range of FPGA pins. The high number of I/O pins available improves the likelihood of successfully routing the data bus on a PCB.
A standard SODIMM socket provides 64 data bits. The LatticeXP Advanced Evaluation Board only connects to 16
data bus bits. This subset is chosen to provide a demonstration of the DDR capabilities of the LatticeXP while still
permitting other interfaces to be showcased. All of the remaining DDR control signals, including the serial data bus,
are connected to the LatticeXP FPGA. The DDR memory interface operates up to a 166MHz clock rate.
The DDR specifies a fairly rigid set of requirements with respect to the reference and termination voltages. In order
to meet these requirements the evaluation board uses a National Semiconductor LP2995 DDR power management chip. The LP2995 accepts a 2.5V input and provides a regulated VREF and VTT supply for the SODIMM
socket. Visit the Lattice web site at www.latticesemi.com/boards to download a test evaluation package for the DDR
SDRAM interface. Refer to Table 15 for a description of the DDR SDRAM connections.
Table 15. DDR SDRAM Connection Summary
Schematic Name
LatticeXP Pin Location
DDR_A0
R19
DDR_A1
R21
DDR_A10
T22
DDR_A11
M19
DDR_A12
M22
16
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Table 15. DDR SDRAM Connection Summary (Continued)
Schematic Name
LatticeXP Pin Location
DDR_A2
P19
DDR_A3
R22
DDR_A4
P22
DDR_A5
P20
DDR_A6
N19
DDR_A7
P21
DDR_A8
M20
DDR_A9
N21
DDR_BA0
V22
DDR_BA1
T19
DDR_CAS_N
T20
DDR_CK0
H19
DDR_CK0_N
G19
DDR_CKE0
J20
DDR_CKE1
J19
DDR_DM0
D22
DDR_DM1
K21
DDR_DQ0
F21
DDR_DQ1
E22
DDR_DQ10
K22
DDR_DQ11
L22
DDR_DQ12
J21
DDR_DQ13
K19
DDR_DQ14
L19
DDR_DQ15
L20
DDR_DQ2
F22
DDR_DQ3
G22
DDR_DQ4
D21
DDR_DQ5
E21
DDR_DQ6
F20
DDR_DQ7
H20
DDR_DQ8
H22
DDR_DQ9
J22
DDR_DQS0
G21
DDR_DQS1
K20
DDR_RAS_N
U19
DDR_S0_N
W22
DDR_S1_N
U20
DDR_SA0
V21
DDR_SA1
W21
DDR_SA2
Y22
DDR_SCL
V19
DDR_SDA
V20
DDR_WE_N
U21
17
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
FCRAM Interface
The LatticeXP FPGA is connected to a single eight-bit FCRAM device. The LatticeXP Advanced Evaluation Board
always has a quantity of scratch RAM since the FCRAM memory, unlike the DDR memory, cannot be removed.
With the addition of an FCRAM memory controller into the FPGA, the FCRAM memory can be used to store data.
Operation of the FCRAM memory is similar, but not identical to, the DDR memory interface. Like DDR, FCRAM
memories depend on a DQS to qualify when data is valid on the bus. This means the DQS hardware built into the
LatticeXP can be used to improve data transfer reliability in the same way it is used in DDR.
Visit the Lattice web site at www.latticesemi.com/boards to download a test evaluation package for the FCRAM
interface. Refer to Table 16 for a description of the FCRAM connections.
Table 16. FCRAM Connection Summary
Schematic Name
LatticeXP Pin Location
FCRAM_PD_N
B6
FC_A0
A21
FC_A1
A20
FC_A10
B14
FC_A11
C14
FC_A12
D14
FC_A13
D13
FC_A14
C12
FC_A2
B20
FC_A3
A19
FC_A4
B19
FC_A5
B17
FC_A6
A15
FC_A7
B15
FC_A8
D15
FC_A9
A14
FC_BA0
B7
FC_BA1
C6
FC_CLK
C9
FC_CLK_N
C10
FC_CS_N
B5
FC_DQ0
C7
FC_DQ1
B8
FC_DQ2
C8
FC_DQ3
A9
FC_DQ4
D11
FC_DQ5
B10
FC_DQ6
A11
FC_DQ7
B11
FC_DQS
B9
FC_FN
A5
18
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Ordering Information
Description
Ordering Part Number
LatticeXP10C Evaluation Board - Advanced
China RoHS Environment-Friendly
Use Period (EFUP)
LFXP10C-H-EV
10
Technical Support Assistance
Hotline: 1-800-LATTICE (North America)
+1-503-268-8001 (Outside North America)
e-mail:
techsupport@latticesemi.com
Internet: www.latticesemi.com
Revision History
Date
Version
Change Summary
July 2005
01.0
Initial release.
March 2007
01.1
Added Ordering Information section.
April 2007
01.2
Added important information for proper connection of ispDOWNLOAD
(Programming) Cables.
September 2009
01.3
© 2009 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as
listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of
their respective holders. The specifications and information herein are subject to change without notice.
19
LatticeXP Advanced Evaluation Board
User’s Guide
Lattice Semiconductor
Appendix A. Schematics
20
A
B
C
D
[ 6]
[ 6]
[ 8]
V C C _ 3 .3 V
TP _ W 8
TP _ A B 2
1
2
V C C _ 3 .3 V
AB9
AA9
W 10
W 11
P C I _ P E R R_ N
P C I _ PAR
C5 5
0 .1 u F
P C I _ I R D Y_ N
P C I _ TR D Y _ N
5
RE S E RV E D
C6 2
0 .1 u F
PB21A
PB21B
PB30A
PB30B
PB29A
PB29B
PB28A
PB28B
PB27A
PB27B
PB39A
PB38A
PB38B
PB37A
PB37B
PB36A
PB36B
V CCIO 4 _ R1 5
V CCIO 4 _ T1 2
V CCIO 4 _ T1 3
V CCIO 4 _ T1 4
V CCIO 4 _ T1 5
D Q S r each
PB35A
PB35B
DQ S /P B 3 4 A
PB34B
PB33B
PB32A
V RE F2 _ 4 /P B 3 1 A
PB31B
D Q S r each
DQ S / P B 2 6 A
V RE F1 _ 4 /P B 2 6 B
PB25B
PB24A
PB23A
PB23B
P CL K T4 _ 0 /P B 2 2 A
P CL K C4 _ 0 /P B 2 2 B
C7 6
10uF
CC0 8 0 5
D Q S r each
L FX P 1 0 C-4 F3 8 8 CE S
V CCIO 5 _ R8
V CCIO 5 _ T1 0
V CCIO 5 _ T1 1
V CCIO 5 _ T8
V CCIO 5 _ T9
PB20A
PB20B
PB19A
PB19B
P B 1 8 A / DQ S
PB18B
PB17B
PB16A
PB15A
PB15B
PB14A
PB14B
PB13A
PB13B
PB12A
P B 1 2 B /V RE F2 _ 5 D Q S r each
PB11A
PB11B
P B 1 0 A /DQ S
PB10B
PB9B
PB8A
P B 7 A /V RE F1 _ 5
PB7B
PB6A
PB6B
PB5A
PB5B
PB4A
PB4B
PB3A
PB3B
PB2A
BANK 4
LFXP10C (fpBGA388)
(2 OF 5)
BANK 5
U4 B
C6 1
0 .1 u F
R8
T1 0
T1 1
T8
T9
Y1 1
Y1 2
P C I _ S TO P _ N A A 1 1
P C I _ F R A ME _ N A B 1 1
P C I _ DE V S E L _ NA B 1 0
P C I _ A D1 7
AA10
AB8
Y8
P C I _ A D2 1
P C I _ A D2 0
P C I _ A D1 9
P C I _ A D1 8
Y7
AA8
P C I _ A D2 3
P C I _ A D2 2
P C I _ S E R R_ N
P C I _ L O CK _ N
Y9
Y1 0
AA7
AB7
P C I _ A D2 5
P C I _ A D2 4
AA6
AB6
Y6
AB5
P C I _ A D2 7
P C I _ A D2 6
P C I _ I N TB _ N
P C I _ A D2 8
W8
W9
AB4
AA5
P C I _ A D3 0
P C I _ A D2 9
AB3
AA4
P C I _ A D3 1
AB2
AA3
P C I _ R EQ_N
P C I _ G NT_ N
P C I _ R S T_ N
Y4
Y5
P C I _ I N TC _ N
P C I _ I N TD _ N
W5
W6
5
P C I _ I N TA _ N
R8 5
10K
CR0 4 0 2
1
2
1
2
R1 5
T1 2
T1 3
T1 4
T1 5
W 16
AA22
Y2 1
AB21
AA21
P R I _ C LK_N
P R I _ CL K _ P
4
[ 6]
C7 3
0 .1 u F
[ 8]
TP _ W 1 6
[ 6]
TP_A A 2 2
[ 6]
TP _ Y2 1
C6 9
0 .1 u F
1
1
G ND
G ND
G ND
G ND
2
3
4
5
G ND
G ND
G ND
G ND
2
3
4
5
C8 7
10uF
CC0 8 0 5
J6
S M A C o n n ector
th _ sma
S
J7
S M A C o n n ector
th _ sma
S
P R I _ C L K _ P a n d P R I _ C L K _N are matched
l e n g t h p a i r e d traces.
[ 6]
TP_A B 2 1
[ 6]
TP_A A 2 1
4
V C C _ 3 .3 V
C7 2
0 .1 u F
P C I _ R EQ64_N
P C I _ A CK 6 4 _ N
P C I _ C BE2_N
P C I _ C BE3_N
W 14
W 15
AB20
AA20
P C I _ I DS E L
P C I _ C BE0_N
P C I _ C BE1_N
AB19
P C I _ P R S NT2 _ N
P C I _ A D1
P C I _ A D0
P C I _ A D3
P C I _ A D2
P C I _ A D5
P C I _ A D4
P C I _ A D7
P C I _ A D6
AA19
Y2 0
Y1 9
AA18
AB18
AB17
Y1 8
Y1 3
Y1 4
Y1 7
AA17
P C I _ A D1 1
P C I _ A D1 0
P C I _ A D9
P C I _ A D8
AA16
AB16
P C I _ A D1 2
P C I _ A D1 3
P C I _ A D1 5
P C I _ A D1 4
AA15
AB15
W 13
W 12
AA14
AB14
AB13
AA13
AB12
AA12
P C I _ P R S NT1 _ N
P C I _ A D1 6
1
2
1
2
V C C _ 3 .3 V
[ 5] P C I _ C L K
[ 5] P C I _ TDO
P C I _ TCK
[ 8]
[ 5]
[ 5] P C I _ T D I
P CI_ TMS
P C I _ CL K
P C I _ TDO
P C I _ TCK
V C C _ 3 .3 V
V C C _ 3 .3 V
P C I _ TDI
P CI_ TMS
3
3
P C I _ TR D Y _ N
P C I _ F R A ME _ N
P C I _ A D1 6
P C I _ A D1 8
P C I _ A D2 0
P C I _ A D2 2
P C I _ I DS E L
P C I _ A D2 4
P C I _ A D2 6
P C I _ A D2 8
P C I _ A D3 0
P C I _ G NT_ N
P C I _ R S T_ N
P C I _ I N TC _ N
P C I _ I N TA _ N
2
P C I _ C BE2_N
P C I _ A D1 7
P C I _ A D1 9
P C I _ A D2 1
P C I _ A D2 3
P C I _ C BE3_N
P C I _ A D2 5
P C I _ A D2 7
P C I _ A D2 9
P C I _ A D3 1
P C I _ R EQ_N
P C I _ P R S NT2 _ N
P C I _ P R S NT1 _ N
P C I _ I N TD _ N
P C I _ I N TB _ N
J2 0
P C I E D G E C O N N S o l d er S id e
[ 8]
P C I _ G ND_ 5 7
1
2
3
4
5
6
7
8
9
10
11
TRST#
+12V
TMS
TDI
+5V_5
INTA#
INTC#
+5V_8
Reserved_9
+3.3V_10
Reserved_11
J3
P C I E D G E C O N N C o m p o n en t S id e
2
1
2
3
4
5
6
7
8
9
10
11
-12V
TCK
Ground_3
TDO
+5V_5
+5V_7
INTB#
INTD#
PRSNT1#
Reserved_10
PRSNT2#
1
2
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
3.3VAUX
RST#
+3.3V_16
GNT#
Ground_18
PME#
AD[30]
+3.3V_21
AD[28]
AD[26]
Ground_24
AD[24]
IDSEL
+3.3V_27
AD[22]
AD[20]
Ground_30
AD[18]
AD[16]
+3.3V_33
FRAME#
Ground_35
TRDY#
Ground_37
STOP#
+3.3V_39
Reserved_40
Reserved_41
Ground_42
PAR
AD[15]
+3.3V_45
AD[13]
AD[11]
Ground_48
AD[09]
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
Reserved_14
Ground_15
CLK
Ground_17
REQ#
+3.3V_19
AD[31]
AD[29]
Ground_22
AD[27]
AD[25]
+3.3V_25
C/BE#[3]
AD[23]
Ground_28
AD[21]
AD[19]
+3.3V_31
AD[17]
C/BE#[2]
Ground_34
IRDY#
+3.3V_36
DEVSEL#
Ground_38
LOCK#
PERR#
+3.3V_41
SERR#
+3.3V_43
C/BE#[1]
AD[14]
Ground_46
AD[12]
AD[10]
Ground_49
P C I _ S TO P _ N
P C I _ PAR
P C I _ A D1 5
P C I _ A D1 3
P C I _ A D1 1
P C I _ A D9
P C I _ C BE0_N
P C I _ A D6
P C I _ A D4
P C I _ A D2
P C I _ A D0
P C I _ R EQ64_N
52
53
54
55
56
57
58
59
60
61
62
P C I _ I R D Y_ N
P C I _ DE V S E L _ N
P C I _ L O CK _ N
P C I _ P E R R_ N
P C I _ S E R R_ N
P C I _ C BE1_N
P C I _ A D1 4
P C I _ A D1 2
P C I _ A D1 0
P C I _ A D8
P C I _ A D7
P C I _ A D5
P C I _ A D3
P C I _ A D1
P C I _ A CK 6 4 _ N
C/BE#[0]
+3.3V_53
AD[06]
AD[04]
Ground_56
AD[02]
AD[00]
+3.3V_59
REQ64#
+5V_61
+5V_62
52
53
54
55
56
57
58
59
60
61
62
21
1
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
32-Bit PCI
1
S h eet
2
of
9
Rev
B
L a t t i c e S e m i c o n d u c t o r C o r p o r a t i on
D at e:
Size
C
Ti tle
AD[08]
AD[07]
+3.3V_54
AD[05]
AD[03]
Ground_57
AD[01]
+3.3V_59
ACK64#
+5V_61
+5V_62
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 9. 32-Bit PCI
A
B
C
DDR_ S DA
DDR_ S CL
S O DIMM_ A 1 0
S O DIMM_ B A 0
S O DIMM_ W E _ N
S O DIMM_ S 0 _ N
S O DIMM_ A 7
S O DIMM_ A 5
S O DIMM_ A 3
S O DIMM_ A 1
S O DIMM_ A 1 2
S O DIMM_ A 9
S O DIMM_ CK E 1
S O DIMM_ CK 0
S O D I MM_ CK 0 _ N
S O DIMM_ DQ 1 0
S O DIMM_ DQ 1 1
S O DIMM_ DQ 9
S O DIMM_ DQ S 1
S O DIMM_ DQ 3
S O DIMM_ DQ 8
S O DIMM_ DQ S 0
S O DIMM_ DQ 2
S O DIMM_ DQ 0
S O DIMM_ DQ 1
V RE F
VSS
DQ 0
DQ 1
V DD
DQ S 0
DQ 2
VSS
DQ 3
DQ 8
V DD
DQ 9
DQ S 1
VSS
DQ 1 0
DQ 1 1
V DD
CK 0
CK 0 #
VSS
V RE F
VSS
DQ 4
DQ 5
V DD
DM0
DQ 6
VSS
DQ 7
DQ 1 2
V DD
DQ 1 3
DM1
VSS
DQ 1 4
DQ 1 5
V DD
V DD
VSS
VSS
2
4
6
8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
DQ 1 6
DQ 1 7
V DD
DQ S 2
DQ 1 8
VSS
DQ 1 9
DQ 2 4
V DD
DQ 2 5
DQ S 3
VSS
DQ 2 6
DQ 2 7
V DD
(CB 0 )
(CB 1 )
VSS
(DQ S 8 )
(CB 2 )
V DD
(CB 3 )
NC_ 8 5
VSS
(CK 2 )
(CK 2 # )
V DD
(CK E 1 )
NC_ 9 7
A12
A9
VSS
A7
A5
A3
A1
V DD
A10
BA0
W E#
S0#
NC_ 1 2 3
VSS
DQ 3 2
DQ 3 3
V DD
DQ S 4
DQ 3 4
VSS
DQ 3 5
DQ 4 0
V DD
DQ 4 1
DQ S 5
VSS
DQ 4 2
DQ 4 3
V DD
V DD
VSS
VSS
DQ 4 8
DQ 4 9
V DD
DQ S 6
DQ 5 0
VSS
DQ 5 1
DQ 5 6
V DD
DQ 5 7
DQ S 7
VSS
DQ 5 8
DQ 5 9
V DD
S DA
S CL
V DDS P D
NC_ 1 9 9
DQ 2 0
DQ 2 1
V DD
DM2
DQ 2 2
VSS
DQ 2 3
DQ 2 8
V DD
DQ 2 9
DM3
VSS
DQ 3 0
DQ 3 1
V DD
(CB 4 )
(CB 5 )
VSS
(DM8 )
(CB 6 )
V DD
(CB 7 )
NC_ 8 6
VSS
VSS
V DD
V DD
CK E 0
NC_ 9 8
A11
A8
VSS
A6
A4
A2
A0
V DD
BA1
RA S #
CA S #
(S 1 # )
NC_ 1 2 4
VSS
DQ 3 6
DQ 3 7
V DD
DM4
DQ 3 8
VSS
DQ 3 9
DQ 4 4
V DD
DQ 4 5
DM5
VSS
DQ 4 6
DQ 4 7
V DD
(CK 1 # )
(CK 1 )
VSS
DQ 5 2
DQ 5 3
V DD
DM6
DQ 5 4
VSS
DQ 5 5
DQ 6 0
V DD
DQ 6 1
DM7
VSS
DQ 6 2
DQ 6 3
V DD
SA0
SA1
SA2
(V S S )
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
102
104
106
108
110
112
114
116
118
120
122
124
126
128
130
132
134
136
138
140
142
144
146
148
150
152
154
156
158
160
162
164
166
168
170
172
174
176
178
180
182
184
186
188
190
192
194
196
198
200
5
2 . 5 V D D R 2 0 0 - p i n S O -DIMM S ocket
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77
79
81
83
85
87
89
91
93
95
97
99
101
103
105
107
109
111
113
115
117
119
121
123
125
127
129
131
133
135
137
139
141
143
145
147
149
151
153
155
157
159
161
163
165
167
169
171
173
175
177
179
181
183
185
187
189
191
193
195
197
199
X U2 B
2 . 5 V D D R 2 0 0 - p i n S O -DIMM S ocket
1
3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
X U2 A
1
7
V DDQ
D D R _ SA0
D D R _ SA1
D D R _ SA2
S O DIMM_ CK 0
S O D IMM_ CK 0 _ N
S O DIMM_ DQ 1 1
S O DIMM_ DQ 1 5
S O DIMM_ DQ 3
S O DIMM_ DQ 7
S O DIMM_ DQ 1 4
S O DIMM_ DM1
S O DIMM_ DQ 1 3
S O DIMM_ DQ 1 2
S O DIMM_ DQ 1 0
S O DIMM_ DQ S 1
S O DIMM_ DQ 9
S O DIMM_ DQ 8
3 3 741X083
RN1 9
S O DIMM_ DQ 6
S O DIMM_ DM0
S O DIMM_ DQ 5
S O DIMM_ DQ 4
S O DIMM_ DQ 2
S O DIMM_ DQ S 0
S O DIMM_ DQ 1
S O DIMM_ DQ 0
3 3 741X083
RN1 8
V S E NS E
V TT
V RE F
S O DIMM_ A 1 0
S O DIMM_ A 1
S O DIMM_ A 3
S O DIMM_ A 5
S O DI MM_ A 7
S O DIMM_ A 9
S O DIMM_ A 1 2
S O DIMM_ CK E 1
S O DIMM_ CK E 0
S O DIMM_ A 1 1
S O DIMM_ A 8
S O DIMM_ A 6
S O DIMM_ A 4
S O DIMM_ A 2
S O DIMM_ A 0
S O DIMM_ B A 1
S O D IMM_ RA S _ N
S O D IMM_ CA S _ N
S O DIMM_ S 1 _ N
S O DIMM_ S 0 _ N
S O DIMM_ W E _ N
S O DIMM_ B A 0
( L e f t e nd of
V T T i s land)
C9 6
2 2 0 u F S izeD
3 3 741X083
RN2 1
S O DI MM_ B A 1
S O D I MM_ RA S _ N
S O D I MM_ CA S _ N
S O DIMM_ S 1 _ N
S O DIMM_ A 6
S O DIMM_ A 4
S O DIMM_ A 2
S O DI MM_ A 0
S O DIMM_ A 1 1
S O DIMM_ A 8
S O DI MM_ CK E 0
S O DIMM_ DQ 1 4
S O DIMM_ DQ 1 5
S O DIMM_ DQ 1 3
S O DIMM_ DM1
S O DIMM_ DQ 7
S O DIMM_ DQ 1 2
S O DIMM_ DM0
S O DIMM_ DQ 6
P V IN
A V IN
GND
2
6
C8 9
47uF
S izeD
S O DIMM_ DQ 4
S O DIMM_ DQ 5
2
4
3
8
1
2
4
22
22
RN1 7
1
2
3
4
R N7
1
2
3
4
22
22
741X083
DDR_ RA S _ N
8
DDR_ CA S _ N
7
D D R _ S 1 _N
6
5
741X083
D D R _ S 0 _N
8
D D R _ W E _N
7
D D R _ BA0
6
5
741X163
D D R _ C K E0
16
D D R _ A11
15
D D R _ A8
14
D D R _ A6
13
D D R _ A4
12
D D R _ A2
11
D D R _ A0
10
D D R _ BA1
9
741X163
D D R _ A10
16
D D R _ A1
15
D D R _ A3
14
D D R _ A5
13
D D R _ A7
12
D D R _ A9
11
D D R _ A12
10
D D R _ C K E1
9
2 2CR0 4 0 2D D R _ C K 0
2 2CR0 4 0 2D D R _ C K 0 _ N
2 2CR0 4 0 2D D R _ D Q 1 1
2 2CR0 4 0 2D D R _ D Q 1 5
2 2CR0 4 0 2D D R _ D Q 3
2 2CR0 4 0 2D D R _ D Q 7
D D R _ D Q 14
D D R _ D M1
D D R _ D Q 13
D D R _ D Q 12
741X083
D D R _ D Q 10
8
D D R _ D Q S1
7
DDR_ DQ 9
6
DDR_ DQ 8
5
RN1 5
1
2
3
4
22
3 3 741X083
RN1 1
V TT
RN1 6
1
2
3
4
5
6
7
8
3 3 741X163
RN1 0
V TT
R N6
1
2
3
4
5
6
7
8
3 3 741X163
RN2 0
V TT
R1 7
R1 8
R1 6
R9 6
R9 9
R1 9 R1 0 0 R2 0
33
33
33
33
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
R1 5
R9 5
V TT
741X083 2 2
8
7
6
5
R N5
1
2
3
4
DDR_ DQ 6
D D R _ D M0
DDR_ DQ 5
DDR_ DQ 4
741X083
DDR_ DQ 2
8
D D R _ D Q S0
7
DDR_ DQ 1
6
DDR_ DQ 0
5
RN1 4
1
2
3
4
22
3 3 741X083
R N9
V TT
741X083 2 2
8
7
6
5
R N4
1
2
3
4
3 3 741X083
R N8
V TT
C9 5
220uF
S izeD
( R i g h t en d o f
V T T i s land)
V TT
V R E F_ 2 .5 V
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
D
1
2
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
1
2
3
4
8
7
6
5
5
V TT
2
3
4
5
2
3
4
5
1
2
V C C _ 2 .5 V
3
S
1
1
SMA_ T2 1
R9 4
100
CR0 4 0 2
N o P o p u late
S MA _ U2 2
C9 4
0 .1 u F
CC0 4 0 2
3
C9 3
0 .1 u F
CC0 4 0 2
C9 2
0 .1 u F
CC0 4 0 2
D D R _ A11
D D R _ A8
2
D Q S r each
D Q S r each
2
C7 8
0 .1 u F
CC0 4 0 2
L FX P 1 0 C-4 F3 8 8 CE S
V CCIO 3 _ M1 6
V CCIO 3 _ N1 6
V CCIO 3 _ P 1 6
V CCI O 3 _ R1 6
P R3 5 A
P R3 5 B
P R3 4 A /P L L 3 _ FB _ T
P R3 4 B /P L L 3 _ FB _ C
P R3 3 A /DQ S
P R3 3 B
P R3 2 B
P R3 1 A /V RE F1 _ 3
P R3 0 A
P R3 0 B
P R2 9 A
P R2 9 B
P R2 8 A
P R2 8 B
P R2 6 A
P R2 6 B
P R2 5 A / P L L 3 _ IN_ T
P R2 5 B / P L L 3 _ IN_ C
P R2 4 A /DQ S
P R2 4 B
P R2 3 B
P R2 2 A / V RE F2 _ 3
P R2 1 A
P R2 1 B
P R2 0 A
P R2 0 B
P R1 9 A
P R1 9 B
BANK 2
P R2 A
P R2 B
P R1 1 A
P R1 1 B
C8 6
10uF
CC0 8 0 5
P R1 8 A
P R1 8 B
V CCIO 2 _ H1 6
V CCIO 2 _ J1 6
V CCIO 2 _ K 1 6
V CCI O 2 _ L 1 6
D Q S r each
P CL K T2 _ 0 /P R1 7 A
P CL K C2 _ 0 /P R1 7 B
DQ S /P R1 6 A
P R1 6 B
P R1 5 B
V RE F1 _ 2 /P R1 4 A
P R1 3 A
P R1 3 B
P L L 4 _ IN_ T/P R1 2 A
P L L 4 _ I N_ C/ P R1 2 B
D Q S r each
P R9 A
P R9 B
P R8 A
P R8 B
DQ S /P R7 A
P R7 B
P R6 B
V RE F2 _ 2 /P R5 A
P R4 A
P R4 B
P L L 4 _ FB _ T/P R3 A
P L L 4 _ FB _ C/ P R3 B
LFXP10C (fpBGA388)
(3 OF 5)
BANK 3
U4C
C7 9
0 .1 u F
CC0 4 0 2
M1 6
N1 6
P16
R1 6
T1 9
T2 0
D D R _ BA1
DDR_ CA S _ N
V C C _ 2 .5 V
V20
V19
U2 0
U1 9
DDR_ S DA
DDR_ S CL
R1 9
R2 0
Y2 2
W 21
D D R _ S 1 _N
DDR_ RA S _ N
D D R _ A0
V R E F_ 2 .5 V
D D R _ SA2
D D R _ SA1
P20
P19
W 22
V21
D D R _ S 0 _N
D D R _ SA0
D D R _ A5
D D R _ A2
V22
U2 1
U2 2
T2 1
T2 2
R2 1
D D R _ BA0
D D R _ W E _N
D D R _ A10
D D R _ A1
N1 9
N2 0
V R E F_ 2 .5 V
D D R _ A6
P22
R2 2
N2 1
P21
M1 9
M2 0
D D R _ A4
D D R _ A3
D D R _ A9
D D R _ A7
C4
0 .1 u F
CC0 4 0 2
[ 8]
R9 7
2K
CR0 6 0 3
V R E F_ 2 .5 V
C5
0 .1 u F
CC0 4 0 2
R9 8
2K
CR0 6 0 3
C9 1
0 .1 u F
CC0 4 0 2
V C C _ 2 .5 V
T r a c e s f r o m S M A _ U 2 2 and SMA_T21
a r e 5 0 o h m i m p e d e n c e , and are matched
l e n g t h p a i r e d traces.
J1 1
S M A C o n n ector
th _ sma
G ND
G ND
G ND
G ND
S
J1 2
S M A C o n n ector
th _ sma
G ND
G ND
G ND
G ND
T e r m i n a t i o n r e s i s t o r s h ou ld be a s clo s e
t o U 5 a s p ossible.
1
2
1
2
4
1
2
U5
LP2995
1
2
H1 6
J1 6
K16
L16
L22
M2 2
K21
K22
K20
L19
L20
L21
J2 1
J2 2
H2 1
H2 2
J1 9
K19
H2 0
J2 0
G19
H1 9
G21
G22
F2 0
G20
F2 1
F2 2
E21
E22
D2 1
D2 2
C7 5
0 .1 u F
CC0 4 0 2
[ 8]
C8 4
10uF
CC0 8 0 5
V R E F_ 2 .5 V
1
C8 1
0 .1 u F
CC0 4 0 2
TP _ H2 1
[ 6]
C8 3
0 .1 u F
CC0 4 0 2
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
DDR SDRAM
1
S h eet
3
of
9
Rev
B
L a t t i c e S e m i c o n d u c t o r C o r p o r a t i on
D at e:
Size
C
Ti tle
C7 4
0 .1 u F
CC0 4 0 2
V C C _ 2 .5 V
D D R _ D Q 11
D D R _ A12
D D R _ D M1
D D R _ D Q 10
D D R _ D Q S1
D D R _ D Q 14
D D R _ D Q 15
V R E F_ 2 .5 V
D D R _ D Q 12
DDR_ DQ 9
DDR_ DQ 8
D D R _ C K E1
D D R _ D Q 13
DDR_ DQ 7
D D R _ C K E0
DDR_ CK 0 _ N
DDR_ CK 0
D D R _ D Q S0
DDR_ DQ 3
DDR_ DQ 6
V R E F_ 2 .5 V
DDR_ DQ 0
DDR_ DQ 2
DDR_ DQ 5
DDR_ DQ 1
DDR_ DQ 4
D D R _ D M0
1
5
1
2
1
2
1
2
1
2
22
2
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 10. DDR SDRAM
A
B
C
D
FC_ P D_ N
FC_ B A 0
FC_ B A 1
FC_ A 1 0
FC_ A 0
FC_ A 1
FC_ A 2
FC_ A 3
FC_ A 1 4
FC_ A 1 3
F C _ FN
FC_ CS _ N
FC_ A 1 2
FC_ A 1 1
FC_ A 9
FC_ A 8
FC_ A 7
FC_ A 6
FC_ A 5
FC_ A 4
FC_ DQ S
F C _ D Q7
F C _ D Q6
F C _ D Q5
F C _ D Q4
F C _ D Q0
F C _ D Q1
F C _ D Q2
F C _ D Q3
F C R A M_ B A 0
F C R A M_ B A 1
FCRA M_ A 1 0
F C R A M_ A 0
F C R A M_ A 1
F C R A M_ A 2
F C R A M_ A 3
FCRA M_ A 1 4
FCRA M_ A 1 3
FCRA M_ FN
F C R A M _ C S_N
R N1
1
2
3
4
5
R N3
1
2
3
4
5
6
7
8
R N2
1
2
3
4
22
VSS_66
DQ 7
VSSQ_64
NC_ 6 3
DQ 6
V DDQ _ 6 1
NC_ 6 0
DQ 5
VSSQ_58
NC_ 5 7
DQ 4
V DDQ _ 5 5
NC_ 5 4
NC_ 5 3
VSSQ_52
DQ S
NC_ 5 0
V RE F
VSS_48
NC_ 4 7
/CL K
CL K
/P D
NC_ 4 3
A12
A11
A9
A8
A7
A6
A5
A4
VSS_34
22
22
C4 3
0 .1 u F
CC0 4 0 2
FCRA M_ A 1 2
FCRA M_ A 1 1
F C R A M_ A 9
F C R A M_ A 8
F C R A M_ A 7
F C R A M_ A 6
F C R A M_ A 5
F C R A M_ A 4
F C R A M_ B A 0
F C R A M_ B A 1
FCRA M_ A 1 0
F C R A M_ A 0
F C R A M_ A 1
F C R A M_ A 2
F C R A M_ A 3
F C R A M _ P D_ N
741X163
16
15
14
13
12
11
10
9
741X083
FCRA M_ A 1 4
8
FCRA M_ A 1 3
7
FCRA M_ FN
6
F C R A M _ C S_N
5
RN1 3
1
2
3
4
5
6
7
8
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
C4 7
0 .1 u F
CC0 4 0 2
F C R A M _ DQ S
F C R A M _ DQ 7
F C R A M _ DQ 6
F C R A M _ DQ 5
F C R A M _ DQ 4
741X083
F C R A M _ DQ 0
8
F C R A M _ DQ 1
7
F C R A M _ DQ 2
6
F C R A M _ DQ 3
5
RN1 2
1
2
3
4
22
CR0 4 0 2
741X163 2 2
16
15
14
13
12
11
10
9
R7 0
U3
V DD_ 1
DQ 0
V DDQ _ 3
NC_ 4
DQ 1
VSSQ_6
NC_ 7
DQ 2
V DDQ _ 9
NC_ 1 0
DQ 3
VSSQ_12
NC_ 1 3
NC_ 1 4
V DDQ _ 1 5
NC_ 1 6
NC_ 1 7
V DD_ 1 8
NC_ 1 9
NC_ 2 0
A14
A13
FN
/CS
NC_ 2 5
BA0
BA1
A10
A0
A1
A2
A3
V DD_ 3 3
FCRA M
TS O P II-6 6 -P -4 0 0 -0 .6 5
741X083 2 2
8
7
6
5
F C R A M _ DQ 3
F C R A M _ DQ 2
F C R A M _ DQ 1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
1
2
1
2
1
2
1
2
C4 1
0 .1 u F
CC0 4 0 2
C4 5
0 .1 u F
CC0 4 0 2
C4 0
0 .1 u F
CC0 4 0 2
C4 4
0 .1 u F
CC0 4 0 2
V R E F_ 2 .5 V
FCRA M_ A 1 2
FCRA M_ A 1 1
F C R A M_ A 9
F C R A M_ A 8
F C R A M_ A 7
F C R A M_ A 6
F C R A M_ A 5
F C R A M_ A 4
C3 9
0 .1 u F
CC0 4 0 2
C4 2
0 .1 u F
CC0 4 0 2
V R E F_ 2 .5 V
R7 7
10K
CR0 4 0 2
F C R A M _ CL K
F C R A M _ CL K _ N
F C R A M _ DQ S
[ 3 ] , [ 8]
F C R A M _ P D_ N
R1 4
120
CR0 4 0 2
F C R A M _ DQ 4
F C R A M _ DQ 5
F C R A M _ DQ 6
F C R A M _ DQ 7
1
2
1
2
1
2
1
2
V C C _ 2 .5 V
4
4
1
2
3
HE A DE R 3
h d r3 x1 _ 1 0 0 m il
JP 5
DIN_ 2 _ S DIN
D I N _ 2 _ D0
D IN
[ 5]
TP _ B 1 2
TP _ A 1 6
TP _ B 1 6
TP _ D1 2
TP _ A 1 3
TP _ A 1 2
TP _ B 1 3
TP _ C2 2
TP _ C2 1
TP _ B 2 2
TP _ A 1 8
3
[ 6]
[ 8]
A15
B16
FC_ A 6
A19
B20
FC_ A 3
FC_ A 2
FC_ A 1 2
FC_ A 8
D Q S r each
C7 0
0 .1 u F
CC0 4 0 2
L FX P 1 0 C-4 F3 8 8 CE S
FP B G A 3 8 8
C7 1
0 .1 u F
CC0 4 0 2
D Q S r each
V CCIO 1 _ G 1 2
V CCIO 1 _ G 1 3
V CCIO 1 _ G 1 4
V CCIO 1 _ G 1 5
V CCIO 1 _ H1 5
P T3 9 A
P T3 8 A
P T3 8 B
P T3 7 A
P T3 7 B
P T3 6 A
P T3 6 B
P T3 5 A
P T3 5 B
P T3 4 A /DQ S
P T3 4 B /V RE F1 _ 1
P T3 3 B
P T3 2 A
P T3 1 A
P T3 1 B
P T3 0 A /D0
P T3 0 B
P T2 9 A /V RE F2 _ 1
P T2 9 B /D1
P T2 8 A /D2
P T2 8 B
P T2 7 A
P T2 7 B /D3
P T2 6 A /DQ S
P T2 6 B
P T2 5 B
P T2 4 A /D4
P T2 3 A /D5
P T2 3 B
P T2 2 A
P T2 2 B /D6
P T2 1 A
P T2 1 B /D7
BANK 0
P T9 B
P T8 A
P T7 A
P T7 B
P T6 A
P T6 B
P T5 A
P T5 B
P T4 A
P T4 B
P T3 A
P T3 B
P T2 A
C8 0
10uF
CC0 8 0 5
V CCIO 0 _ G 1 0
V CCIO 0 _ G 1 1
V CCIO 0 _ G 8
V CCIO 0 _ G 9
V CCIO 0 _ H8
CS 1 _ n /P T2 0 A
B US Y/P T2 0 B
P CL K T0 _ 0 /P T1 9 A
P CL K C0 _ 0 /P T1 9 B
DQ S /P T1 8 A
P T1 8 B
P T1 7 B
DO UT/P T1 6 A
W RITE _ n /P T1 5 A
P T1 5 B
V RE F1 _ 0 /P T1 4 A
P T1 4 B
DI/P T1 3 A
P T1 3 B
CS _ n /P T1 2 A
P T1 2 B
D Q S r each
P T1 1 A
P T1 1 B
DQ S /P T1 0 A
V RE F2 _ 0 /P T1 0 B
LFXP10C (fpBGA388)
(4 OF 5)
BANK 1
U4D
C6 4
0 .1 u F
CC0 4 0 2
G12
G13
G14
G15
H1 5
C1 8
C2 0
C1 9
C2 2
C2 1
A21
B22
D1 4
D1 5
FC_ A 1
A20
V R E F_ 2 .5 V B 2 1
A18
B19
C1 3
C1 4
FC_ A 4
D I N _ 2 _ D0
FC_ A 1 1
A17
B18
A16
B17
A14
B15
FC_ A 5
D1 3
FC_ A 9
FC_ A 7
D1 2
A13
B14
A12
B13
C1 2
B12
FC_ A 1 3
FC_ A 1 0
FC_ A 1 4
FC_ A 0
TP _ B 2 2
V C C IO _ 1
TP _ C1 8
[ 6]
TP _ C2 0
[ 6]
TP _ C1 9
[ 6]
[ 6]
V R E F_ 2 .5 V
[ 6]
TP _ B 1 8
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
3
FC_ CS _ N
2
G10
G11
G8
G9
H8
B11
C1 1
A10
A11
B9
B10
D1 1
D1 0
C8
A9
A8
B8
A7
C7
C6
B7
C9
C1 0
B6
A6
A5
B5
A4
C5
F C _ D Q7
F C _ D Q6
FC_ DQ S
F C _ D Q5
F C _ D Q4
DO UT
F C _ D Q2
F C _ D Q3
V C C _ 3 .3 V
C5 3
0 .1 u F
CC0 4 0 2
1
2
3
4
5
6
7
R3 9
10K
CR0 4 0 2
C2 0
0 .1 u F
CC0 4 0 2
1
O S C_ CL K _ P L L
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
F C R AM
1
S h eet
4
of
9
Rev
B
L a t t i c e Semiconductor Corporatio n
D at e:
Size
C
1
2
3
4
5
6
7
1
2
3
4
5
6
7
8
V C C _ 3 .3 V
C6 3
10uF
CC0 8 0 5
14
13
12
11
10
9
8
Y2
3 3 MHz
DIP 1 4
Ti tle
14
13
12
11
10
9
8
16
15
14
13
12
11
10
9
X U1
DIP 1 6
DIP 1 6
F C R A M _ CL K
F C R A M _ CL K _ N
C5 6
0 .1 u F
CC0 4 0 2
O S C _ C L K _ P RI
O S C_ CL K _ P L L
[ 5]
[ 8]
B USY
V C C I O_0
V R E F_ 2 .5 V
1 2 0 CR0 4 0 2
1 2 0 CR0 4 0 2
[ 5]
D0
V C C _ 3 .3 V
R8 7
R8 6
[ 6]
TP _ A 4
[ 6]
TP _ C5
C5 4
0 .1 u F
CC0 4 0 2
V R E F_ 2 .5 V
F C _ D Q1
DIN_ 2 _ S DIN
F C _ D Q0
FC_ B A 1
FC_ B A 0
F C _ C LK
F C _ C L K _N
FC_ P D_ N
F C _ FN
[ 6]
TP _ A 2
[ 6]
TP _ B 4
[ 6]
TP _ D8
[ 6]
TP _ D9
A2
B4
D8
D9
[ 6]
TP _ B 3
[ 6]
TP _ A 3
B3
A3
[ 6]
[ 6]
TP _ C3
[ 6]
TP _ C4
TP _ D3
C3
C4
D3
2
1
1
2
F C R A M _ DQ 0
5
1
2
1
2
1
2
1
2
1
2
23
2
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 11. FCRAM
A
B
C
D
1
2
3
4
5
6
7
8
9
10
TCK
DO NE
I N I TN
TMS
[ 6 ],[ 8]
1
3
5
7
9
JP 1 4
2
4
6
8
10
5
C8 2
0 .1 u F
CC0 4 0 2
C7 7
0 .1 u F
CC0 4 0 2
C5 8
0 .1 u F
CC0 4 0 2
V C C _ 3 .3 V
HE A DE R 5 X 2
h d r5 x2 _ 1 0 0 m il
D o w n l o a d C a b le Header
T DO
i n p ut
o u t put
T DI
o u t put
T MS
o u t put
T CK
V C C _ 3 .3 V
V C C _ C O RE
TCK
TMS
T DI
TDO
C5 0
0 .1 u F
CC0 4 0 2
C9 7
0 .1 u F
CC0 4 0 2
V C C _ 3 .3 V 1
2
TDO
T DI
2x5 Download Cable Header
H E A D E R 10
h d r1 0 x1 _ 1 0 0 m il
JP 1 2
1x10 Download Cable Header
1
2
1
2
C6 7
0 .1 u F
CC0 4 0 2
C6 5
0 .1 u F
CC0 4 0 2
[ 4]
[ 4] B U S Y
D IN
[ 4]
D0
R1 0 1
10K
CR0 4 0 2
C6 8
0 .1 u F
CC0 4 0 2
4
C5 9
0 .1 u F
CC0 4 0 2
JP 1 3
C5 7
0 .1 u F
CC0 4 0 2
C6 6
0 .1 u F
CC0 4 0 2
HE A DE R 5 X 2
d o _ n o t _ s t u ff
1
3
5
7
9
2
4
6
8
10
C6 0
0 .1 u F
CC0 4 0 2
V C C _ 3 .3 V
I N I TN
P R O G RA MN
2x5 Loader Board Header
CCL K
B U SY
D IN
X P _ DO UT
DO NE
4
1
5
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
24
2
C8 8
10uF
CC0 8 0 5
3
3
[ 8]
V CC_ CO RE
V C C _ 3 .3 V
T DI
TMS
TCK
TDO
JP 6
1
3
5
7
HE A DE R 4 X 2
d o n o t s t u ff
2
4
6
8
H9
J1 5
J8
K15
K8
L15
L8
M1 5
M8
N1 5
N8
P15
P8
R9
G16
G7
T1 6
T7
M2
M2 1
E20
D2 0
D1 9
D1 8
F1 9
P C I _ TCK
P CI_ TMS
P C I _ TD I
P C I _ TDO
[ 2]
[ 2]
[ 2]
[ 2]
L FX P 1 0 C-4 F3 8 8 CE S
FP B G A 3 8 8
V CC_ H9
V CC_ J1 5
V CC_ J8
V CC_ K 1 5
V CC_ K 8
V CC_ L 1 5
V CC_ L 8
V CC_ M1 5
V CC_ M8
V CC_ N1 5
V CC_ N8
V CC_ P 1 5
V CC_ P 8
V CC_ R9
V CCA UX _ G 1 6
V CCA UX _ G 7
V CCA UX _ T1 6
V CCA UX _ T7
R1 1 0 1 0 K CR0 4 0 2
CFG 0
2
G NDP 0
G NDP 1
G ND_ A 1
G ND_ A 2 2
G ND_ A B 1
G ND_ A B 2 2
G ND_ H1 0
G ND_ H1 1
G ND_ H1 2
G ND_ H1 3
G ND_ H1 4
G ND_ J1 0
G ND_ J1 1
G ND_ J1 2
G ND_ J1 3
G ND_ J1 4
G ND_ J9
G ND_ K 1 0
G ND_ K 1 1
G ND_ K 1 2
G ND_ K 1 3
G ND_ K 1 4
G ND_ K 9
G ND_ L 1 0
G ND_ L 1 1
G ND_ L 1 2
G ND_ L 1 3
G ND_ L 1 4
G ND_ L 9
G ND_ M1 0
G ND_ M1 1
G ND_ M1 2
G ND_ M1 3
G ND_ M1 4
G ND_ M9
G ND_ N1 0
G ND_ N1 1
G ND_ N1 2
G ND_ N1 3
G ND_ N1 4
G ND_ N9
G ND_ P 1 0
G ND_ P 1 1
G ND_ P 1 2
G ND_ P 1 3
G ND_ P 1 4
G ND_ P 9
G ND_ R1 0
G ND_ R1 1
G ND_ R1 2
G ND_ R1 3
G ND_ R1 4
DO NE
P RO G RA MN
INITN
CCL K
N1
N2 2
A1
A22
AB1
AB22
H1 0
H1 1
H1 2
H1 3
H1 4
J1 0
J1 1
J1 2
J1 3
J1 4
J9
K10
K11
K12
K13
K14
K9
L10
L11
L12
L13
L14
L9
M1 0
M1 1
M1 2
M1 3
M1 4
M9
N1 0
N1 1
N1 2
N1 3
N1 4
N9
P10
P11
P12
P13
P14
P9
R1 0
R1 1
R1 2
R1 3
R1 4
B1
F4
Y2
G4
C1
B2
DO NE
P R O G RA MN
I N I TN
CCL K
R1 0 9 1 0 K CR0 4 0 2
CFG 1
CFG 0
CFG 1
LFXP10C (fpBGA388)
(5 OF 5)
V CCP 0
V CCP 1
V CCJ
TDI
TMS
TCK
TDO
U4 E
P C I _ TCK
P CI_ TMS
P C I _ TDI
P C I _ TDO
V C C _ 3 .3 V
2
1
2
3
4
S W D IP -2
261m ilX 4 2 5 m il
SW 4
SW 3
S W P U S H B UTTO N
4 .7 m m X 3 .5 m m
1
2
DO NE
R2 8
10K
CR0 4 0 2
Q1
BSS138
S O T2 3
D1 4
G R E E N_ L E D
CR0 6 0 3
R2 3
470
CR0 4 0 2
V C C _ 3 .3 V
D escription
S l a v e S e r i a l , External Device
M a s t e r S e r i a l, External Device
S l a v e P a r a l l e l, External Device
I n t ernal Flash
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
1
S h eet
5
J TAG and FPGA Programming
of
9
Rev
B
L a t t i c e S e m i c o n d u c t o r C o r p o r a t i on
D at e:
Size
C
Ti tle
D1 5
YE L L OW _LED
CR0 6 0 3
R2 4
470
CR0 4 0 2
CFG0
0
1
0
1
D o w n = 0 , Up = 1
CFG1
0
0
1
1
1
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 12. JTAG and FPGA Programming
A
B
C
D
1
2
3
4
5
6
7
8
9
10
11
12
13
14
V C C I O_7
[ 8]
S e ve n S e g m e n t L E D
738m ilX 3 8 6 m il
cath od e A
cath od e F
an n od e1
NC1
NC2
NC3
cath od e E
cath od e D
cath od e DP
cath od e C
cath od e G
NC4
cath od e B
an n od e2
5
D1
G R E E N_ L E D
CR0 6 0 3
R8 4
220
CR0 4 0 2
V C C I O_1
R5
470
CR0 4 0 2
D8
G R E E N_ L E D
CR0 6 0 3
R9 3
220
CR0 4 0 2
R7
470
CR0 4 0 2
R8
470
CR0 4 0 2
R3
470
CR0 4 0 2
R1
470
CR0 4 0 2
TP _ D2
TP _ E 1
TP _ E 3
TP _ F2
TP _ D1
TP _ E 2
TP _ F1
TP _ F3
D2
G R E E N_ L E D
CR0 6 0 3
R8 8
220
CR0 4 0 2
D3
G R E E N_ L E D
CR0 6 0 3
R8 9
220
CR0 4 0 2
D4
G R E E N_ L E D
CR0 6 0 3
R9 0
220
CR0 4 0 2
R3 0
R3 1 R3 2
R3 3 R3 4
R3 5
R3 6 R3 7
10K
10K
10K
10K
10K
10K
10K
10K
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
R6
470
CR0 4 0 2
SW 1
S W D IP -8
861m ilX 4 2 5 m il
V C C _ 3 .3 V
R4
470
CR0 4 0 2
V C C _ 3 .3 V
R2
470
CR0 4 0 2
SSEG_B
SSEG_E
SSEG_D
S S E G _ DP
SSEG_C
SSEG_G
SSEG_A
SSEG_F
V C C _ 3 .3 V
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
U1
7 segment display
4
D5
G R E E N_ L E D
CR0 6 0 3
R9 1
220
CR0 4 0 2
TP _ C2 2
TP _ Y2 1
TP_A A 2 2
TP_A A 2 1
TP_A B 2 1
TP _ C2 1
TP _ W 8
TP _ A B 2
[ 4]
[ 2]
[ 2]
[ 2]
[ 2]
[ 4]
[ 2]
[ 2]
[ 4]
[ 4] TP _ A 2
[ 4] TP _ C5
TP _ B 1 2
D6
G R E E N_ L E D
CR0 6 0 3
R9 2
220
CR0 4 0 2
1
2
3
4
5
6
[ 4]
[ 4]
[ 4]
TP _ A 3
TP _ D3
TP _ B 1 3
TP _ H1
TP _ A 1 6
TP _ B 1 6
TP _ B 1 8
TP _ C1 8
TP _ C1 9
TP _ C2 0
TP _ W 1 6
D7
G R E E N_ L E D
CR0 6 0 3
R3 8
220
CR0 4 0 2
V C C _ 3 .3 V
J1
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P op u late
TP _ E 2
TP _ G 3
[ 4]
[ 2]
[ 4]
[ 4]
[ 4]
[ 4]
[ 4]
J2
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P o p u late
1
2
3
4
5
6
[ 4]
[ 4]
[ 4]
3
O S C_ CL K _ P L L
SW 2
S W P U S H B UTTO N
4 .7 m m X 3 .5 m m
2
1
TP _ E 3
TP _ H4
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
V C C I O_7
E TH _ MDIO
E TH _ MDC
E TH _ MA C_ CL K _ E N
E TH_ CL K _ TO _ MA C
E TH_ E G P 6
E TH_ E G P 7
E TH_ E G P 5
E TH_ E G P 4
E TH_ E G P 0
E TH_ E G P 2
[ 8]
1
2
3
4
5
6
A4
D8
B22
J4
K4
G1
H2
TP _ J4
TP _ K 4
TP _ G 1
TP _ H1
F1
E1
TP _ B 4
TP _ A 1 2
BANK 6
[ 4]
[ 4]
PL19A
PL19B
PL30A
PL30B
PL13A
PL13B
PL15B
PL32B
V CCIO 7 _ H7
V CCIO 7 _ J7
V CCIO 7 _ K 7
V CCIO 7 _ L 7
PL35A
PL35B
PL18A
PL18B
C4 8
0 .1 u F
CC0 4 0 2
C4 6
10uF
CC0 8 0 5
2
V CCIO 6 _ M7
V CCIO 6 _ N7
V CCIO 6 _ P 7
V CCIO 6 _ R7
D Q S r each
P L L 2 _ FB _ T/P L 3 4 A
P L L 2 _ FB _ C/P L 3 4 B
DQ S /P L 3 3 A
PL33B
PL17A
PL17B
D Q S r each
P L 1 6 A / DQ S
PL16B
V RE F2 _ 6 /P L 3 1 A
PL29A
PL29B
P L 1 2 A /P L L 1 _ IN_ T
P L 1 2 B /P L L 1 _ IN_ C
P L 1 4 A /V RE F2 _ 7
PL28A
PL28B
PL11A
PL11B
D Q S r each
PL26A
PL26B
D Q S r each
P L L 2 _ IN_ T/P L 2 5 A
P L L 2 _ IN_ C/P L 2 5 B
PL9A
PL9B
DQ S /P L 2 4 A
PL24B
PL8A
PL8B
P L 7 A /DQ S
PL7B
V RE F1 _ 6 /P L 2 3 B
PL22A
PL5A
P L 6 B /V RE F1 _ 7
PL21A
PL21B
PL4A
PL4B
M7
N7
P7
R7
U4
U3
V4
V3
T3
T4
R4
R3
Y1
W2
P3
P4
1
2
3
4
5
6
C5 1
0 .1 u F
CC0 4 0 2
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
[ 7]
D at e:
Size
C
Ti tle
C5 2
0 .1 u F
CC0 4 0 2
[ 8]
E TH_ RX _ D2
E TH_ RX _ D3
E TH_ RX _ D6
E TH_ RX _ D7
E TH_ RX _ D0
E TH_ TX _ E R
E TH_ TX _ D7
E TH_ TX _ E N
[ 7]
E TH_ RE S E T_ N[ 7]
E TH _ CRS
E TH_ TX _ D4
E TH_ TX _ D3
E TH_ COL
E TH_ RX _ DV
E TH_ RX _ E R
E TH_ RX _ D4
E TH_ TX _ D6
E TH_ G TX _ CL K
E TH_ TX _ D1
E TH_ TX _ D2
E TH_ RX _ D5
1
2
3
4
5
6
TP _ C4
TP _ A 1 8
1
S h eet
D9
D I O D E S C H O TTK Y
S Min i2 -F1
N o P o p u late
1
2
3
4
5
6
6
of
P C I _ CL K
J1 0
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P o p u late
TP _ E 1
TP _ G 2
D1 0
D I O D E S C H O TTK Y
S Min i2 -F1
N o P o p u late
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
1
TP _ H2 1
V C C _ 3 .3 V
[ 3]
[ 4]
[ 4]
Ethernet Phy
C8 5
10uF
CC0 8 0 5
J9
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P op u late
TP _ D2
TP _ G 1
TP _ T2
[ 7]
E TH_ RX _ CL K [ 7]
E TH_ RX _ D1
E TH_ TX _ D5
E TH_ TX _ D0
[ 4]
[ 4] TP _ C3
TP _ A 1 3
V C C I O_6
P C I _ CL K
TP _ T2
TP _ R2
J8
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P op u late
W1
V2
V1
U2
U1
T2
T1
R2
N4
N3
R1
P2
P1
N2
M3
M4
TP _ D1
TP _ F3
TP _ R2
Bank 2
H 21
Bank 6
R 2 , T2
Bank 7
D 1 , D 2 , E 1 , E 2 , E 3 , F1, F2, F3
G 1 , G 2 , G 3 , H 2 , H4, J4, K4
Bank 1
A 1 2 , A 1 3 , A 1 8 , B 12, B13, B22
D 12
Bank 0
A 2 , A 3 , A 4 , B 3 , B4, C3, C4
C 5 , D 3 , D8, D9
P CL K T6 _ 0 /P L 2 0 A
P CL K C6 _ 0 /P L 2 0 B
LFXP10C (fpBGA388)
(1 OF 5)
P L 3 A /P L L 1 _ FB _ T
P L 3 B /P L L 1 _ FB _ C
PL2A
PL2B
1
2
3
4
5
6
J5
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P o p u late
L FX P 1 0 C-4 F3 8 8 CE S
FP B G A 3 8 8
C4 9
0 .1 u F
CC0 4 0 2
H7
J7
K7
L7
L1
M1
L3
L4
K1
L2
J3
K3
J1
K2
J2
H1
G3
G2
TP _ G 3
TP _ G 2
TP _ F1
TP _ E 1
H3
F3
F2
H4
TP _ H4
E2
E3
TP _ F3
TP _ F2
D2
D1
TP _ F2
TP _ K 4
BANK 7
U4 A
TP _ B 3
TP _ D9
TP _ D1 2
TP _ E 2
TP _ E 3
[ 4]
[ 4]
[ 4]
. ...
. ...
. ...
TP _ D2
TP _ D1
J4
HE A DE R 6
h d r6 x1 _ 1 0 0 m il
P o p u late
E TH_ TX _ CL K
G S RN
O S C_ CL K _ P L L
[ 7]
TP _ F1
TP _ J4
I .e.:
A2
A3
C5
D3
B12
B13
D1 3
R E D _ LED
CR0 6 0 3
R2 1
470
CR0 4 0 2
V C C _ 3 .3 V
TP _ A 4
TP _ D8
TP _ B 2 2
Bank 0
2
T h e 1 x 6 h e a d e r s f o r m a t e s t p o i n t g r i d 100mil
c e n t e r - c e n t e r i n t h e o r i e n t a t i o n s h o w n b elow.
T h e s i l k s c r e e n w i l l c o n t a i n a n i n d e p e ndent
s e c t i o n t h a t d e s c r i b e s t h e p i n s e q u e n c e. The
p i n s e q u e n c e a r e a w i l l b e " b o x e d " a n d have
t e x t i n d i c a t i n g w h i c h b a n k t h e I O ' s b e l ong to.
1
2
3
1
2
4
1
2
5
1
25
2
9
[ 2]
Rev
B
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 13. Ethernet PHY
A
B
C
V C C _ 2 .5 V
[ 6]
E TH_ MDIO
[ 6]
E TH _ MDC
T h e s e t r a c e s m u s t be 50 ohm
i m p e d e nce.
P l a c e t e r m i n a t i o n resistors
T X _ D 0 - 7 , T X _ E R, TX_EN,
T X _ C L K , G TX_CLK
a s c l o s e t o U 5 a s possible.
N O T E:
P l a c e t e r m i n a t i o n resistors
R X _ D 0 - 7 , R X _ E R, RX_DV,
R X _ C L K , T X _ C L K , CRS, COL
a s c l o s e t o U 3 a s possible.
R5 5
2K
CR0 6 0 3
5
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
[ 6]
E TH_ G TX _ CL K
E TH _ C RS
E TH_ CO L
E TH_ TX _ CL K
E TH_ TX _ E N
E TH_ TX _ E R
E TH_ TX _ D0
E TH_ TX _ D1
E TH_ TX _ D2
E TH_ TX _ D3
E TH_ TX _ D4
E TH_ TX _ D5
E TH_ TX _ D6
E TH_ TX _ D7
E TH_ RX _ CL K
E TH_ RX _ DV
E TH_ RX _ E R
E TH_ RX _ D0
E TH_ RX _ D1
E TH_ RX _ D2
E TH_ RX _ D3
E TH_ RX _ D4
E TH_ RX _ D5
E TH_ RX _ D6
E TH_ RX _ D7
33
2 5 MHz
H C -4 9 / U
Y1
R7 8
33
33
33
R7 1
R5 9
R6 0
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
33
R7 6
R8 3
R7 2
R7 9
R7 3
R8 0
R7 4
R8 1
R7 5
R8 2
R6 1
R5 8
R6 7
R6 8
R6 2
R6 3
R6 9
R6 4
R6 5
R6 6
R5 7
1
33pF
CC0 6 0 3
C2 4
X1
X0
R1 3
2K
CR0 6 0 3
23
27
28
31
32
24
87
86
80
81
79
40
39
60
62
61
76
75
72
71
68
67
66
65
57
44
41
56
55
52
51
50
47
46
45
4
DP 8 3 8 6 5
TM0
TMS
TDO
TDI
TRS T
TCK
CL O CK _ O UT
CL O CK _ IN
MDIO
MDC
G TX _ CL K / RG MII_ TX C
CRS / RG MII_ S E L 1
CO L
TX _ CL K / RG MII_ S E L 0
TX _ E N / RG MII_ TX _ CTL
TX _ E R
TX D0 / RG MII_ TX D0
TX D1 / RG MII_ TX D1
TX D2 / RG MII_ TX D2
TX D3 / RG MII_ TX D3
TX D4
TX D5
TX D6
TX D7
RX _ CL K
RX _ DV / RG MII_ RX C
RX _ E R / RG MII_ RX _ CTL
RX D0
RX D1
RX D2
RX D3
RX D4
RX D5
RX D6
RX D7
/ RG MII_ RX D0
/ RG MII_ RX D1
/ RG MII_ RX D2
/ RG MII_ RX D3
22uF
1
S izeB
C1
2
U2
0 .0 1 u F
1 CC0 6 0 3
C2
2
P l a c e c a p s c l o se to GPHY
P U L L _ DN
R5 4
33
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
CR0 4 0 2
P l a c e x t a l c l o se to GPHY
P l a c e R c l o s e t o CLOCK_IN
33pF
CC0 6 0 3
C2 1
TX_D0
TX_D1
TX_D2
TX_D3
TX_D4
TX_D5
TX_D6
TX_D7
RX _ D0
RX _ D1
RX _ D2
RX _ D3
RX _ D4
RX _ D5
RX _ D6
RX _ D7
1
R9
18
CR0 6 0 3
101
BG_VDD
98
PGM_VDD0
3
G i g a P hyter
10/100/1000
Giga Phyter V
R X _ VDD
C3 4
0 .1 u F
CC0 4 0 2
C3 2
C3 1
0 .1 u F
CC0 4 0 2
C3 3
0 .0 1 u F
CC0 6 0 3
C3 8
0 .1 u F
CC0 4 0 2
B y p a s s f o r I O _ V D D p i n s . Bypass every other
I O _ V D D p a i r , a l t e r n a t i n g 0 . 1 and 0.01uF caps.
0 .0 1 u F
CC0 6 0 3
C2 5
0 .0 1 u F
CC0 6 0 3
3
E TH_ E G P 4
E TH_ E G P 5
E TH_ E G P 6
E TH_ E G P 7
E TH_ E G P 2
E TH_ E G P 0
R1 0
2K
CR0 6 0 3
R5 6
2K
CR0 6 0 3
H a r d R eset
[ 8]
C9 0
B y p a s s f o r BG_VDD
0 .0 1 u F
CC0 6 0 3
[ 6]
[ 6]
[ 6]
0 .0 1 u F
CC0 6 0 3
C3 0
R5 3
2K
CR0 6 0 3
V C C _ 2 .5 V
C3 5
0 .1 u F
CC0 4 0 2
C3 6
0 .0 1 u F
CC0 6 0 3
2
0 .1 u F
CC0 4 0 2
C3 7
C2 9
0 .0 1 u F
CC0 4 0 2
R5 1
R4 9
R5 0
R5 2
49_9
49_9
49_9
49_9
CR0 6 0 3 CR0 6 0 3 CR0 6 0 3 CR0 6 0 3
R4 5
R4 7
R4 8
R4 6
49_9
49_9
49_9
49_9
CR0 6 0 3 CR0 6 0 3 CR0 6 0 3 CR0 6 0 3
B y p a s s f o r V D D _ C O R E a n d V D D pins. Bypass every
o t h e r V D D p a i r , a l t e r n a t i n g 0.1 and 0.01uF caps.
0 .1 u F
CC0 4 0 2
C2 7
E TH_ CL K _ TO _ MA C
E TH_ RE S E T_ N
C2 8
0 .0 1 u F
CC0 4 0 2
V C C _ 2 .5 V
E TH _ MA C_ CL K _ E N
G i g a P h y t e r a d d ress = 01h
R1 2 4 7 0
1
2
CR0 4 0 2
R1 1 4 7 0
1
2
P UL L _ UP
CR0 4 0 2
B G R EF
R4 4 9 _ 7 6 K
1
2
CR0 6 0 3
P l a c e c a p s c l o se to GPHY
V C C _ 2 .5 V
0 .1 u F
CC0 4 0 2
C2 3
85
33
13
14
17
18
95
94
89
88
1
2
3
6
7
8
9
10
34
84
102
MDI_ P 4
M D I _ N4
MDI_ P 3
M D I _ N3
120
121
126
127
MDI_ P 2
M D I _ N2
MDI_ P 1
M D I _ N1
MDI IO traces must be 50 ohm
impedence.
114
115
108
109
Decoupling Caps
CL K _ TO _ MA C
RE S E T_ N
G P 0 (P HYA D0 / DUP L E X _ L E D)
G P 1 (P HYA D1 )
G P 2 (P HYA D2 )
G P 3 (P HYA D3 )
G P 4 (P HYA D4 )
G P 5 (MUL TI_ E N)
G P 6 (MDIX _ E N)
G P 7 (MA C_ CL K _ E N)
E G P 0 (NC_ MO DE )
EGP1
E G P 2 (In terru p t)
E G P 3 (TX _ TCL K )
E G P 4 (S P E E D0 / A CT_ L E D)
E G P 5 (S P E E D1 / L INK 1 0 )
E G P 6 (DUP L E X _ E N / L INK 1 0 0 )
E G P 7 (A N_ E N / L INK 1 0 0 0 )
V DD_ S E L
RE F_ S E L
B G _ RE F
MDID_ P
MDID_ N
MDIC_ P
MDIC_ N
MDIB _ P
MDIB _ N
MDIA _ P
MDIA _ N
V C C _ 2 .5 V
V C C _ 2 .5 V
Place 49 ohm termination resistors
as close as possible to U3. The
associated 0.01uF capacitor should
be placed close to the 49 ohm
resistors.
2
C2 2
Ti tle
MDID+
MDDCT
MDID-
MDIC+
MDCCT
MDIC-
MDIB +
MDB CT
MDIB -
[ 8]
19
20
16
15
14
13
1
1
R4 0
2K
CR0 6 0 3
R4 2
324
CR0 4 0 2
R4 3
2K
CR0 6 0 3
R4 1
324
CR0 4 0 2
1
2
2
2
2
S h eet
7
MH2
MH1
MHO L E _ 1 MHO L E _ 1
0 .1 0 0 _ P TH 0 .1 0 0 _ P TH
E TH_ E G P 4
1
C1 9
0 .0 1 u F
CC0 4 0 2
0 . 1 0 0 " d iameter plated
t h rough hole
E TH_ E G P 7
1
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
C1 8
0 .0 1 u F
CC0 4 0 2
Ethernet PHY Chip
C3
10uF
S izeC
L E D2 +
L E D2 L E D1 +
L E D1 -
S HL D1
S HL D2
7
8
4
5
3
6
1
2
RJ45
V C C _ 1 .8 V
D at e:
Size
C
TX1
MDIA +
MDA CT
MDIA -
RJ4 5
0 .0 1 u F
CC0 6 0 3
8
7
9
3
1
2
4
6
5
11
12
10
C2 6
0 .0 1 u F
CC0 4 0 2
P l a c e c a p s c lose to
R J 4 5 j a ck TX1
1
1
2
V C C _ 1 .8 V
1
2
1
2
1
2
RJ45
11
19
25
35
48
63
73
92
CORE_VDD1
CORE_VDD2
CORE_VDD3
CORE_VDD4
CORE_VDD5
CORE_VDD6
CORE_VDD7
CORE_VDD8
1
2
1
2
1
2
100
103
105
111
117
123
VDD0
RX_DVDD0
VDD1
VDD2
VDD3
VDD4
VSS0
PGM_VSS0
IO_VSS1
CORE_VSS1
CORE_VSS2
IO_VSS2
CORE_VSS3
IO_VSS3
CORE_VSS4
IO_VSS4
IO_VSS5
CORE_VSS5
IO_VSS6
IO_VSS7
CORE_VSS6
IO_VSS8
CORE_VSS7
IO_VSS9
O_VSS0
IO_VSS10
CORE_VSS8
IO_VSS11
RX_DVSS0
VSS1
CD_VSS1
CD_VSS2
VSS2
CD2_VSS1
CD2_VSS2
VSS3
CD3_VSS1
CD3_VSS2
VSS4
CD4_VSS1
CD4_VSS2
1
2
4
15
21
29
37
42
53
58
69
83
77
90
2
1
2
96
VDD25_0
99
97
5
12
20
16
26
22
36
30
38
49
43
54
64
59
74
70
82
78
93
91
104
106
107
110
112
113
116
118
119
122
124
125
128
1
2
IO_VDD1
IO_VDD2
IO_VDD3
IO_VDD4
IO_VDD5
IO_VDD6
IO_VDD7
IO_VDD8
IO_VDD9
O_VDD0
IO_VDD10
IO_VDD11
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
4
1
D
5
1
26
2
of
9
Rev
B
C1 7
0 .0 1 u F
CC0 4 0 2
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 14. Ethernet PHY Chip
A
B
C
J1 9
P W R J A CK
RAPC712
1
2
3
J1 8
C O NN_ RE D
J1 7
C O N N _ B L A CK
5
5
D1 8
1 N5 8 2 0
2 6 7 -0 5
D1 1
[ 6]
1
2
3
V C C _ 3 .3 V
1
2
3
JB 1 9
JB L O CK
h d r3 x1 _ 1 0 0 m il
V C C I O_1
V C C IO _ 7
[ 3]
R2 6
10K
CR0 4 0 2
1
2
3
1
2
3
SW
V IN
IS E NS E
SW
V IN
IS E NS E
S O T2 3 -6
TP S 6 4 2 0 3 DV B
/E N
G ND
FB
U9
S O T2 3 -6
TP S 6 4 2 0 3 DV B
/E N
G ND
FB
U8
JP 1
HE A DE R 8
h d r8 x1 _ 1 0 0 m il
Q5
S i2 3 2 3 DS
S O T2 3
2
6 .2 u H
7m m X7m m
V C C I O_0
V C C I O_6
V C C _ 3 .3 V
V CC_ A DJ
V C C _ 2 .5 V
V C C _ 1 .2 V
V C C I O_6
D R A I N _ 1 .2
R1 0 8
10
CR0 4 0 2
G A TE _ 1 .2
b i g g e r trace
2
6 .2 u H
7m m X7m m
JP 2
HE A DE R 8
h d r8 x1 _ 1 0 0 m il
D1 7
B320A
S MA
1
L2
Q3
S i5 4 4 7 DC
1 2 0 6 -8
V C C _ 3 .3 V
V CC_ A DJ
V C C _ 2 .5 V
V C C _ 1 .2 V
V C C I O_0
4
S e l e c t o n l y o n e v o l t a g e f o r e a c h VCCIO
[ 3]
G
1
D1 6
B320A
S MA
L1
[ 6]
R2 5
3 6 _ 0 K /1 %
CR0 4 0 2
V C C _ 2 .5 V
3
V C C _ C O RE
C1 2
100uF
S izeD
3
P W R_ 1 .2 V
2
4
6
8
2
4
6
8
HE A DE R 4 X 2
hdr4X2 _ 1 0 0 m il
HE A DE R 4 X 2
hdr4X2 _ 1 0 0 m il
1
3
5
7
JP 7
1
3
5
7
2
4
6
8
1
3
5
7
JP 1 1
2
4
6
8
JP 9
HE A DE R 4 X 2
hdr4X2 _ 1 0 0 m il
V CC_ A DJ
V C C _ 1 .2 V
2
P C I _ G ND_ 5 7
JB 2 0
JB L O CK
[ 7]
V C C _ 1 .8 V
R1 0 2
10K
CR0 4 0 2
R1 0 5
10K
CR0 4 0 2
1
2
2
1
FB
V O UT
EN
V IN
2
4
6
8
2
5
4
5
4
1
3
5
7
V C C _ 3 .3 V
JB 2
+
JB 3
C1 3
2 .2 u F
CC1 2 1 0
F3
1 .5 A
JB 6
JB 7
JB 4
JB 8
JB 1 0
JB 1 1
JB 1 2
JB 1 4
JB 1 5
JB 1 6
J B L O CK J B L O CK JB L O CK JB L O CK
JB 1 3
J B L O CK J B L O CK JB L O CK JB L O CK
JB 9
J B L O CK J B L O CK JB L O CK JB L O CK
JB 5
J B L O CK J B L O CK JB L O CK JB L O CK
JB 1
V C C _ 3 .3 V
C1 0
2 .2 u F
CC1 2 1 0
J1 5
C O NN_ RE D
+
F4
1 .5 A
J1 6
C O NN_ RE D
F r i d a y, A p r i l 2 9 , 2 0 0 5
D o c u m e n t N u m b er
< D o c>
Power
1
S h eet
8
of
9
Rev
B
L a t t i c e Semiconductor Corporation
D at e:
Size
C
Ti tle
V CC_ A DJ
R1 0 3
3 0 _ 1 K /1 %
CR0 4 0 2
R1 0 4
5 1 _ 0 K /1 %
CR0 4 0 2
P W R_ 3 .3 V
[ 5 ],[ 6]
R1 0 6
3 0 _ 1 K /1 %
CR0 4 0 2
R2 9
50K POT
5 .6 m m X 3 .6 m m
P W R _ A DJ
2
HE A DE R 4 X 2
hdr4X 2 _ 1 0 0 m il
JP 1 0
FB
V O UT
U6
TPS78 6 0 1 K TT
D D P AK
EN
V IN
U7
TPS78 6 0 1 K TT
D D P AK
1
V CC_ A DJ
S e t t o 1 . 8 V i f U 3 i s i n s t a l led.
S e l e c t o n l y o n e v o l t a g e f o r t h e core
V C C _ 2 .5 V
3
2
1
JP 1 6
HE A DE R 3
h d r3 x1 _ 1 0 0 m il
C8
4 .7 u F
CC1 2 1 0
JB 1 7
JB L O CK
3
2
1
JP 1 5
HE A DE R 3
h d r3 x1 _ 1 0 0 m il
C9
4 .7 u F
CC1 2 1 0
V C C _ 3 .3 V
[ 2]
V CC_ IN
V CC_ IN
HE A DE R 4 X 2
hdr4X2 _ 1 0 0 m il
1
3
5
7
C7
1uF
S izeA
F2
3A
J1 4
C O NN_ RE D
C6
1uF
S izeA
F1
3A
J1 3
C O NN_ RE D
JP 8
V C C _ 1 .2 V
C1 1
100uF
S izeD
P W R_ 2 .5 V
V C C _ 2 .5 V
C1 4
R2 2
4 .7 p F
3 9 _ 0 K /1 %
CC0 4 0 2 CR0 4 0 2
[ 5]
V C C _ C O RE
A n o t h e r P - C h a n n e l M O S F E T o p t ion in SOT23 package
D R A I N _ 1 .2
G A TE _ 1 .2
V CC_ IN
D R A I N _ 2 .5
b i g g e r tra ce
R1 0 7
1 0 CR0 4 0 2
G A TE _ 2 .5
Q2
S i5 4 4 7 DC
1 2 0 6 -8
JP 4
HE A DE R 8
h d r8x1 _ 1 0 0 m il
[ 6]
6
5
4
6
5
4
C1 5
10uF
S izeC
Q4
S i2 3 2 3 DS
S O T2 3
JP 3
HE A DE R 8
h d r8 x1 _ 1 0 0 m il
V C C _ 3 .3 V
V CC_ A DJ
V C C _ 2 .5 V
V C C _ 1 .2 V
V C C I O_1
V C C _ 3 .3 V
V CC_ A DJ
V C C _ 2 .5 V
V C C _ 1 .2 V
V C C I O_7
R2 7
10K
CR0 4 0 2
PCI_3.3V
JP 1 8
HE A DE R 3
JB 1 8
J B L O CK
h d r3 x1 _ 1 0 0 m il
JP 1 7
HE A DE R 3
C1 6
10uF
S izeC
1 N5 8 2 0
2 6 7 -0 5
D1 2
1 N5 8 2 0
2 6 7 -0 5
V CC_ IN
V CC_ IN
G
S
A n o t h e r P - C h a n n e l M O S F E T o p t ion in SOT23 package
D R A I N _ 2 .5
G A TE _ 2 .5
V CC_ IN
4
S
D
5
6
7
8
S
D
D
D
1
2
S
1
2
1
D
S
1
1
S
1
2
1
2
1
2
3
4
5
6
7
8
GND
3
G
D
D
D
1
2
3
4
5
6
7
8
3
1
1
2
1
1
2
4
3
2
1
S
D
5
6
7
8
S
D
D
D
G
D
D
D
4
3
2
1
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2
1
2
1
2
1
2
S
1
2
1
1
2
GND
S
1
2
1
27
3
A
B
C
D
Lattice Semiconductor
LatticeXP Advanced Evaluation Board
User’s Guide
Figure 15. Power