Lattice USB Type-C Solution Data Sheet
DS1052 Version 1.4, August 2016
Lattice USB Type-C Solution Data Sheet
Introduction
August 2016
Data Sheet DS1052
General Description
The USB Type-C receptacle, plug and cable provide a smaller, thinner and more robust alternative to existing USB
interconnects. The Lattice USB Type-C solution targets its use in a variety of platforms ranging from notebooks,
PCs, Monitors, down to tablets and smart phones. These solutions are also implemented in Docking Stations, USB
chargers and cables where cable detect (CD) electronic intelligence and power delivery (PD) protocols are implemented.
The Lattice solution is designed to support USB Type-C cable and Connector and USB Power Delivery specifications with programmable flexibility to support the new and evolving specifications as well as the various levels of
complexities required by the end system in a cost effective manner.
Features
Two solutions cover majority of USB Type-C
Power Delivery (PD) and Cable Detect (CD)
Applications:
• CD/PD for Charger
• CD/PD for hosts/devices
• 48 QFN
• 81 ucBGA
Ultra-Small Form Factor
• As small as 2.078 mm x 2.078 mm
Logic Based PHY Provides Fast
Deterministic Response and Low Power
• Typical Solution Power 7 mW
Standby Power less than 100 uW
Flexible 8-bit uC Policy Engine Enables
Easy Modifications
Supports Fast Development
USB Type-C PHY
USB Type-C Cable Detect (CD) support per
USB Cable and Connector Specification
v1.0
USB Power Delivery (PD) support per
Power Delivery Specification v2.0
• IO capability to drive LED indicator
• Industry Proven Solutions Reduce Design Risk
• Schematics and BOMS available to minimize
system design effort
Wide Range of Packages to Match PCB
Technology
Table 1-1. USB Type-C Device Table
Solution
Package, Ball Pitch,
Dimension
Typical End Equipment
OPN
CD/PD for Charger
48 QFN, 0.50 mm,
7.00 mm x 7.00 mm
Charger
LIF-UC110-SG48I
CD/PD for
Hosts/Devices
81 ucBGA, 0.40 mm,
4.00 mm x 4.00 mm
Tablet
LIF-UC140-CM81I
© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
1-1
DS1052 Introduction_01.3
Lattice USB Type-C Solution Data Sheet
Architecture
August 2016
Data Sheet DS1052
Architecture Overview
Figure 2-1. High-level Functional Block for USB Type-C Physical Layer and Power Detect Protocol
CPU/ I2C/SPI
AC/
/Other
EC
Policy
Management
Layer
Policy
Engine
Layer
Protocol
Layer
Capabilities
Register Set
Soft Reset
Handler
Construct
Message
Policy
Manager
VDM
Engine
I2C
Slave
Controller
Policy
Engine
VBUS
Current Sense
Timer
Interface
Timer
Block
CD
Interface
Protocol
Layer
Message
TX
REGISTER
Set
Cable and
Orientation
Detect
Protocol
Layer
Message
RX
Hard Reset
Management
SS
Select
Switch
Select
CC
PHY
4B5B
Encoder
PHY
Interface
BMC
TX
BMC
Encoder
CRC
REGISTER
Set
BIST
Engine
VBUS_EN
VBUS Discharge
Voltage Select
4B5B
Decoder
Stop/Start
Detect
BMC
Decoder
BMC
RX
CRC
© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
2-1
DS1052 Architecture_01.4
Architecture
Lattice USB Type-C Solution Data Sheet
USB CD/PD Charger Solution (Captive Cable)
Block Diagram
Figure 2-2. USB CD/PD Charger Solution (Captive Cable) Block Diagram
CD/PD
Manager
CD/PD
PHY
CC
VBUS VBUS
Power
Control
CD = Cable Detect
PD = Power Delivery
Features Supported in Schematics
• Downstream Facing Port (DFP)
• USB Power Delivery Communication between Port partners
• Takes advantage of captive cable to minimize component count
2-2
Type C Connector
LIF-UC110
2-3
A
B
C
D
0
0
0
12V
19.6V
0V
0
0
1
0
0
1
0
0
100nF
10V
47
46
34
13
40
14
17
15
16
19
18
4K7
4K7
R17
CDONE 7
CRESET_B 8
Refer Note 5
VSEL1
VSEL2
VSEL3
VSEL4
VBUS_PG
SPI_MISO
SPI_MOSI
SPI_SCK
SPI_SS_B
20
10uF
10V
CDONE
CRESET_B
IOB_2a
IOB_0a
IOT_44b
IOB_24a
RGB1
IOB_32a_SO
IOB_33b_SI
IOB_34a_SCK
IOB_35b_CSN
IOB_29b
IOB_31b
IOB_25b_G3
VCCPLL
VCC
VCC
VPP2V5_Top
VCCIO0
SPI_VCCIO1
VCCIO2
U1
VBUS_DSICHARGE_EN
R4
QFN48 DEVICE
5
4
RGB0
IOT_41a
IOT_42b
IOB_6a
IOB_9b
IOT_38b
IOT_36b
IOT_46b_G0
IOT_51a
IOT_39a
IOT_43a
IOB_20a
IOB_18a
IOT_50b
IOT_49a
IOT_45a_G1
IOT_37a
IOB_8a
IOB_16a
IOB_13b
IOT_48b
VBUS_DET
1K C1 0.047uF
VBUS Sense
All VSEL* lines are programmable, they can ben changed based
on customer requirement.
VSEL4 can be used to select another output voltage
1
30
5
29
100R VCCPLL
C11
C12
CLK_IN
R16
3V3
33
22
1
2VPP_2V5 24
CDBU0520
1
D1
VSEL1 VSEL2 VSEL3
5V
VBUS
OUTPUT
VOLTAGE
SELECT
LINES
Config / Optional
PMIC control via I2C
R11
1V2
100nF 100nF
10V
10V
10uF
10V
C7
C8
C6
1V2
100nF 100nF 100nF
10V
10V
10V
C5
10uF
10V
C4
C3
C2
3V3
Schematics
4
VBUS_REF
Preliminary
VBUS_SOURCE_EN
21
IOB_23b
12
IOB_22a
VBUS_DET_PWM
44
IOB_3b_G6
39
RGB2
TH_PAD
49
45
IOB_5b
48
IOB_4a
41
28
31
2
3
27
25
35
42
26
32
11
10
38
43
37
23
4
9
CC1_TX
6
R8
R6
CC1_DET_PWM
CC1_DET_REF
CC1_RX_REF
R18
CC1_RX
CC1_DET
CC1_TX_EN
C14
1K
2
Q2
VBUS_SOURCE_EN
510K
R2
N-Channel
Q1
P-Channel
10m
Current
Monitor
R1
4K7
100R
R9
10V
3
0.047uF
42R2
1K
R15
4.7nF
50V
C9
VBUS
330pF
16V
C10
Q3
N-Channel
1W
100R
R3
C13
0.047uF
10V
CC1
GND
CC1
VBUS
2
Date:
Size
B
Friday,04-Sep-15
Project
CD_PD_Charger_Captive
Title
CD_PD_Charger_Captive
1
Sheet
(Preliminary Schematics)
Lattice Semiconductor Applications
Email: techsupport@Latticesemi.com
Phone (503) 268-8001 -or- (800) LATTICE
Board Rev
1
of 2
A
Schematic Rev 1.7
Notes:1) In case VBUS Current sensing is required, customer can contact Lattice
tech support for current sense implementation.
2) CC1_RP resistor value is dependent on current rating. It should be 36KOhm for
standard device, 12KOhm for 1.5A device and 4.7KOhm for 3A device.
3)These values are as per Lattice LAB tests. Might need fine-tuning by customer
to meet the Eye requirements
4)During configration Lattice device
pins are
weak pulled-up
for time duration of 40ms.
5)RGB0, RGB1 and RGB2 are open drain pins, they required
external pull-up.
Capacitor C10 is required to meet minimum
reciever capacitance
3V3
Q6
N-Channel
Q6 is for Device protection
CC1_INT
1
not included in BOM Count
VBUS_DSICHARGE_EN
VBUS Control section Components are
VBUS Power Control scheme shown is
logical
implmentation, for actual implementation please contact
Lattice tech support.
Refer Note 3
CC1_RP
36
75K
R7
510K
R5
VBUS
VBUS
SOURCE
3
ISENSE
5
A
B
C
D
Architecture
Lattice USB Type-C Solution Data Sheet
Schematics
Figure 2-3. USB CD/PD Charger Solution (Captive Cable) Schematic Diagram
Architecture
Lattice USB Type-C Solution Data Sheet
Table 2-1. USB CD/PD Mobile System Solution (Captive Cable) BOM
Item
Quantity
Reference
Part
DESCRIPTION
1
3
C1, C13, C14
0.047 uF
2
3
C2, C6, C12
10 uF
CAP CER 10 uf 10 V 10% X5R 0805
3
6
C4, C5, C7, C3, C8, C11
100 nF
CAP CER 100 nf 10 V 10% X5R 0402
4
1
C9
4.7 nF
CAP CER 3300 pF 10 V 5% U2J 0402
5
1
C10
330 pF
CAP CER 3300 pF 16 V 10% X7R 0402
6
1
D1
CDBU0520
DIODE SCHOTTKY 20 V 500 MA 0603
7
1
Q1
P-Channel
MOSFET P-CH 20 V 6 A SOT-23
8
1
Q3
N-Channel
MOSFET N-CH 20 V 6.3 A SOT-23
CAP CER 0.047 uf 10 V 10% X5R 0402
9
2
Q2, Q6
N-Channel
10
3
R4, R15
1K
MOSFET N-CH 30 V 0.85 A SOT23
11
2
R2, R5, R18
510K
RES 510 kOhm 1/16 W 5% 0402
12
1
R8
100R
RES SMD 100 Ohm 1% 1/16 W 0402
13
3
R6, R16, R17
4K7
RES 150 Ohm 1/16 W 1% 0402 SMD
14
1
R11
100R
RES 100 Ohm 1/16 W 5% 0402
15
1
R9
42.2R
RES SMD 42.2 Ohm 1% 1/16 W 0402
16
1
R3
100R
RES SMD 100 Ohm 1% 1 W 2512
17
1
R7
75K
RES SMD 75 kOhm 5% 1/16 W 0402
18
1
R1
10m
RES 0.01 Ohm 1/2 W 1% 1206
19
1
U1
LIF-UC
RES 1 kOhm 1/16 W 5% 0402
LIF-UC 48-Pin Device
Table 2-2. USB CD/PD Mobile System Solution (Captive Cable) BOM Count1, 2
Item
Component
Count
1
Cap
14
2
FET
1
3
Resistor
11
4
Lattice LIF-UC
1
1. VBUS control section components are not Included in the BOM count.
2. Diode D1 is not included in the BOM count. It is required only during onboard NVCM programming.
2-4
Architecture
Lattice USB Type-C Solution Data Sheet
USB CD/PD Charger Solution (Non-Captive Cable)
Block Diagram
Figure 2-4. USB CD/PD Charger Solution (Non-Captive Cable) Block Diagram
CD/PD
Manager
CD/PD
PHY
CC
VBUS VBUS
Power
Control
CD = Cable Detect
PD = Power Delivery
Features Supported in Schematics
• DFP
• USB Power Delivery Communication between Port partners
• Provides cable flip support needed in chargers with receptacles
2-5
Type C Connector
LIF-UC110
A
B
C
D
0
0
0
12V
19.6V
0V
0
0
1
0
0
1
0
30
5
24
100nF
10V
47
46
34
13
40
14
17
15
16
19
18
4K7
7
4K7 CDONE
CRESET_B 8
R22
Refer Note 5
VSEL1
VSEL2
VSEL3
VSEL4
VBUS_PG
SPI_MISO
SPI_MOSI
SPI_SCK
SPI_SS_B
20
10uF
10V
29
100R VCCPLL
C11
C12
CLK_IN
R18
3V3
0
VPP_2V5
33
22
1
CDONE
CRESET_B
IOB_2a
IOB_0a
IOT_44b
IOB_24a
RGB1
IOB_32a_SO
IOB_33b_SI
IOB_34a_SCK
IOB_35b_CSN
IOB_29b
IOB_31b
IOB_25b_G3
VCCPLL
VCC
VCC
VPP2V5_Top
VCCIO0
SPI_VCCIO1
VCCIO2
U1
VBUS_DSICHARGE_EN
R4
5
4
1K C1 0.047uF
VBUS Sense
RGB0
IOT_41a
IOT_42b
IOB_6a
IOB_9b
IOT_38b
IOT_36b
IOT_46b_G0
IOT_51a
IOT_39a
IOT_43a
IOB_20a
IOB_18a
IOT_50b
IOT_49a
IOT_45a_G1
IOT_37a
IOB_8a
IOB_16a
IOB_13b
IOT_48b
VBUS_DET
QFN48 DEVICE
All VSEL* lines are programmable, they can be changed based
on customer requirement.
VSEL4 can be used to select another output voltage.
1
2
CDBU0520
1
D1
VSEL1 VSEL2 VSEL3
5V
VBUS
OUTPUT
VOLTAGE
SELECT
LINES
Config / Optional
PMIC control via I2C
R11
1V2
100nF 100nF
10V
10V
10uF
10V
C7
C8
C6
1V2
100nF 100nF 100nF
10V
10V
10V
C5
10uF
10V
C4
C3
C2
3V3
Schematics
VBUS_REF
R13
R12
41
28
31
2
3
27
CC2_DET_PWM
CC2_DET_REF
CC1_DET_PWM
CC1_DET_REF
Q2
VBUS_SOURCE_EN
N-Channel
Q1
10m
Current
Monitor
R1
100R
R14
4K7
42R2
4.7nF
50V
3V3
CC1_INT
Q6
N-Channel
1K
R20
10V
R19
VBUS_DSICHARGE_EN
VBUS
Q3
N-Channel
1W
100R
R3
0.047uF
10V
C15
3
4K7
R23
4K7
R24
5
7
4
2
9
1
IN2
NC2
NO2
NO1
NC1
IN1
TS5A23159RSER
VCONN_5V
VCONN_5V
VCONN_5V
VCONN SPDT Switch
U2
COM2
COM1
6
330pF 330pF
16V
16V
C14
CC2
CC1
C10
10
GND
CC2
TYPE C
CC1
VBUS
2
Date:
Size
B
Friday,04-Sep-15
1
Sheet
Project
CD_PD_Charger_Non_Captive (Preliminary Schematics)
Title
CD_PD_Charger_Non_Captive
Lattice Semiconductor Applications
Email: techsupport@Latticesemi.com
Phone (503) 268-8001 -or- (800) LATTICE
Board Rev
1
of 1
A
Schematic Rev 1.8
Notes:1) In case VBUS Current sensing is required, customer can
contact Lattice tech support for current sense implementation.
2) CC1_RP and CC2_RP resistor value is dependent on current rating.
It should be 36KOhm for standard device, 12KOhm for
1.5A device and 4.7KOhm for 3A device.
3)These values are as per Lattice LAB tests. Might need
fine-tuning by customer to meet the Eye requirements
4)During configration Lattice device
pins are
weak pulled-up
for time duration of 40ms.
5)RGB0, RGB1 and RGB2 are open drain pins, they required
external pull-up.
Q7
N-Channel
0.047uF
10V
3V3
CC2_INT
1K
C16
0.047uF
4.7nF
50V
C17
1
are not included in BOM Count
Capacitor C10 and C14 are required to meet minimum
reciever capacitance
Q7 is for Device protection
Q6 is for Device protection
C18
42R2
C9
Sch Rev 1.7 Changes :1.Added VCONN SPDT switch for SOP' support.
1K
R21
CC_RX_REF
35
CC2_RX
CC2_DET
CC2_TX_EN
42
25
4K7
100R
R9
Refer Note 3
CC2_TX
CC2_RP
CC1_VCONN_EN
CC1_RX
CC1_DET
CC2_VCONN_EN
26
32
11
10
38
43
37
23
4
R2
510K
P-Channel
2
VBUS Power Control scheme shown is
logical
implmentation, for actual implementation please contact
Lattice tech support.
SOURCE
Refer Note 3
R8
R6
CC1_TX_EN
CC1_TX
6
9
CC1_RP
36
75K
R7
510K
R5
VBUS
3
VBUS Control section Components
ISENSE
Preliminary
VBUS_SOURCE_EN
21
IOB_23b
12
IOB_22a
VBUS_DET_PWM
44
IOB_3b_G6
45
IOB_5b
48
IOB_4a
4
V+
8
GND
39
RGB2
TH_PAD
49
2-6
3
5
A
B
C
D
Architecture
Lattice USB Type-C Solution Data Sheet
Schematics
Figure 2-5. USB CD/PD Charger Solution (Non-Captive Cable) Schematic Diagram
Architecture
Lattice USB Type-C Solution Data Sheet
BOM
Table 2-3. USB CD/PD Charger Solution (Non-Captive Cable) BOM
Item
Quantity
1
4
Reference
Part
2
3
C2, C6, C12
10 uF
CAP CER 10 uf 10 V 10% X5R 0805
3
6
C4, C5, C7, C3, C8, C11
100 nF
CAP CER 100 nf 10 V 10% X5R 0402
4
2
C9, C17
4.7 nF
CAP CER 4700 pF 10.V 5% U2J 0402
5
2
C10, C14
330 pF
CAP CER 330 pF 16 V 10% X7R 0402
6
1
D1
CDBU0520
DIODE SCHOTTKY 20 V 500 MA
7
1
Q1
P-Channel
MOSFET P-CH 20 V 6 A SOT-23
8
1
Q3
N-Channel
MOSFET N-CH 20 V 6.3 A SOT-23
9
3
Q2, Q6, Q7
N-Channel
MOSFET N-CH 30 V 0.85 A SOT23
10
4
R4, R19, R20
1K
11
2
R2, R5, R21
510K
12
6
R6, R12, R18, R22, R23, R24
13
2
R8, R13
100R
14
2
R9, R14
42.2R
RES SMD 42.2 Ohm 1% 1/16 W 0402
15
1
R11
100R
RES 100 Ohm 1/16 W 5% 0402
16
1
R3
100R
RES SMD 100 Ohm 1% 1 W 2512
17
1
R7
75K
18
1
R1
10m
19
1
U1
LIF-UC
20
1
U2
TS5A23159RSER
C1, C15, C16, C18
0.047 uF
4K7
DESCRIPTION
CAP CER 0.047 uf 10 V 10% X5R 0402
RES 1K Ohm 1/16 W 5% 0402
RES 510K Ohm 1/16 W 5% 0402
RES 4.7K Ohm 1/16 W 5% 0402
RES SMD 100 Ohm 1% 1/16 W 0402
RES SMD 75 kOhm 5% 1/16 W 0402
RES 0.01 Ohm 1/2 W 1% 1206
LIF-UC 48-Pin Device
Switch Dual SPDT
BOM Count
Table 2-4. USB CD/PD Charger Solution (Non-Captive Cable) BOM Count1, 2
Item
Component
Count
1
Cap
17
2
FET
2
3
Resistor
17
4
Lattice LIF-UC
1
5
Dual SPDT
1
1. VBUS control section components are not Included in the BOM count.
2. Diode D1 is not included in the BOM count. It is required only during onboard NVCM programming.
2-7
Architecture
Lattice USB Type-C Solution Data Sheet
CD/PD for Hosts/Devices
Block Diagram
Figure 2-6. CD/PD for Hosts/Devices Block Diagram
Tx1/Rx1
USB
Chipset
SS
Switch
Tx/Rx
Tx2/Rx2
Type-C Connector
Video
LIF-UC140
SPI
IRPT
AP/
CPU/
EC
CD/PD
Manager
CD/PD
PHY
VBUS Power Control
CC
VBUS
Power
Control
VBUS
CD = Cable Detect
PD = Power Delivery
Features Supported in Schematics
• Dual Role Port (DRP)
• USB Power Delivery Communication between Port partners
• SS/HS switch control
• VBUS Source/Sink and Discharge Control signals
• Alternate mode support
• SPI Config interface is reused as SPI interface post configuration. SPI is used to interface PD to AP/Controller/Processor.
2-8
A
B
C
H8
CM81
IOT_198_GBIN0
IOT_197_GBIN1
BANK0
CLK
D8
E8
100nF
C16
5
CM81
IOR_109
IOR_110
IOR_111
IOR_112
IOR_113
IOR_114
IOR_115
IOR_116
IOR_117
IOR_118
IOR_119
IOR_120
IOR_148
TP1
100nF
C18
G6
H7
G7
F7
i/o's
100nF
C20
AP/EC
Optional
CONFIGS &
R47
4
1K
D3
E3
100nF
C10
H3
EC_INT
EC_CS
J8
J9
H9
G9
F8
G8
D6
A9
D7
E7
D9
B9
C9
R31
R32
R33
R34
SS SEL
36K
5K1
36K
5K1
DB_DISABLE
CM81
3V3
IOL_13B_GBIN7
IOL_14A_GBIN6
BANK3
VCCIO_3
100K
R37
IOL_2B
IOL_2A
IOL_3A
IOL_3B
IOL_7A
IOL_7B
IOL_10B
IOL_10A
IOL_13A
IOL_14B
IOL_22B
IOL_22A
IOL_24A
IOL_24B
IOL_26B
IOL_26A
IOB_82_GBIN4
IOB_81_GBIN5
IOB_103_CBSEL0
IOB_104_CBSEL1
CDONE
CRESET_B
BANK2
B2
C2
B1
C1
D2
C3
E1
D1
E2
E4
F3
F1
G3
G1
H2
G2
IOB_54
IOB_55
IOB_56
IOB_57
IOB_70
VBUS_DET_PWM
VBUS_IN
CC2_RX_REF
7
CC1_RX_REF
1
100nF
C19
U3
R22
R21
510K
510K
2
5
6
3
COMP_2CH
3V3
510K
510K
R13
R12
3V3
4
3
2
510K
R6
Q7
R15
Q4
P-Channel
Q1
P-Channel
VBUS
N-Channel
100R
R46
Refer note 3
4
1
A
10K EN_CC2
U5
4
SN74LV1T04DCKR
Y
2
Q13
N-Channel
Q10
Size
B
510K
R36
DNI
C12
P-Channel
5K1
R41
R42
CC2
CC1
CC2
CC1
Q11
5K1
330pF 330pF
DNI
C11
8
5
7
6
VCONN_5V
Friday,04-Sep-15
1
Sheet
Project
CD_PD_Hosts_Devices (Preliminary schematics)
Title
CD_PD_Hosts_Devices
Date:
S2
S1
GND
VDD
Lattice Semiconductor Applications
Email: techsupport@Latticesemi.com
Phone (503) 268-8001 -or- (800) LATTICE
Batttery
P-Channel
510K
R35
Q8 and Q9 are for
Device protection
Dead
Q9
N-Channel
U6
SLG59M1599
D2
D1
ON2
ON1
Switch
3
0R 2
0R
VCONN
R45
VCONN_5V
CC2_VCONN_EN
CC1_VCONN_EN
Q8
N-Channel
10K EN_CC1
VCONN_5V
EN_CC2
2
1
NC
R44
R43
3V3
3V3
N-Channel
Q2
P-Channel
VBUS
510K
R7
GND
CC2
CC1
VBUS
Board Rev
1
of 1
A
Schematic Rev 1.7
TYPE C
GND
VBUS Control section Components are
not included in BOM Count
Q6
N-Channel VBUS_SINK_EN
Q3
P-Channel
Q5
VBUS_SOURCE_EN
SOURCE
SINK
VBUS DISCHARGE
CC1_INT
1
VBUS Power Control scheme shown is
logical
implmentation, for actual implementation please contact
Lattice tech support.
Capacitor C11 and C12 are required to
meet minimum reciever capacitance
510K
510K
R19
R17
VBUS
CC2_INT
3V3
CC1_VCONN_EN
CC2_VCONN_EN
R39
0.047uF
10V
C22
510K
510K
R20
R18
Refer Note 5
R16
R14
510K
510K
VBUS_DET
3V3
Refer Note 7
510K
510K
R9
VBUS_SOURCE_EN
VBUS_SINK_EN
BMC RX Comparators
1nF
C13
1nF
C9
1nF
C7
R11
R10
510K
510K
R8
CC2_INT
Refer Note 4
CC1_INT
VBUS SENSING
100R
42R2
4.7nF
10V
C5
4.7nF
10V
100R
42R2
R4
R5
C4
R1
R3
Refer Note 4
VBUS_REF
CC2_TX
CC2_TX_EN
CC1_TX
CC1_TX_EN
CC1_DET_REF
CC1_DET
CC1_DET_PWM
VBUS_DISCHARGE_EN
CC2_DET_REF
CC2_DET
CC2_DET_PWM
H1
J1
J2
J3
J4
3
1) CC1_RP and CC2_RP resistor value is dependent on current rating. It should be 36Kohms for standard device, 12Kohms
R38
for 1.5A device and 4.7KOhms for 3A device.
N-Channel
2) Discrete FET based logic can also be used instead of SPDT switch (U2)Contact Lattice tech support for details
5K1
3) VCONN_5V should be sequenced, It should come after Lattice device is configured.
5K1
4) These values are as per Lattice LAB tests. Might need fine-tuning by customer to meet the Eye requirements.
5)Regressive LAB tests ongoing for Sigma Delta ADC
6)During configration Lattice device pins are weak pulled-up for time duration of 40ms.
7)Incase VBUS is greater than 5V, Adjust R19 to map the voltage across R19 is not greter than to 3.3V.
Q12
8)BMC RX reference can be generated with internal PWM, To do that mount R47 component, R23 as DNI and replace R26 with 47nF capacitor.
Notes:-
CC2_RP
CC2_RD
CC1_RP
CC1_RD
SS_SEL1
SS_SEL2
SS_SEL3
U1C
VCCIO_2
CM81
U1D
H4
G4
CDONE
CRESET_B
3V3
G5
H5
E6
H6
5K1
J5
100nF
R40 C1
3V3
SS Switch selection signals
HPD
100nF
C17
B8
A8
A7
B7
B6
A6
B5
A4
B4
D5
E5
A3
B3
A2
A1
IOB_105_SDO
IOB_106_SDI
IOB_107_SCK
IOB_108_SS
IOR_141_GBIN2
IOR_140_GBIN3
BANK1
VCCIO_1
U1B
1uF
10uF
C6
C15
C14
IOT_170
IOT_174
IOT_177
IOT_180
IOT_183
IOT_185
IOT_188
IOT_208
IOT_211
IOT_212
IOT_214
IOT_217
IOT_218
IOT_221
IOT_224
CM81
SPI
VCC_SPI
U1E
Configuration
GNDPLL0
GND
GND
GND
GND
CM81
VCCIO_0
U1A
1V2
C4
C5
CLK_IN
100nF
C21
3V3
A5
100nF
C8
3V3
100nF
C6
3V3
10uF100nF
J6
10V GNDPLL0
10V
F9
F4
F5
F6
POWER
3V3
CDBU0520 D1
VPP_2V5 2
1
VPP_FAST
1V2
1
C3
F2
D4
E9
C8
C7
SPI_MISO
C2
VCC
VCC
VCC
VPP_2V5
VPP_FAST
SPI_MOSI
VCCPLL0
SPI_SCK
U1F
CC_RX_REF
J7
100R VCCPLL0
SPI_SS_B
D
R2
Schematics
8
4
5
CC_RX_REF
Preliminary
5
V
G
3
2-9
EN_CC1
1V2
A
B
C
D
Architecture
Lattice USB Type-C Solution Data Sheet
Schematics
Figure 2-7. CD/PD for Hosts/Devices Schematic Diagram
Architecture
Lattice USB Type-C Solution Data Sheet
BOM
Table 2-5. CD/PD for Hosts/Devices BOM
Item
Quantity
1
11
C1,C3,C6,C8,C10,C16,C17,C18,
C19,C20,C21
Reference
100 nF
Part
CAP CER 100nf 10V 10% X5R 0402
Description
2
2
C2,C14
10 uF
CAP CER 10uf 10V 10% X5R 0805
3
2
C4,C5
4.7 nF
CAP CER 4700PF 10V 5% U2J 0402
4
3
C7,C9,C13
1 nF
CAP CER 1000PF 10V 10% X5R 0402
5
2
C11,C12
330 pF
CAP CER 330PF 16V 10% X7R 0402
6
1
C15
1 uF
CAP CER 1uf 10V 10% X5R 0402
7
1
C22
0.047uF
CAP CER 0.047uf 10V 10% X5R 0402
8
1
D1
CDBU0520
DIODE SCHOTTKY 20V 500MA 0603
9
4
Q1,Q2,Q3,Q4
P-Channel
MOSFET P-CH 20V 6A SOT-23
10
6
Q5,Q6,Q8,Q9,Q12,Q13
N-Channel
MOSFET N-CH 30V 0.85A SOT23
11
1
Q7
N-Channel
MOSFET N-CH 20V 6.3A SOT-23
12
2
Q10,Q11
P-Channel
MOSFET P-CH 20V 760MA SOT-416
13
2
R1,R4
100R
RES SMD 100 OHM 1% 1/16W 0402
14
1
R2
100R
RES 100 OHM 1/16W 5% 0402
15
2
R3,R5
42R2
RES SMD 42.2 OHM 1% 1/16W 0402
16
18
R6,R7,R8,R9,R10,R11,R12,R13,
R14,R16,R17,R18,R19,R20,R21,
R22,R35,R36
510K
RES 510K OHM 1/16W 5% 0402
17
1
R15
100R
RES SMD 100 OHM 1% 1W 2512
18
2
R31,R33
36K
RES 36K OHM 1/16W 5% 0402
19
7
R32,R34,R38,R39,R40,R41,R42
5K1
RES 5.1K OHM 1/16W 5% 0402
20
1
R37
100K
RES 100K OHM 1/16W 5% 0402
21
2
R43,R44
10K
RES 10K OHM 1/16W 5% 0402
22
2
R45,R46
0R
RES 0.0 OHM 1/16W JUMP 0402
23
1
R47
1K
Thick Film Resistors - SMD 1/16watt
1.0Kohms 1%
24
1
U1
LIF-UC
LIF-UC 81-Pin Device
25
1
U3
COMP_2CH
Analog Comparators Dual,40ns,microPower
RRI Comparator
26
1
U5
SN74LV1T04DCKR
IC BUFFER GATE SGL CMOS SC70-5
27
1
U6
SLG59M1599
Ultra-small Dual 40 mO 1.0 A GreenFET 3
Load Switch
2-10
Architecture
Lattice USB Type-C Solution Data Sheet
BOM Count
Table 2-6. CD/PD for Hosts/Devices BOM Count1, 2
Item
Component
Count
1
CAP
22
2
FET
6
3
Resistor
36
4
Load Switch
1
5
Level Translator
1
6
Comparator
1
7
Lattice LIF-UC
1
1. VBUS control section components are not Included in the BOM count.
2. Diode D1 is not included in the BOM count. It is required only during onboard NVCM programming.
2-11
Lattice USB Type-C Solution Data Sheet
DC and Switching Characteristics
August 2016
Data Sheet DS1052
Absolute Maximum Ratings1, 2, 3
Supply Voltage VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 1.42 V
Output Supply Voltage VCCIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.60 V
NVCM Supply Voltage VPP_2V5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.60 V
PLL Supply Voltage VCCPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 1.42 V
I/O Tri-state Voltage Applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.60 V
Dedicated Input Voltage Applied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.60 V
Storage Temperature (Ambient). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 °C to 150 °C
Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65 °C to 125 °C
1. Stress above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
2. Compliance with the Lattice Thermal Management document is required.
3. All voltages referenced to GND.
Recommended Operating Conditions1
Symbol
Parameter
1
VCC
Core Supply Voltage
Slave SPI Configuration
VPP_2V5
Min.
Max.
Units
1.14
1.26
V
1.71 4
3.46
V
VPP_2V5 NVCM Programming and
Operating Supply Voltage
Master SPI Configuration
2.30
3.46
V
Configuration from NVCM
2.30
3.46
V
NVCM Programming
2.30
3.00
V
I/O Driver Supply Voltage
VCCIO_0, SPI_VCCIO1, VCCIO_2
1.71
3.46
V
PLL Supply Voltage
1.14
1.26
V
Junction Temperature Commercial Operation
0
85
°C
VCCIO1, 2, 3
VCCPLL
tJCOM
tJIND
Junction Temperature Industrial Operation
–40
100
°C
tPROG
Junction Temperature NVCM Programming
10.00
30.00
°C
1. Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please
refer to Power-Up Supply Sequencing section. VCC and VCCPLL are recommended to tie to same supply with an RC-based noise filter
between them. Please refer to TN1252, iCE40 Hardware Checklist.
2. See recommended voltages by I/O standard in subsequent table.
3. VCCIO pins of unused I/O banks should be connected to the VCC power supply on boards.
4. VPP_2V5 can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of
the HFOSC/LFOSC and RGB LED / IR LED driver features are used. Otherwise, VPP_2V5 must be connected to a power supply with a minimum 2.30 V level.
Power Supply Ramp Rates1, 2
Symbol
tRAMP
Parameter
Power supply ramp rates for all power supplies.
Min.
Max.
Units
0.6
10
V/ms
1. Assumes monotonic ramp rates.
2. Power up sequence must be followed. Please refer to Power-Up Supply Sequencing section.
© 2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
www.latticesemi.com
3-1
DS1052 Architecture_01.2
DC and Switching Characteristics
Lattice USB Type-C Solution Data Sheet
Power-On Reset
All iCE40 Ultra devices have on-chip Power-On-Reset (POR) circuitry to ensure proper initialization of the device.
Only three supply rails are monitored by the POR circuitry as follows: (1) VCC, (2) SPI_VCCIO1 and (3) VPP_2V5. All
other supply pins have no effect on the power-on reset feature of the device. Note that all supply voltage pins must
be connected to power supplies for normal operation (including device configuration).
Power-Up Supply Sequencing
It is recommended to bring up the power supplies in the following order. Note that there is no specified timing delay
between the power supplies, however, there is a requirement for each supply to reach a level of 0.5V, or higher,
before any subsequent power supplies in the sequence are applied.
1. VCC and VCCPLL should be the first two supplies to be applied. Note that these two supplies can be tied
together subject to the recommendation to include a RC-based noise filter on the VCCPLL (Please refer to
TN1252, iCE40 Hardware Checklist.)
2. SPI_VCCIO1 should be the next supply, and can be applied any time after the previous supplies (VCC and
VCCPLL) have reached as level of 0.5 V or higher.
3. VPP_2V5 should be the next supply, and can be applied any time after previous supplies (VCC, VCCPLL and
SPI_VCCIO1) have reached a level of 0.5 V or higher.
4. Other Supplies (VCCIO0 and VCCIO2) do not affect device power-up functionality, and they can be applied any
time after the initial power supplies (VCC and VCCPLL) have reached a level of 0.5 V or greater.
There is no power down sequence required. However, when partial power supplies are powered down, it is
required the above sequence to be followed when these supplies are repowered up again.
External Reset
When all power supplies have reached to their minimum operating voltage defined in Minimum Operation Condition
Table, it is required to either keep CRESET_B LOW, or toggle CRESET_B from HIGH to LOW, for a duration of
tCRESET_B, and release it to go HIGH, to start configuration download from either the internal NVCM or the external
Flash memory.
Figure 3-1 shows Power-Up sequence when SPI_VCCIO1 and VPP_2V5 are connected separately, and the
CRESET_B signal triggers configuration download. Figure 3-2 shows when SPI_VCCIO1 and VPP_2V5 connected
together.
All power supplies should be powered up during configuration. Before and during configuration, the I/Os are held in
tri-state. I/Os are released to user functionality once the device has finished configuration.
Figure 3-1. Power Up Sequence with SPI_VCCIO1 and VPP_2V5 Not Connected Together
VSUPPLY(MIN)
VPP_2V5, VCCIO0 and VCCIO2= 2.5 V / 3.3 V
SPI_VCCIO1 = 1.8 V
VCC/VCC_PLL = 1.2 V
CRESET_B
tCRESET_B
0.5 V
3-2
DC and Switching Characteristics
Lattice USB Type-C Solution Data Sheet
Figure 3-2. Power Up Sequence with All Supplies Connected Together
SPI_VCCIO, VPP_2V5, VCCIO0 and VCCIO2= 1.8 V / 2.5 V / 3.3 V
VSUPPLY(MIN)
VCC/VCC_PLL = 1.2 V
tCRESET_B
CRESET_B
0.5 V
Power-On-Reset Voltage Levels1
Symbol
VPORUP
VPORDN
Parameter
Power-On-Reset ramp-up trip point (circuit monitoring
VCC, SPI_VCCIO1, VPP_2V5)
Power-On-Reset ramp-down trip point (circuit monitoring VCC, SPI_VCCIO1, VPP_2V5)
Min.
Max.
Units
VCC
0.62
0.92
V
SPI_VCCIO1
0.87
1.50
V
VPP_2V5
0.90
1.53
V
VCC
—
0.79
V
SPI_VCCIO1
—
1.50
V
VPP_2V5
—
1.53
V
1. These POR trip points are only provided for guidance. Device operation is only characterized for power supply voltages specified under recommended operating conditions.
ESD Performance
Please contact Lattice Semiconductor for additional information.
DC Electrical Characteristics
Over Recommended Operating Conditions
Symbol
Parameter
Min.
Typ.
Max.
Units
IIL, IIH1, 3, 4
Input or I/O Leakage
0V < VIN < VCCIO + 0.2 V
—
—
+/–10
µA
C1
I/O Capacitance, excluding
LED Drivers2
VCCIO = 3.3 V, 2.5 V, 1.8 V
VCC = Typ., VIO = 0 to VCCIO + 0.2 V
—
6
—
pF
C2
Global Input Buffer
Capacitance2
VCCIO = 3.3 V, 2.5 V, 1.8 V
VCC = Typ., VIO = 0 to VCCIO + 0.2 V
—
6
—
pF
C3
RGB Pin Capacitance2
VCC = Typ., VIO = 0 to 3.5 V
—
15
—
pF
C4
IRLED Pin Capacitance2
VCC = Typ., VIO = 0 to 3.5 V
—
53
—
pF
VHYST
Input Hysteresis
VCCIO = 1.8 V, 2.5 V, 3.3 V
—
200
—
mV
–3
–8
–11
—
–31
–72
–128
µA
IPU
Internal PIO Pull-up
Current
Condition
VCCIO = 1.8 V, 0=