SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
SiI-DS-1076-E.01
August 2016
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Contents
1.
2.
3.
4.
5.
General Description ......................................................................................................................................................7
Video Input ...........................................................................................................................................................7
HDMI Output ........................................................................................................................................................7
Control Capability .................................................................................................................................................7
Digital Audio Interface ..........................................................................................................................................7
Power Management .............................................................................................................................................7
Packaging ..............................................................................................................................................................7
Comparison of the SiI9022A/SiI9024A Device with Other HDMI Transmitters ....................................................8
Functional Description ..................................................................................................................................................9
Video Data Input and Conversion .......................................................................................................................10
Input Clock Multiplier/Divider ....................................................................................................................10
Video Data Capture .....................................................................................................................................10
Embedded Sync Decoding ...........................................................................................................................10
Data Enable Generator ...............................................................................................................................10
Color Space Converter ................................................................................................................................10
4:2:2 to 4:4:4 Upsampler ............................................................................................................................11
4:4:4 to 4:2:2 Downsampler .......................................................................................................................11
Dither 10 to 8 ..............................................................................................................................................11
Audio Data Capture Logic ...................................................................................................................................11
I2C Slave Interface ...............................................................................................................................................11
Control and Configuration ..................................................................................................................................11
DDC Master I2C Interface ....................................................................................................................................11
Interrupt Logic ....................................................................................................................................................11
Hot Plug Detection Logic .....................................................................................................................................12
HDCP Encryption Engine/XOR Mask (SiI9024A Device Only) ..............................................................................12
HDCP Key ROM (SiI9024A Device Only) ..............................................................................................................12
TMDS Digital Core ...........................................................................................................................................12
CEC Interface ...................................................................................................................................................12
Electrical Specifications ..............................................................................................................................................13
Absolute Maximum Conditions ..........................................................................................................................13
Normal Operating Conditions .............................................................................................................................13
IOVCC Supply Voltage Requirements ..........................................................................................................13
DC Specifications .................................................................................................................................................14
Digital I/O Specifications .............................................................................................................................14
DC Power Supply Specifications ..................................................................................................................16
AC Specifications .................................................................................................................................................17
TMDS AC Timing Specifications...................................................................................................................17
Audio AC Timing Specifications ...................................................................................................................18
Video Input AC Timing Specifications .........................................................................................................18
Control Signal Timing Specifications ...........................................................................................................20
Timing Diagrams .........................................................................................................................................................21
Input Timing Diagrams ........................................................................................................................................21
Audio Timing Diagrams .......................................................................................................................................23
Power Supply Sequencing ...................................................................................................................................24
Output Timing Diagrams .............................................................................................................................24
Minimum Horizontal Blanking Specification .......................................................................................................25
Ball and Pin Diagrams and Descriptions .....................................................................................................................26
Ball and Pin Diagrams .........................................................................................................................................26
81-Ball VFBGA Package ...............................................................................................................................26
49-Ball VFBGA Package ...............................................................................................................................27
72-Pin QFN Package ....................................................................................................................................28
Ball and Pin Descriptions.....................................................................................................................................29
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
2
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Video Input ................................................................................................................................................. 29
Audio Input ................................................................................................................................................. 30
CEC .............................................................................................................................................................. 30
Configuration and Control .......................................................................................................................... 31
25BDDC Bus ...................................................................................................................................................... 32
Differential Data ......................................................................................................................................... 32
Power and Ground ...................................................................................................................................... 33
6. Feature Information ................................................................................................................................................... 34
RGB to YCbCr Color Space Converter.................................................................................................................. 34
YCbCr to RGB Color Space Converter.................................................................................................................. 34
3D Video Formats ............................................................................................................................................... 34
Limitations .................................................................................................................................................. 35
S/PDIF Audio Input.............................................................................................................................................. 35
I2S Audio Inputs................................................................................................................................................... 35
Supported Audio Sampling Rates ....................................................................................................................... 36
I2C Register Information ..................................................................................................................................... 37
DDC Support ....................................................................................................................................................... 37
DDC Stall Support ........................................................................................................................................ 38
Power Saving Modes and Wakeup Feature ........................................................................................................ 38
Wakeup Support in D3 Cold and D3 Hot Modes ......................................................................................... 38
Common Video Input Formats........................................................................................................................ 39
Data Bus Mappings ......................................................................................................................................... 40
Data Mappings for 81-ball and 72-pin Package .......................................................................................... 42
Data Mappings for 49-Ball Package ............................................................................................................ 58
7. Design Recommendations .......................................................................................................................................... 67
Power Supplies Decoupling ................................................................................................................................ 67
High-Speed TMDS Signals ................................................................................................................................... 67
Source Termination .................................................................................................................................... 67
ESD Protection ............................................................................................................................................ 68
Transmitter Layout Guidelines.................................................................................................................... 68
Hot Plug Signal Conditioning............................................................................................................................... 68
EMI Considerations ............................................................................................................................................. 68
Typical Circuits .................................................................................................................................................... 69
Power Supply Decoupling ........................................................................................................................... 69
HDMI Port Connections .............................................................................................................................. 70
Control Signal Connections ......................................................................................................................... 71
7BDigital Video Input Connections ................................................................................................................. 72
8. Packaging .................................................................................................................................................................... 73
49-Ball Package Dimensions ............................................................................................................................... 73
36B81-Ball Package Dimensions ............................................................................................................................... 74
72-Pin Package Dimensions ................................................................................................................................ 75
Marking Specification ......................................................................................................................................... 76
Ordering Information .......................................................................................................................................... 77
References .......................................................................................................................................................................... 78
Standards Documents..................................................................................................................................................... 78
Standards Groups ........................................................................................................................................................... 78
Lattice Semiconductor Documents ................................................................................................................................. 78
Technical Support ........................................................................................................................................................... 78
Revision History .................................................................................................................................................................. 79
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
3
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Figures
Figure 1.1. Typical Application (SiI9022A HDMI Transmitter Shown)...................................................................................7
Figure 2.1. Functional Block Diagram ...................................................................................................................................9
Figure 2.2. Transmitter Video Data Processing Path ..........................................................................................................10
Figure 4.1. IDCK Clock Cycle/High/Low Times ....................................................................................................................21
Figure 4.2. Control and Data Single-Edge Setup/Hold Times to IDCK .................................................................................21
Figure 4.3. Dual-Edge Setup/Hold Times to IDCK ...............................................................................................................21
Figure 4.4. VSYNC and HSYNC Delay Times from/to DE .....................................................................................................22
Figure 4.5. DE High/Low Times ...........................................................................................................................................22
Figure 4.6. Conditions for Use of RESET# ............................................................................................................................22
Figure 4.7. RESET# Minimum Timings.................................................................................................................................22
Figure 4.8. I2S Input Timings ...............................................................................................................................................23
Figure 4.9. S/PDIF Input Timings .........................................................................................................................................23
Figure 4.10. MCLK Timings ..................................................................................................................................................23
Figure 4.11. Power Supply Sequencing ...............................................................................................................................24
Figure 4.12. Differential Transition Times ..........................................................................................................................24
Figure 4.13. I2C Data Valid Delay (Driving Read Cycle Data) ...............................................................................................24
Figure 4.14. INT Output Signal Response to Interrupt Condition .......................................................................................24
Figure 5.1. 81-Ball Package Ball Diagram (Top View)..........................................................................................................26
Figure 5.2. 49-Ball Package Ball Diagram (Top View)..........................................................................................................27
Figure 5.3. 72-Pin Package Pin Diagram (Top View) ...........................................................................................................28
Figure 6.1. Simplified Host I2C Interface using Master DDC Port ........................................................................................37
Figure 6.2. Master I2C Supported Transactions ..................................................................................................................38
Figure 6.3. Parallel Input Video to HDMI Output Video Permutations ...............................................................................41
Figure 6.4. RGB/YCbCr 4:4:4 Separate Sync Timing (81-Ball and 72-Pin Package) ..............................................................42
Figure 6.5. 16-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .................................................................43
Figure 6.6. 20-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .................................................................44
Figure 6.7. 20-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) .................................................44
Figure 6.8. 24-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .................................................................45
Figure 6.9. 24-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) .................................................46
Figure 6.10. 16-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................47
Figure 6.11. 20-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................47
Figure 6.12. 20-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)............................................47
Figure 6.13. 24-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................48
Figure 6.14. 24-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)............................................49
Figure 6.15. 8-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .........................................................49
Figure 6.16. 10-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .......................................................50
Figure 6.17. 12-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .......................................................50
Figure 6.18. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)......................................................51
Figure 6.19. 10-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)....................................................51
Figure 6.20. 12-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)....................................................52
Figure 6.21. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Timing (81-Ball and 72-Pin Package)...........................................53
Figure 6.22. 12-Bit RGB 4:4:4 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ...........................................54
Figure 6.23. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-b all and 72-p in Package) ..............................................55
Figure 6.24. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ..............................................56
Figure 6.25. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ..............................................57
Figure 6.26. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (81-Ball and 72-Pin Package)..............................57
Figure 6.27. 16-bit YC 4:2:2 Separate Sync Timing (49-Ball Package) .................................................................................58
Figure 6.28. 16-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) ..............................................................................59
Figure 6.29. 8-Bit YC Mux 4:2:2 Separate Sync Timing (49-Ball Package) ...........................................................................60
Figure 6.30. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (49-Ball Package) ........................................................................61
Figure 6.31. 12-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) ..............................................................................62
Figure 6.32. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Timing (49-Ball Package) ...................................................................63
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
4
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Figure 6.33. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) .................................................................. 64
Figure 6.34. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) ................................................................ 65
Figure 6.35. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) ................................................................ 66
Figure 6.36. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (49-Ball Package) ................................................ 66
Figure 7.1. Decoupling and Bypass Schematic .................................................................................................................... 67
Figure 7.2. Decoupling and Bypass Capacitor Placement ................................................................................................... 67
Figure 7.3. Transmitter to HDMI Connector Routing – Top View ....................................................................................... 68
Figure 7.4. Power Supply Decoupling ................................................................................................................................. 69
Figure 7.5. HDMI Port Connection Schematic .................................................................................................................... 70
Figure 7.6. Controller Connections Schematic ................................................................................................................... 71
Figure 7.7. Digital Input Schematic ..................................................................................................................................... 72
Figure 8.1. 49-Ball VFBGA Package Diagram (SiI902nAYBT) ............................................................................................... 73
Figure 8.2. 81-Ball VFBGA Package Diagram (SiI902nARBT) ............................................................................................... 74
Figure 8.3. 72-Pin QFN Package Diagram (SiI902nACNU) ................................................................................................... 75
Figure 8.4. Marking Diagram (SiI902nARBT) ....................................................................................................................... 76
Figure 8.5. Marking Diagram (SiI902nAYBT) ....................................................................................................................... 76
Figure 8.6. Marking Diagram (SiI902nACNU) ...................................................................................................................... 77
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
5
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Tables
Table 1.1. Summary of Features ...........................................................................................................................................8
Table 3.1. Absolute Maximum Conditions ..........................................................................................................................13
Table 3.2. Normal Operating Conditions ............................................................................................................................13
Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V .......................................................................................................14
Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V .......................................................................................................15
Table 3.5. TMDS I/O Specifications .....................................................................................................................................16
Table 3.6. Low Power Standby Mode Power Consumption ...............................................................................................16
Table 3.7. Operating Mode Power Consumption ...............................................................................................................16
Table 3.8. Power Operating Modes ....................................................................................................................................17
Table 3.9. TMDS AC Specifications......................................................................................................................................17
Table 3.10. I2S Input Port Timings .......................................................................................................................................18
Table 3.11. S/PDIF Input Port Timings ................................................................................................................................18
Table 3.12. Video Input AC Specifications: 1.8 V IOVCC .....................................................................................................18
Table 3.13. Video Input AC Specifications: 3.3 V IOVCC .....................................................................................................19
Table 3.14. Control Signal Timing Specifications ................................................................................................................20
Table 4.1. Minimum Horizontal Blanking Calculations .......................................................................................................25
Table 6.1. RGB to YCbCr Conversion Formulas ...................................................................................................................34
Table 6.2. YCbCr-to-RGB Conversion Formulas ..................................................................................................................34
Table 6.3. Supported 3D Video Formats .............................................................................................................................35
Table 6.4. Supported MCLK Frequencies ............................................................................................................................36
Table 6.5. S/PDIF Audio Formats Supported for each Video Format .................................................................................36
Table 6.6. I2S Audio Formats Supported for each Video Format ........................................................................................36
Table 6.7. Control of I2C Address with CI2CA Signal ...........................................................................................................37
Table 6.8. D3 hot and D3 Cold Feature ...............................................................................................................................38
Table 6.9. Video Input Formats...........................................................................................................................................39
Table 6.10. Input Video Formats ........................................................................................................................................40
Table 6.11. RGB/YCbCr 4:4:4 Separate Sync Data Mapping (81-Ball and 72-Pin Package).................................................42
Table 6.12. 16-Bit and 20-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ..................................43
Table 6.13. 24-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ....................................................45
Table 6.14. 16-Bit and 20-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) ...............................46
Table 6.15. 24-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) .................................................48
Table 6.16. 8-, 10-, and 12-Bit YC Mux 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ............................49
Table 6.17. 8-, 10-, and 12-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package).............................51
Table 6.18. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ................................53
Table 6.19. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) .....................54
Table 6.20. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) .....................................55
Table 6.21. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ...................................56
Table 6.22. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ...................................57
Table 6.23. 16-Bit YC 4:2:2 Separate Sync Data Mapping (49-Ball Package) ......................................................................58
Table 6.24. 16-Bit YC 4:2:2 Embedded Sync Data Mapping (49-Ball Package) ...................................................................59
Table 6.25. 8-Bit YC Mux 4:2:2 Separate Sync Data Mapping (49-Ball Package) ................................................................60
Table 6.26. 8-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (49-Ball Package) .............................................................61
Table 6.27. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (49-Ball Package) ..................................................62
Table 6.28. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (49-Ball Package) .......................................63
Table 6.29. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) .......................................................64
Table 6.30. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) .....................................................65
Table 6.31. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) .....................................................66
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
6
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
1. General Description
Control Capability
®
The Lattice Semiconductor SiI9022A/SiI9024A HDMI
transmitter supports the High Definition Multimedia
Interface (HDMI) Specification on a wide range of mobile
products. High definition camcorders, digital still
cameras, and personal mobile devices connect directly to
a large installed base of HDMI TVs and DVI PC monitors
by using the flexible audio and video interfaces provided
by this ultra-low-power solution. S/PDIF or I2S inputs
enable a pure digital audio connection to virtually any
system audio processor or codec. This transmitter is the
next generation of its family and is an enhanced
replacement for the SiI9022/SiI9024 device, with lower
power and enhanced features.
The SiI9024A transmitter is pre-programmed with HDCP
keys and has completely self-sequencing HDCP detection
and authentication, including SHA-1 for repeaters. The
device supports High-bandwidth Digital Content
Protection (HDCP) for devices that require secure
content delivery.
Video Input
xvYCC metadata support
BTA-T1004 video input format
Integrated color space converter allows direct
connection to all major MPEG decoders, including
those that provide only an ITU-R.656 output
Internal DE generator supports non-embedded sync
formats
Digital Audio Interface
HDMI, HDCP, and DVI compatible
TMDS™ core runs at 165 MHz
Video resolutions up to 1080p and UXGA (72-pin
QFN package supports 165 MHz dual-edge mode)
3D-capable at 720p/60, 1080i/60, and
1080p/24 frame-pack, side-by-side, L + D, and
Top-and-Bottom modes
HDMI Type A, Type-C, and micro-D connector
support
Four I2S inputs for Dolby Digital, DTS, or MPEG2
audio with programmable channel mapping (49-ball
package supports one I2S input)
DVD-Audio input (2 or up to 8 channels)
MCLK is not required for I2S and S/PDIF
S/PDIF input supports 2-channel PCM or compressed
Dolby Digital and DTS digital
2:1 and 4:1 down-sampling to handle 96 kHz and
192 kHz audio streams
Power Management
Flexible power management with hot-plug wakeup
Ultra-low power requirement: less than 90 mW
active, 150 W standby
Packaging
HDMI Output
Consumer Electronics Control (CEC) interface
incorporates an HDMI-compliant CEC I/O with
hardware protocol and arbitration logic, and
requires no external calibration
Monitor detection is supported through both Hot
Plug and Receiver Sense circuits
Single slave I2C from host, passing through to master
I2C interface for DDC connection, simplifies board
layout and lowers cost
Defaults to SiI9020 transmitter register-compatible
mode for operation with existing legacy software
81-ball VFBGA (4.0 × 4.0 mm) package
72-pin QFN (10 × 10 mm) package
49-ball VFBGA (4.0 × 4.0 mm) package
Standard part covers extended (–20 °C to +85 °C)
temperature range
Figure 1.1. Typical Application (SiI9022A HDMI Transmitter Shown)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
7
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Comparison of the SiI9022A/SiI9024A Device with Other HDMI Transmitters
Table 1.1 summarizes the differences among the previous Lattice Semiconductor HDMI transmitters and the
SiI9022A/SiI9024A HDMI transmitters.
Table 1.1. Summary of Features
HDMI Transmitter
SiI9030
SiI9020
SiI9022
SiI9022-6
SiI9024
SiI9024-6
70/30
70/30
70/30
70/30
SiI9022A SiI9024A SiI9022A
VFBGA
SiI9024A
QFN
Video Input
Clock duty cycle
60/40
60/40
Max frequency
150 MHz
84 MHz
3.3 V
3.3 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
96 kHz
96 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
192 kHz
I2S MCLK required?
Yes
Yes
Optional Optional
Optional Optional Optional Optional Optional
Optional
S/PDIF MCLK
required?
Yes
Yes
Optional Optional
Optional Optional Optional Optional Optional
Optional
5V
5V
5V
5V
5V
5V
5V
5V
5V
5V
Encryption engine
Yes
No
No
No
Yes
Yes
No
Yes
No
Yes
Auto authentication
No
No
No
No
Yes
Yes
No
Yes
No
Yes
1.8 V
1.8 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
1.2 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8 V
3.3 V or
1.8V
3.3 V or
1.8 V
3.3 V or
1.8V4
3.3 V or
1.8 V4
84-ball
TFBGA
84-ball
TFBGA or
81-ball
VFBGA
84-ball
TFBGA
72-pin
QFN
72-pin QFN
Input signal level2
70/30
70/30
70/30
70/30
82.5 MHz 165 MHz 82.5 MHz 165 MHz 165 MHz 165 MHz 165 MHz3 165 MHz3
Audio Input
Max S/PDIF
frequency
DDC I2C Bus
Voltage Tolerance1
HDCP
Other
Core power supply
I/O power supply2
3.3 V
3.3 V
3.3 V or
1.8 V
Package
80-pin
TQFP
84-ball
TFBGA
84-ball
TFBGA or
81-ball
VFBGA
81-ball
81-ball
VFBGA or VFBGA or
49-ball
49-ball
VFBGA
VFBGA
Notes:
1. The DDC pads of the SiI9022A/SiI9024A device are 5 V compliant with or without IOVCC power supply. For other devices listed
above, the DDC pads are 5 V tolerant only when chip IOVCC is applied
2. The SiI9022A/SiI9024A 81-ball and 72-pin package supports both 1.8 V and 3.3 V threshold-compliant operation. The 49-ball
package only supports 1.8 V compliant I/O. Both devices have 3.3 V tolerant I/O when IOVCC is 1.8 V.
3. Supports up to 165 MHz dual-edge and single-edge modes.
4. For dual-edge mode above 82.5 MHz, only 3.3 V ± 10% can be used for IOVCC.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
8
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
2. Functional Description
The SiI9022A/SiI9024A HDMI transmitter provides a complete solution for transmitting HDMI-compliant digital audio
and video. Specialized audio and video processing is available within the transmitter to easily and cost-effectively add
HDMI capability to the consumer electronics devices. Figure 2.1 shows the functional block diagram of the chip. In the
49-ball package, DE and S/PDIF share the same pin.
CSCL
CSDA
DDC
Master I2C
Interface
I2C
Slave
Interface
Control and
Configuration
Logic Block
CI2CA
(81-ball and 72-pin only)
RESET#
Interrupt Logic
Hot Plug
Detection Logic
DSDA
DSCL
INT
HPD
SiI9024A
Transmitter only
HDCP
Keys
HDCP
Encryption
Engine/
XOR Mask
IDCK
81-ball and 72-pin: D[23:0]
49-ball: D[15:0]
HSYNC
VSYNC
DE
Video Data
Input and
Conversion
EXT_SWING
TMDS
Digital
Core
TXC±
TX0±
TX1±
TX2±
control signals
(81-ball and 72-pin only)
DE/SPDIF
(49-ball only)
SPDIF
(81-ball and 72-pin only)
MCLK
SCK
WS
81-ball and 72-pin: SD[3:0]
49-ball: SD0
control signals
Audio Data
Capture
Logic
Block
audio data
CEC
Interface
CEC
Figure 2.1. Functional Block Diagram
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
9
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Video Data Input and Conversion
Figure 2.2 shows the video data processing stages through the transmitter. Each of the processing blocks can be
bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required, except in
embedded sync modes. The DE input signal is optional, because it can be created with the DE generator using the
HSYNC and VSYNC signals.
IDCK
Input
Clock
Multiplier/
Divider
Complete set of
signals required
for TMDS encoding.
Clock
Data
Embedded
Sync
Decoding
D[23:0] /
D[15:0]*
Video
Data
Capture
DE
4:2:2 to 4:4:4
Upsampler
HS,VS
DE
bypass 422
HS,VS
Data Enable
Generator
HSYNC
VSYNC
DE
external DE
DE can be explicit input,
decoded from embedded
syncs, or generated from
Hsync and Vsync edges.
4:4:4 to 4:2:2
Downsampler
YCbCr to RGB
Color Space
Converter
RGB to YCbCr
Color Space
Converter
Dither 10 to 8
bypass 444
bypass CSC
bypass CSC
bypass dither
* For 49-ball VFBGA only
To HDCP
or TMDS
Figure 2.2. Transmitter Video Data Processing Path
Input Clock Multiplier/Divider
The input pixel clock can be multiplied by 2 or 4, or divided by 2 (multiplied by 0.5). Video input formats which use a 2x
clock (such as YC Mux mode) can then be transmitted across the HDMI link with a 1x clock. Similarly, 1x-to-2x, 1x-to-4x,
and 2x-to-4x conversions are possible.
Video Data Capture
The video data capture block receives uncompressed digital video through an interface ranging from 8 to 16 bits in
width for the 49-ball package and from 8 to 24 bits in width for the 81-ball and 72-pin package. These interfaces have
two or three 8-bit data channels, which can be configured for the video formats shown in the RGB to YCbCr Color Space
Converter section on page 34. It provides a direct connection to major MPEG decoders. Registers set the bus width
(8/10/12/16/20/24-bit), format, and rising/falling edge latching according to the video format sent to the transmitter.
This information is passed over the HDMI link in the CEA-861D Auxiliary Video Information (AVI) InfoFrame packets.
Embedded Sync Decoding
The transmitter can create DE, HSYNC, and VSYNC signals using the start of active video (SAV) and end of active video
(EAV) codes within the ITU-R BT.656-format video stream.
Data Enable Generator
The transmitter includes logic to construct a Data Enable (DE) signal from the incoming HSYNC, VSYNC, and IDCK. This
signal is used to correct timing from sync extraction to conform to CEA-861D timing specifications. By programming
registers, the DE signal can define the size of the active display region. This feature is particularly useful when the
transmitter connects to MPEG decoders that do not provide a specific DE output signal.
Color Space Converter
Two color space converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video
formats supplied by AV processors and to provide full DVI 1.0 backward compatibility. The CSC can be adjusted to
perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
10
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
registers. See the RGB to YCbCr Color Space Converter and YCbCr to RGB Color Space Converter sections starting on
page 34 for more information.
4:2:2 to 4:4:4 Upsampler
Chrominance upsampling and downsampling increase or decrease the number of chrominance samples in each line of
video. Upsampling doubles the number of chrominance samples in each line, converting 4:2:2 sampled video to 4:4:4
sampled video.
4:4:4 to 4:2:2 Downsampler
Downsampling reduces the number of chrominance samples in each line by half, converting 4:4:4 sampled video to
4:2:2 video.
Dither 10 to 8
The dither block takes the internally processed data and reduces it down to 8 bits for output.
Audio Data Capture Logic
The SiI9022A/SiI9024A device in the 81-ball and 72-pin packages have individual S/PDIF and I2S (SD[3:0]) inputs for
accepting digital audio input. The Feature Information section on page 34 provides more information about audio
formats and available sampling frequencies.
Due to the reduced lead count, the SiI9022A/SiI9024A transmitter in the 49-ball package has certain restrictions on the
audio because ball G6 is shared by both the S/PDIF and DE inputs. When the device is configured to use S/PDIF, the
video format must use either the DE generator mode or one of the YC 4:2:2 embedded sync formats.
I2C Slave Interface
The controller I2C interface on the transmitter (signals CSCL and CSDA) is a slave interface with an operating frequency
from 40 kHz to 400 kHz and with an input tolerance of up to 4.0 V when all chip operating voltages are present. The
host uses this interface to configure the transmitter by reading from and writing to appropriate registers.
Control and Configuration
The register/configuration logic block incorporates all the registers required for configuring and managing the
transmitter. A separate logic block handles the configuration and operation of the CEC subsystem.
DDC Master I2C Interface
The transmitter has a master I2C port for direct connection to the HDMI cable. DDC read and write operations are
executed by reading and writing registers in the transmitter. This feature simplifies the system design and helps to
lower its cost. See the DDC Support section on page 37 for more information.
Interrupt Logic
The INT signal interrupts the host processor when certain conditions arise inside the transmitter. The INT output is
programmable to be either active HIGH or active LOW; see the Configuration and Control Signals section. Conditions
which create an interrupt include:
Monitor detect (either from the HPD input level, or from the Receiver Sense feature)
VSYNC (useful for synchronizing a host processor to the vertical timing interval)
HDCP event
CEC event
Audio interrupt.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
11
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Hot Plug Detection Logic
The Hot Plug Detection Logic block determines if a receiver is connected to the SiI9022A/SiI9024A transmitter. When
HIGH, the HPD signal indicates to the transmitter that the EDID of the connected receiver is readable. A HIGH voltage is
at least 2.0 V, and a LOW voltage is less than 0.8 V.
HDCP Encryption Engine/XOR Mask (SiI9024A Device Only)
The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes
support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the
encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key
Selector Value (KSV) stored in the on-board ROM to calculate a number that is then applied to an XOR mask. This
process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle.
HDCP Key ROM (SiI9024A Device Only)
The SiI9024A transmitter comes pre-programmed with a set of production HDCP keys stored in an internal ROM.
System manufacturers do not need to purchase key sets from the Digital Content Protection LLC. Lattice Semiconductor
handles all purchasing, programming, and security for the HDCP keys. The pre-programmed HDCP keys provide the
highest level of security because there is no way to read the keys once the devices are programmed. Customers must
sign the HDCP license agreement (www.digital-cp.com) or be under a specific NDA with Lattice Semiconductor before
receiving samples of the transmitter.
TMDS Digital Core
The TMDS Digital Core performs 8-bit to 10-bit TMDS encoding on the audio, video, and auxiliary data received from
the Dither 10 to 8 block. This data is sent through three TMDS differential data lines along with a TMDS differential
clock. A resistor connected to the EXT_SWING signal controls the TMDS swing amplitude.
CEC Interface
The Consumer Electronics Control (CEC) Interface block provides CEC- compliant signals between CEC devices and a CEC
master. A CEC controller using the Lattice Semiconductor CEC Programming Interface (CPI) is included on the chip. This
controller has a high-level register interface accessible through the I2C interface and is used to send and receive CEC
commands. This controller makes CEC implementation very straightforward and removes the burden of managing bit
transitions on the CEC bus from the host CPU.
The SiI9022A/SiI9024A CEC logic is self-calibrating and does not require a calibration procedure as the previous
generation devices did.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
12
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
3. Electrical Specifications
Absolute Maximum Conditions
Table 3.1. Absolute Maximum Conditions
Symbol
Parameter
Min
Typ
Max
Units
Note
IOVCC
I/O supply voltage
–0.3
—
4.0
V
1, 2, 3
AVCC12
TMDS analog supply voltage
–0.3
—
1.5
V
1, 2
CVCC12
Digital core supply voltage
–0.3
—
1.5
V
1, 2, 3
VI
Input voltage
–0.3
—
4
V
1, 2
VO
Output voltage
–0.3
—
4
V
1, 2
VI5V
Input voltage, 5 volt tolerant I/O
–0.3
—
5.5
V
1, 2, 4
VO5V
Output voltage, 5 volt tolerant I/O
–0.3
—
5.5
V
1, 2, 4
TJ
Junction temperature
—
—
125
C
—
TSTG
Storage temperature
–65
—
150
C
—
431H
Notes:
1. Permanent device damage can occur if absolute maximum conditions are exceeded.
2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.
3. Voltage undershoot or overshoot cannot exceed absolute maximum conditions.
4. HPD (input), DSCL (output), DSDA (input/output).
Normal Operating Conditions
Table 3.2. Normal Operating Conditions
Symbol
Parameter
Min
Typ
Max
Units
Note
I/O supply voltage: 1.8 V host
1.62
1.8
1.98
V
2
I/O supply voltage: 3.3 V host
3.0
3.3
3.6
V
2
AVCC12
TMDS analog supply voltage
1.08
1.2
1.32
V
1
CVCC12
Digital core supply voltage
1.08
1.2
1.32
V
1
VCCN
Allowable noise on AVCC
—
—
50
mVP-P
—
TA
Ambient temperature (with power applied)
–20
25
85
C
—
—
—
75.3
C/W
3, 6
—
—
86.5
C/W
4, 6
—
—
28.5
C/W
5, 6
—
—
22.6
C/W
3, 6
—
—
22.7
C/W
4, 6
—
—
13.1
C/W
5, 6
IOVCC
Θja
Ambient thermal resistance (Theta JA)
Θjc
Ambient thermal resistance (Theta JC)
Notes:
1. CVCC12 and AVCC12 can be derived from the same power source.
2. The 81-ball and 72-pin package supports 3.3 V or 1.8 V; the 49-ball package supports 1.8 V only.
3. 81-ball package
4. 49-ball package
5. 72-pin package
6. Values for Θja and Θjc are provided for a 4-layer PCB, Airflow at 0 m/s.
See page 69 for schematics showing decoupling and power supply regulation.
IOVCC Supply Voltage Requirements
The 72-pin or 81-ball package SiI9022A/SiI9024A transmitter IOVCC supply can operate at either 3.3 V or 1.8 V, depending on
the input level to the IO_SEL pin provided by the host. When IOVCC = 1.8 V, the I/O is 3.3 V tolerant. However, to ensure the
input/output thresholds are within specifications, the IOVCC on the SiI9022A/SiI9024A transmitter should be the same as the
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
13
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
host IOVCC, and IO_SEL should be set to the correct value, as described for the signal in the Configuration and Control Signals
section.
The 49-ball package is hardwired to be used with IOVCC = 1.8 V only.
DC Specifications
Digital I/O Specifications
Under normal operating conditions unless otherwise specified.
Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V
In the 81-ball and 72-pin package, IO_SEL is tied to 1.8 V.
Symbol Parameter
VIH
Signal Name3
CEC_D
CI2CA
IO_SEL
IDCK
HS
VS
DE
D[23:0]
MCLK
SCK
SD[3:0]
WS
SPDIF
Conditions
Min
Typ
Max
—
1.2
—
—
V
—
—
—
0.60
V
—
—
0.68
V
1.25
—
—
V
—
—
0.45
V
Schmitt
HPD
—
Schmitt
RESET#
—
Schmitt
CSCL
CSDA
—
Schmitt
DSCL
DSDA
—
Schmitt
CEC_A
—
LVTTL
INT
—
Open Drain
—
INT
—
Signal Type
HIGH-level input voltage
VIL
LOW-level input voltage
VTH-
HIGH to LOW threshold
VTH+
LOW to HIGH threshold
VTH-
HIGH to LOW threshold
LVTTL
Schmitt
Schmitt
VTH+
LOW to HIGH threshold
VTH-
HIGH to LOW threshold
VTH+
LOW to HIGH threshold
VTH-
HIGH to LOW threshold
VTH+
LOW to HIGH threshold
VTHVTH+
VTH-
HIGH to LOW threshold
LOW to HIGH threshold
HIGH to LOW threshold
VTH+
VTH-
LOW to HIGH threshold
HIGH to LOW threshold
VTH+
VOH
VOL
LOW to HIGH threshold
HIGH-level output voltage
LOW-level output voltage
VOLOD
VCINL
LOW-level output voltage
Input clamp voltage
VCIPL
IIL
Input clamp voltage
Input leakage current
—
—
IOL
Output drive current
Open Drain
IOL
Output drive current
Open Drain
IOL
Output drive current
IOL
IOL
IOH
Output drive current
Output drive current
Output drive current
Units Notes
—
—
—
—
—
1.20
—
—
V
—
—
0.65
V
1.9
—
—
V
—
—
—
0.50
V
1.2
—
—
V
—
1.32
—
—
—
—
0.50
—
1.5
V
V
V
3.0
—
—
—
—
0.51
V
V
1.15
1.4
—
—
—
—
—
—
0.3
V
V
V
—
ICL = –18 mA
—
—
—
—
0.3
GND – 0.8
V
V
4
2, 5
—
—
DSCL
DSDA
CSCL
CSDA
ICL = 18 mA
High impedance
—
–10
—
—
VCC + 0.8
10
V
µA
2, 5
2, 9
VOUT = 0.4 V
3
—
—
mA
6, 8
VOUT = 0.4 V
4
—
—
mA
6, 8
Open Drain
CEC_A
VOUT = 0.4 V
3.5
—
—
mA
Open Drain
LVTTL
LVTTL
CEC_D
INT
INT
VOUT = 0.4 V
VOUT = 0.4 V
VOUT = 1.4 V
2.0
4
4
—
—
—
—
—
—
mA
mA
mA
—
—
—
—
4
6
—
Note: See notes under Table 3.4.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
14
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V
In the 81-ball and 72-pin package, IO_SEL is connected to ground.
Symbol
Parameter
VIH
HIGH-level input voltage
VIL
LOW-level input voltage
VTH-
HIGH to LOW threshold
Signal Name3
CEC_D
CI2CA
IO_SEL
IDCK
HS
VS
DE
D[23:0]
MCLK
SCK
SD[3:0]
WS
SPDIF
Conditions
Schmitt
HPD
—
Schmitt
RESET#
—
Schmitt
CSCL
CSDA
—
Schmitt
DSCL
DSDA
—
Schmitt
CEC_A
—
LVTTL
INT
—
Open Drain
—
INT
—
Signal Type
LVTTL
Schmitt
VTH+
LOW to HIGH threshold
VTH-
HIGH to LOW threshold
Schmitt
VTH+
LOW to HIGH threshold
VTH-
HIGH to LOW threshold
VTH+
VTH-
LOW to HIGH threshold
HIGH to LOW threshold
VTH+
VTHVTH+
LOW to HIGH threshold
HIGH to LOW threshold
LOW to HIGH threshold
VTHVTH+
HIGH to LOW threshold
LOW to HIGH threshold
VTHVTH+
VOH
HIGH to LOW threshold
LOW to HIGH threshold
HIGH-level output voltage
VOL
VOLOD
VCINL
LOW-level output voltage
LOW-level output voltage
Input clamp voltage
VCIPL
IIL
Input clamp voltage
Input leakage current
—
—
IOL
Output drive current
IOL
IOL
IOL
—
Min
Typ
Max
Units Notes
2.0
—
—
V
—
—
0.80
V
—
—
1.25
V
—
—
—
2.1
—
—
V
—
—
0.75
V
—
—
1.80
—
—
V
—
—
0.80
V
1.85
—
—
—
—
0.85
V
V
1.75
—
1.77
—
—
—
—
0.70
—
V
V
V
—
3.0
—
—
1.5
—
V
V
—
1.83
2.4
—
—
—
0.8
—
—
V
V
V
—
ICL = –18 mA
—
—
—
—
—
—
0.4
0.4
GND – 0.8
V
V
V
4, 8
2, 5
—
—
ICL = 18 mA
High impedance
—
–10
—
—
VCC + 0.8
10
V
µA
2, 5
2, 9
Open Drain
DSCL, DSDA
VOUT = 0.4 V
3
—
—
mA
7, 8
Output drive current
Open Drain
CSCL, CSDA
VOUT = 0.4 V
4
—
—
mA
7, 8
Output drive current
Output drive current
Open Drain
Open Drain
CEC_A
CEC_D
VOUT = 0.4 V
VOUT = 0.4 V
3.5
2.0
—
—
—
—
mA
mA
—
—
—
—
—
4
IOL
Output drive current
LVTTL
INT
VOUT = 0.4 V
4
—
—
mA
7
IOH
Output drive current
LVTTL
INT
VOUT = 2.4 V
4
—
—
mA
—
Notes to Table 3.3 and Table 3.4:
1. Guaranteed by characterization unless otherwise noted.
2. These limits are guaranteed by design.
3. See the Ball and Pin Diagrams and Descriptions starting on page 26 for signal type designations for all package signals.
4. INT can be programmed as push-pull or open-drain. As a push-pull output, it drives VOL and VOH as defined here.
5. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater
than 3 ns or for more than one third of the clock cycle, whichever is less. Exceeding the clamp current I CL listed in the Conditions
column of the table can result in permanent damage to the chip.
6. Minimum output drive specified at ambient = 85 ºC and IOVCC = 1.7 V. Typical output drive specified at ambient = 25 ºC and
IOVCC = 1.8 V. Maximum output drive specified at ambient = 0 ºC and IOVCC = 1.9 V.
7. Minimum output drive specified at ambient = 85 ºC and IOVCC = 3.0 V. Typical output drive specified at ambient = 25 ºC and
IOVCC = 3.3 V. Maximum output drive specified at ambient = 0 ºC and IOVCC = 3.6 V.
8. Do not remove IOVCC from the SiI9022A/SiI9024A HDMI Transmitter unless the attached I2C bus is completely idle.
9. Current leakage for input pins including audio and video pins will not exceed this range.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
15
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 3.5. TMDS I/O Specifications
Symbol
VOD
VDOH
IDOS
Parameter
Differential outputs
single-ended swing amplitude
Differential HIGH level output
voltage
Differential output short
circuit current
Signal Type
Conditions
Min
Typ
Max
Units
Notes
TMDS
RLOAD = 50 Ω
400
500
600
mV
1, 2
TMDS
—
—
3.3
—
V
—
TMDS
VOUT = 0 V
—
—
5
μA
—
Note:
1. Limits are defined by the HDMI Specification.
2. REXT_SWING condition as defined in the Differential Data Signals section.
DC Power Supply Specifications
Table 3.6 and Table 3.7 list the power consumption in both power-down and active modes using different IOVCC
supplies. See Table 3.8 for an explanation of the power operating modes.
Table 3.6. Low Power Standby Mode Power Consumption
Symbol Parameter
IPDQ
IPDQ
IPDQ
3.3 V IOVCC
Typ6
Max
1.8 V IOVCC
Ty6p
Max
1.2 V AVCC
Typ6
Max
1.2 V CVCC
Typ6
Max
D3 Cold
0.15
0.20
0.018
0.022
0.05
0.066
0.02
0.025
mA
1, 5
D3 Hot
1.00
1.65
0.550
0.670
0.75
0.830
3.50
4.50
mA
1, 5
D2
1.10
1.90
0.580
0.700
0.82
1.15
4.20
5.20
mA
1, 5
Mode
Complete power-down
current
Complete power-down
current
Quiet power-down current
Units Notes
Table 3.7. Operating Mode Power Consumption
Symbol Parameter
ICCT
Transmitter
supply
current
3.3 V IOVCC
1.8 V IOVCC
Typ6
Max
Typ6
74.25 MHz
4.0
5.4
148.5 MHz
5.3
162 MHz
5.0
74.25 MHz
148.5 MHz
162 MHz
Mode
Frequency
D0
SingleEdge
Mode
D0 DualEdge
Mode
1.2 V AVCC
1.2 V CVCC
Units Notes
Max
Typ6
Max
Typ6
Max
1.0
2.4
7.5
11.8
18.0
26.7
mA
2, 3
8.9
1.7
3.4
15.4
19.9
32.0
43.4
mA
2, 3
8.7
1.5
3.2
16.5
20.9
33.0
45.6
mA
2, 3
4.2
5.4
1.3
2.4
9.5
11.8
20.0
26.7
mA
2, 3
7.3
10.0
2.0
3.9
18.0
20.9
34.0
44.0
mA
2, 3
7.0
9.6
1.8
3.8
18.2
22.8
36.0
46.4
mA
2, 3
Notes:
1. These values reflect the static device current with no IDCK clock applied.
2. Power is related to input clock (IDCK) frequency.
3. Maximum power limits measured with all power supplies at maximum normal operating conditions, minimum normal
operating ambient temperature, REXT_SWING as defined in the Differential Data Signals section on page 32, and a video pattern of
single-pixel vertical lines.
4. Power consumption was measured across all power rails at +10% VCC: IOVCC = 1.98 V or 3.6 V, CVCC12 = 1.32 V, and AVCC12
= 1.32 V.
5. IOVCC, CVCC12, and AVCC12 should not be removed in the low-power modes because input states and leakage current cannot
be guaranteed without all power supplies present.
6. Typical power consumption is shown for reference and may vary based on typical pattern usage of system.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
16
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 3.8 describes the chip conditions for the various power consuming modes. Refer to the Programmer’s Reference
for details about setting different power operating modes.
Table 3.8. Power Operating Modes
Mode
Core
Running
Outputs Oscillator
Inputs
Description
Powered Powered Switching
Comment
Can still wake up through HPD, but
RSEN wake-up is disabled. Local I2C
interface is disabled. Hardware reset
is required to re-enable.
Can still wake up through HPD and
RSEN. Local I2C interface is disabled.
Hardware reset is required to reenable.
Complete
Power
Down
No
No
No
No
Absolute
Minimum power.
D3 Hot1, 2
Complete
Power
Down
Yes
No
No
No
Minimum power.
D2
Quiet
Power
Down
Yes
No
Yes
No
Slave I2C bus
available for
register access.
Monitor events while minimizing
transmitter power.
D0
Full Power
Yes
Yes
Yes
Yes
Full function.
Functional mode.
D3 Cold1,
2
Notes:
1. A full hardware reset is required to wake the system up from D3 Hot or D3 Cold mode.
2. HPD must be low or Cable must not be connected prior to entering D3 Hot/Cold mode for wake-up to be valid.
AC Specifications
TMDS AC Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 3.9. TMDS AC Specifications
Symbol
Parameter
TDDF
TDDR
VSYNC and HSYNC delay from DE falling edge
VSYNC and HSYNC delay to DE rising edge
THDE
TLDE
SLHT
DE HIGH time
DE LOW time
Differential swing LOW-to-HIGH transition Time
Conditions
Min
Typ
Max
Units
Figure
Note
—
—
1
1
—
—
—
—
TCIP
TCIP
Figure 4.4
Figure 4.4
1
1
—
138
75
—
—
—
8191
—
—
TCIP
TCIP
ps
Figure 4.5
Figure 4.5
Figure 4.12
1
1, 3
2, 4, 5
—
RLOAD
= 50 Ω
SHLT
Differential swing HIGH-to-LOW transition Time
75
—
—
ps
Figure 4.12
2, 4, 5
Notes:
1. Guaranteed by design.
2. Guaranteed by characterization.
3. TLDE (DE LOW time) minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138
pixel clocks of blanking to carry the audio packets. The minimum DE LOW time is 12 clocks for TMDS. For more details, see the
Minimum Horizontal Blanking Specification section (page 25). Minimum vertical blanking time is three horizontal line times.
4. Limits are defined by the HDMI Specification.
5. With REXT_SWING condition as defined in the Differential Data Signals section on page 32.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
17
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Audio AC Timing Specifications
See the notes below Table 3.11.
Table 3.10. I2S Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
FS_I2S
TSCKCYC
TSCKHIGH
Sample rate
I2S cycle time1
I2S clock HIGH1
—
CL = 10 pF
CL = 10 pF
32
360
110
—
400
—
192
440
—
kHz
ns
ns
—
Figure 4.8
—
TSCKLOW
TI2SSU
I2S Clock LOW1
I2S setup time1
CL = 10 pF
CL = 10 pF
110
60
—
—
—
—
ns
ns
—
Figure 4.8
TI2SHD
TMCLKCYC
FMCLK
I2S hold time1
MCLK cycle time
MCLK frequency
CL = 10 pF
CL = 10 pF
CL = 10 pF
0
13.3
—
—
—
—
—
—
75
ns
ns
MHz
Figure 4.8
Figure 4.10
—
TMCLKDUTY
MCLK duty cycle
CL = 10 pF
40%
—
60%
TMCLKCYC
Figure 4.10
Table 3.11. S/PDIF Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
FS_SPDIF
TSPCYC
TSPDUTY
Sample rate
S/PDIF cycle time1
S/PDIF duty cycle1
—
CL = 10 pF
CL = 10 pF
32
—
90%
—
—
—
192
1.0
110%
kHz
UI
UI
—
Figure 4.9
Figure 4.9
TAUDDLY
Audio pipeline delay3
—
—
30
70
μs
Notes:
1. Refer to the I2S or S/PDIF specifications based on 2.5 MHz for I2S receiver.
2. Setup and hold minimum times are based on 13.388 MHz sampling, from Figure 3 of Philips I2S Specification.
3. Audio pipeline delay is measured from transmitter input signals to TMDS output. The video path delay is insignificant.
4. I2S and S/PDIF input timing is guaranteed by design to meet the listed specifications at default settings.
—
Video Input AC Timing Specifications
Table 3.12 lists the video input AC timing specifications when IOVCC is 1.8 V, and covers both package types. Table 3.13 on
the next page lists the timing when IOVCC is 3.3 V, and applies only to the 81-ball and 72-pin package. Data for both tables
are given for normal operating conditions unless otherwise specified.
Table 3.12. Video Input AC Specifications: 1.8 V IOVCC
Symbol
TCIP
Parameter
IDCK period, one pixel per clock
Conditions
—
Min
6
Typ
—
Max
40
Units
ns
Figure
Figure 4.2
Note
1
FCIP
TCIP12
IDCK frequency, one pixel per clock
IDCK period, dual-edge clock
—
—
25
12
—
—
165
40
MHz
ns
—
Figure 9
1
2
FCIP12
IDCK frequency, dual-edge clock
IDCK duty cycle: 24-bit single-edge clocking
IDCK duty cycle: 12-bit dual-edge clocking
—
—
—
25
30%
40%
—
—
—
82.5
70%
60%
MHz
—
TCIP
Figure 4.1
2
—
—
TIJIT
TSIDF
Worst case IDCK clock jitter
Setup time to IDCK falling edge
—
—
0
—
—
2.0
—
ns
ns
—
Figure 4.2
3, 4
5, 6
THIDF
TSIDR
THIDR
Hold time to IDCK falling edge
Setup time to IDCK rising edge
Hold time to IDCK rising edge
Single-edge
clocking mode
1.8
0
2.0
—
—
—
—
—
—
ns
ns
ns
Figure 4.2
Figure 4.2
Figure 4.2
6
5, 7
7
TSIDF
THIDF
TSIDR
Setup time to IDCK falling edge
Hold time to IDCK falling edge
Setup time to IDCK rising edge
0
2.1
0
—
—
—
—
—
—
ns
ns
ns
Figure 9
Figure 9
Figure 9
8
8
8
2.5
—
—
ns
Figure 9
8
TDUTY
THIDR
Hold time to IDCK rising edge
Note: See notes for Table 3.13.
12-bit dualedge clocking
mode
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
18
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 3.13. Video Input AC Specifications: 3.3 V IOVCC
3.3 V IOVCC ± 10% unless otherwise noted.
Symbol
TCIP
FCIP
Parameter
IDCK period, one pixel per clock
IDCK frequency, one pixel per clock
Conditions
—
—
Min
6
25
Typ
—
—
Max
40
165
Units
ns
MHz
Figure
Figure 4.2
—
Note
1
1
TCIP12
FCIP12
IDCK period, dual-edge clock
IDCK frequency, dual-edge clock
—
—
12
25
—
—
40
82.5
ns
MHz
Figure 9
—
2
2
TCIP12A
FCIP12A
IDCK period, dual-edge clock
IDCK frequency, dual-edge clock
IDCK duty cycle: 24-bit single-edge clocking
—
—
—
6
25
30%
—
—
—
40
165
70%
ns
MHz
Figure 9
—
—
40%
3.6
2.4
—
—
—
60%
—
—
Figure 4.1
TCH
TCL
IDCK duty cycle: 12-bit dual-edge clocking
Clock HIGH time, dual-edge clocking
Clock LOW time, dual-edge clocking
TCIP
2
2
—
ns
ns
Figure 4.1
—
TIJIT
TSIDF
Worst case IDCK clock jitter
Setup time to IDCK falling edge
—
—
0
—
—
2.0
—
ns
ns
—
Figure 4.2
3, 4
5, 6
THIDF
TSIDR
THIDR
Hold time to IDCK falling edge
Setup time to IDCK rising edge
Hold time to IDCK rising edge
Single-edge
clocking mode
1.8
0
2.0
—
—
—
—
—
—
ns
ns
ns
Figure 4.2
Figure 4.2
Figure 4.2
6
7
7
TSIDF
THIDF
Setup time to IDCK falling edge
Hold time to IDCK falling edge
0
1.9
—
—
—
—
ns
ns
Figure 9
Figure 9
8
8
TDUTY
FCIP > 82.5 MHz
12-bit dualedge clocking
mode
—
TSIDR
Setup time to IDCK rising edge
0
—
—
ns
Figure 9
8
THIDR
Hold time to IDCK rising edge
2.4
—
—
ns
Figure 9
8
Notes:
1. TCIP and FCIP apply in single-edge clocking modes. TCIP is the inverse of FCIP and is not a controlling specification.
2. TCIP12, TCIP12A, FCIP12, and FCIP12A apply in dual-edge mode. TCIP12 and TCIP12A are not controlling specifications.
3. Input clock jitter is estimated by triggering a digital scope at the rising edge of input clock, and measuring peak-to-peak time
spread of the rising edge of the input clock 1 s after the triggering.
4. Actual jitter tolerance can be higher depending on the frequency of the jitter.
5. Setup and hold time specifications apply to D[23:0] (81-ball and 72-pin package) or D[15:0] (49-ball package), DE, VSYNC, and
HSYNC input signals, relative to IDCK input clock.
6. Edge Select bit = 0.
7. Edge Select bit = 1.
8. Setup and hold limits are not affected by the Edge Select bit setting for 12-bit dual-edge clocking mode. (See the Programmer’s
Reference for information about the Edge Select bit setting.)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
19
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Control Signal Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 3.14. Control Signal Timing Specifications
Symbol
Parameter
TRESET
RESET# signal LOW time required for reset
TI2CDVD
SDA data valid delay from SCL falling edge on
READ command
THDDAT
TINT
I2C data hold time
Response time for INT output signal from
change in input condition (HPD, Receiver
Sense, VSYNC change, etc.).
Conditions
Min
Typ
Max
Units
Figure
Figure 4.6
Figure 4.7
Note
—
100
—
—
µs
CL = 400 pF
—
—
700
ns
Figure 4.13
2, 4
40–400 kHz
2.0
—
—
ns
—
3, 4
RESET# =
HIGH
—
—
100
µs
Figure 4.14
5
1
FDSCL
Frequency on master DDC SCL signal
—
40
70
100
kHz
—
6
FCSCL
Frequency on CSCL signal
—
40
—
400
kHz
—
—
Notes:
1. Reset on RESET# signal can be LOW as CVCC12 and IOVCC become stable, or be pulled LOW for at least TRESET.
2. All standard-mode (100 kHz) I2C timing requirements are guaranteed by design and comply with the I2C Specification. These
timings apply to the slave I2C port (signals CSDA and CSCL) and to the master I2C port (signals DSDA and DSCL) with I2C stall
disabled.
3. This minimum hold time is required by CSCL and CSDA signals as an I2C slave. The device does not include the 300 ns internal
delay required by the I2C Specification (Version 2.1, Table 5, note 2).
4. Operation of I2C signals above 100 kHz is defined by LVTTL levels VIH, VIL, VOH, and VOL described on page 14.
5. During RESET# = LOW, the INT output signal shows whether there is an attached and powered-on TMDS receiver. See the
description of the INT signal in the Configuration and Control Signals section on page 31.
6. The Master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I2C Standard Mode, or
100 kHz. Use of the Master DDC block does not require an active IDCK.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
20
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
4. Timing Diagrams
Data signals D[23:0] shown are available on the 81-ball and 72-pin device. Substitute D[15:0] for the 49-ball device.
Input Timing Diagrams
TCIP
TCIP12
TCIP12A
TCL
80%
20%
TDUTY
TCH
IDCK
Figure 4.1. IDCK Clock Cycle/High/Low Times
EDGE=1
TCIP
IDCK
50 %
TSIDR
D[23:0] or D[15:0],
DE, HSYNC,VSYNC
EDGE=0
50 %
THIDR
no change allowed
50 %
IDCK
50 %
50 %
50 %
TSIDF
D[23:0] or D[15:0],
DE, HSYNC,VSYNC
THIDF
no change allowed
50 %
50 %
Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time
specifications.
D[23:0] are used in the 81-ball and 72-pin package; D[15:0] are used in the 49-ball package.
Figure 4.2. Control and Data Single-Edge Setup/Hold Times to IDCK
TCIP12
IDCK
50 %
TSIDF
D[11:0] or D[15:4],
DE, HSYNC, VSYNC
50 %
50 %
THIDF
no change
allowed
TSIDR
50 %
THIDR
no change
allowed
50 %
Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup
and minimum hold time specifications.
D[11:0] are used in the 81-ball and 72-pin package; D[15:4] are used in the 49-ball package.
Figure 4.3. Dual-Edge Setup/Hold Times to IDCK
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
21
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
DE
50%
50%
VSYNC, HSYNC
TDDR
TDDF
50%
50%
Figure 4.4. VSYNC and HSYNC Delay Times from/to DE
THDE
TLDE
VIH
VIL
DE
Figure 4.5. DE High/Low Times
VCCmax
VCCmin
VCC
RESET#
TRESET
Figure 4.6. Conditions for Use of RESET#
Note: VCC must be stable between its limits for Normal Operating Conditions for TRESET before RESET# goes HIGH.
RESET#
TRESET
Figure 4.7. RESET# Minimum Timings
Note: RESET# must be pulled LOW for TRESET before accessing registers. This can be done by holding RESET# LOW until T RESET after
stable power (as shown in Figure 4.6), or by pulling RESET# LOW from a HIGH state (as shown in Figure 4.7) for at least TRESET.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
22
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Audio Timing Diagrams
TSCKCYC
TSCKDUTY
TSCKDUTY
2.0 V
SCK
0.8 V
TI2SSU
TI2SHD
2.0 V
SD[3:0], WS
0.8 V
Figure 4.8. I2S Input Timings
TSPCYC
TSPDUTY
90%
50%
SPDIF
10%
Figure 4.9. S/PDIF Input Timings
TMCLKCYC
MCLK
50%
50%
TMCLKDUTY
Figure 4.10. MCLK Timings
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
23
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Power Supply Sequencing
Power sequencing is not usually required. Lattice Semiconductor recommends that all individual power supplies reach
their nominal levels within 5 ms in normal operation. Once powered on, the IOVCC, CVCC, and AVCC power supplies
should not be removed during any power mode including D0, D2, D3 Hot and D3 Cold.
nominal 5 V
nominal 3.3 V
nominal 1.8 V
nominal 1.2 V
T < 5 ms
1.2 V
5V
1.8 V (CVCC,
(DDC)
3.3 V (IOVCC) AVCC)
(IOVCC, CEC)
Figure 4.11. Power Supply Sequencing
Output Timing Diagrams
SLHT
SHLT
80% VOD
20% VOD
Figure 4.12. Differential Transition Times
CSDA, DSDA
TI2CDVD
CSCL, DSCL
Figure 4.13. I2C Data Valid Delay (Driving Read Cycle Data)
Interrupt
Condition
TINT
INT Output
Figure 4.14. INT Output Signal Response to Interrupt Condition
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
24
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Minimum Horizontal Blanking Specification
Several cases define the minimum blanking time requirements. Vertical blanking times are normally multiples of the
horizontal line times and do not place a constraint on performance. (HDMI requires at least two line times in each
vertical blanking interval.) The minimum horizontal blanking time depends on the mode. An HSYNC or VSYNC edge can
occur in any clock cycle except when active video data is being transmitted. When HDMI is active, this includes the two
clocks of leading guard band for the active video data.
Table 4.1. Minimum Horizontal Blanking Calculations
Mode
Information Type
Clock Count
DVI Only
Defined by transmitter data sheet.
Total minimum horizontal blanking time
12
HDMI with No Data Islands
Defined by HDMI Spec (Section 5.2.3.2, page 46; and
Figure 5-3).
Minimum control period
Leading guard band
12
2
Total minimum horizontal blanking time
14
HDMI with One Data Island
HDMI allows a minimum of one data island, which can contain
one data packet.
Minimum control period
Leading guard band
12
2
Packet
Trailing guard band
Minimum control period
32
2
12
Leading guard band
Total minimum horizontal blanking time
2
62
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
25
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
5. Ball and Pin Diagrams and Descriptions
Ball and Pin Diagrams
81-Ball VFBGA Package
Figure 5.1 shows the ball diagram for the SiI9022A/SiI9024A transmitter in the 81-ball package. See the Ball and Pin
Descriptions beginning on page 29 for a description of the ball functions. Balls are shaded using the grouping shown in
Figure 5.3 on page 28.
1
2
3
4
5
6
7
8
9
A
CEC_A
RSVDHO
AGND
TX1+
TX0+
TXC+
TXC-
AGND
EXT_SWING
B
CI2CA
VDDQ
TX2+
TX2-
TX1-
TX0-
CEC_D
IO_SEL
RSVDL
C
CSDA
CSCL
RESET#
CVCC12
IOGND
AVCC12
AVCC12
DSDA
DSCL
D
CGND
CGND
CVCC12
IOGND
IOVCC
IOGND
CVCC12
HPD
INT
E
D23
D22
D21
D20
IOVCC
SD1
CVCC12
IOVCC
IOVCC
F
D19
D18
D17
D16
CVCC12
SD2
SCK
WS
SD0
G
D15
D14
D9
D7
CGND
CVCC12
SPDIF
MCLK
SD3
H
D12
D11
IDCK
D6
CGND
D3
D1
D0
VSYNC
J
D13
D10
D8
D5
CGND
D4
D2
DE
HSYNC
Figure 5.1. 81-Ball Package Ball Diagram (Top View)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
26
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
49-Ball VFBGA Package
Figure 5.2 shows the ball diagram for the SiI9022A/SiI9024A transmitter in the 49-ball package. See the Ball and Pin
Descriptions beginning on page 29 for a description of the ball functions. Balls are shaded using the grouping shown in
Figure 5.3 on the next page.
1
2
3
4
5
6
7
A
TX2+
TX1+
TX1-
TX0+
TX0-
TXC+
TXC-
B
CEC_A
TX2-
AGND
AVCC12
DSDA
RSVDL
EXT_SWING
C
CSDA
CSCL
VDDQ
CVCC12
RESET#
INT
DSCL
D
D15
D14
IOGND
CGND
HPD
WS
SD0
E
D13
D12
IOVCC
D6
SCK
D0
MCLK
F
D11
D10
IDCK
D5
D1
D2
VSYNC
G
D9
D8
D7
D4
D3
DE/SPDIF
HSYNC
Figure 5.2. 49-Ball Package Ball Diagram (Top View)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
27
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
72-Pin QFN Package
CI2CA
CEC_A
VDDQ
IO_SEL
TX2+
TX2-
AVCC12
TX1+
TX1-
AGND
TX0+
TX0-
AVCC12
TXC+
TXC-
IOGND
EXT_SWING
RSVDL
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
Figure 5.3 shows the pin diagram for the SiI9022A/SiI9024A transmitter in the 72-pin package. See the Ball and Pin
Descriptions beginning on page 29 for a description of the pin functions.
10
45
SCK
D17
11
Top View
44
WS
CVCC12
12
43
CGND
D16
13
42
CVCC12
D15
14
41
SD0
D14
15
40
SD1
D13
16
39
SD2
D12
17
38
MCLK
D11
18
37
SD3
36
D18
SPDIF
IOVCC
35
46
VSYNC
9
34
CVCC12
HSYNC
47
D19
SiI9022A
SiI9024A
33
8
DE
D20
32
DSDA
D0
48
31
7
D1
D21
30
DSCL
D2
49
29
6
D3
D22
28
CEC_D
D4
50
27
5
D5
CVCC12
26
RESET#
CVCC12
51
25
4
D6
D23
24
INT
D7
52
23
3
D8
IOVCC
22
CVCC12
IDCK
53
21
2
IOVCC
CSDA
20
HPD
D9
54
19
1
D10
CSCL
Ground
Audio and video data input
TMDS output
Audio, video, and HDMI control I/O
Chip configuration and control
Power
Reserved and not connected
Figure 5.3. 72-Pin Package Pin Diagram (Top View)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
28
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Ball and Pin Descriptions
Video Input
The digital video input signals all operate from the IOVCC power plane and are tolerant up to the voltage supplied to
that plane (1.8 V or 3.3 V). These balls or pins have internal weak pull-down resistors, and are high-impedance in D3
power-down mode.
Name
VFBGA
QFN
49-Ball
81-Ball
72-Pin
D0
E6
H8
32
D1
F5
H7
31
D2
F6
J7
30
D3
G5
H6
29
D4
G4
J6
28
D5
F4
J4
27
D6
E4
H4
25
D7
G3
G4
24
D8
G2
J3
23
D9
G1
G3
20
D10
F2
J2
19
D11
F1
H2
18
D12
E2
H1
17
D13
E1
J1
16
D14
D2
G2
15
D15
D1
G1
14
D16
NA
F4
13
D17
NA
F3
11
D18
NA
F2
10
D19
NA
F1
9
D20
NA
E4
8
D21
NA
E3
7
D22
NA
E2
6
Description
Type
Dir
Schmitt
Input
12-bit Input Pixel Data
Bus.
These pins or balls are
used in 12-bit dualedge mode and in
24-bit single-edge
mode.
Schmitt
Input
12-bit Input Pixel Data
Bus.
These pins or balls are
used only in 24-bit
single-edge mode. In
12-bit dual-edge mode
these signals should be
left unconnected.
81-Ball / 72-Pin
D23
NA
E1
4
IDCK
F3
H3
22
Schmitt
Input
Input Data Clock.
49-Ball
16-bit Input Pixel Data
Bus.
DE
NA
J8
33
Schmitt
Input
Data Enable input control signal.
DE/SPDIF
G6
NA
NA
Schmitt
Input
Input DE Control Signal or S/PDIF.
HSYNC
G7
J9
34
Schmitt
Input
Horizontal sync input control signal.
VSYNC
F7
H9
35
Schmitt
Input
Vertical sync input control signal.
Note: Any unused video or control balls or pins listed in this section should be left not connected to conserve power.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
29
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Audio Input
The digital audio input signals all operate from the IOVCC power plane, and are tolerant up to the voltage supplied to
that plane (1.8 V or 3.3 V). These balls or pins have weak internal pull-up resistors, and are high-impedance in D3
power-down mode.
VFBGA
Name
QFN
Type
Dir
45
Schmitt
Input
I2S Serial Clock.
F8
44
Schmitt
Input
I2S Word Select.
D7
F9
41
Schmitt
Input
I2S Serial Data 0.
SD1
NA
E6
40
Schmitt
Input
I2S Serial Data 1.
SD2
NA
F6
39
Schmitt
Input
I2S Serial Data 2.
SD3
NA
G9
37
Schmitt
Input
I2S Serial Data 3.
MCLK
E7
G8
38
Schmitt
Input
Audio Input Master Clock.
SPDIF
NA
G7
36
Schmitt
Input
S/PDIF Audio Input.
DE/SPDIF
G6
NA
NA
Schmitt
Input
S/PDIF audio or DE control input.
(Applies to 49-ball package only.)
49-Ball
81-Ball
72-Pin
SCK
E5
F7
WS
D6
SD0
Description
Note: Any unused audio balls or pins listed in this section should be left not connected to conserve power. All data, clock, and
control inputs in this section have a weak internal pullup, which is switched off in D3 mode to reduce leakage current.
CEC
The CEC signals operate from an internally generated power plane, but are tolerant up to the 3.3 V power specified for
CEC.
Name
CEC_A
VFBGA
QFN
49-Ball
81-Ball
72-Pin
B1
A1
71
Type
Dir
CEC-compliant
Input/
Output
Description
HDMI compliant CEC I/O to interface to CEC
devices.
CEC electrically compliant I/O. This ball or pin
connects to the CEC signal of all HDMI
connectors in the system.
For IOVCC = 3.3 V:
No external pullup resistor is required.
For IOVCC = 1.8 V:
A 51 kΩ pullup resistor in series with a Schottky
diode to a 3.3 V source is required; see Figure 7.5
on page 70.
As an input, the pad acts as a LVTTL Schmitt
triggered input. As an output, the pad acts as an
NMOS driver.
CEC_D
NA
B7
50
LVTTL
Input/
Output
CEC interface to local system.
This is an LVTTL I/O with a weak pull-up resistor.
This ball or pin typically connects to the local
CPU.
The CEC_D output can be disabled with
programming to allow the internal CEC logic to
handle the CEC_A signal.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
30
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Configuration and Control
The configuration and control input and output signals all operate from the IOVCC 1.8 V or 3.3 V power plane, and are
tolerant up to and drive to the voltage supplied to that plane.
The CSCL, CSDA, DSCL, and DSDA signals are not true open-drain buffers. When no VCC is applied to the chip, these
signals can continue to draw a small current, and prevent the master IC from communicating with other devices on the
I2C bus. Therefore, do not remove VCC from the SiI9022A/SiI9024A HDMI Transmitter unless the attached I2C bus is
completely idle. Note that the level on the CI2CA signal is not latched internally and should not be changed during any
active I2C operations.
Name
VFBGA
QFN
Type
Dir
54
Schmitt
5 V tolerant
Input
Hot Plug Detect Input.
An external 10 kΩ pulldown resistor to GND on the
board is required.
D9
52
LVTTL
Output
Interrupt Output.
Configurable by a register setting to be either an
active-HIGH (push-pull) output or an active-LOW
(open-drain) output. In push-pull mode, the output
drives to the corresponding level for the IOVCC
power plane. In active-LOW (default) output, an
external pull-up to 3.3 V is required.
B1
72
LVTTL
Input
49-Ball
81-Ball
72-Pin
HPD
D5
D8
INT
C6
CI2CA
NA
Description
I2C Device Address Select.
For 49-ball package:
Not available. Fixed LOW internally.
For 81-ball and 72-pin package:
A 4.7 kΩ external pull-down to GND or pull-up resistor to
IO_SEL voltage level MUST be connected to this signal for
proper operation.
See the Control and Configuration section on
page 11 for additional information
Reset signal (active LOW). When RESET# is LOW,
all input and output pins are not functional.
RESET#
C5
C3
51
Schmitt
Input
CSCL
C2
C2
1
Schmitt
Open-drain
Input/
Output
Local I2C Bus Clock.
This bus accesses the compatible mode registers, the
TPI registers, and the CPI registers. An external
4.7 kΩ pullup resistor on the board is required.
CSDA
C1
C1
2
Schmitt
Open-drain
Input/
Output
Local I2C Bus Data.
This accesses the compatible mode registers, the
TPI registers, and the CPI registers..
An external 4.7 kΩ pullup resistor on the board is
required.
IO_SEL
NA
B8
69
LVTTL
Input
I/O Select.
This input sets the I/O thresholds to the proper
level to match the I/O supply voltage.
LOW – Selects 3.3 V I/O thresholds.
HIGH – Selects 1.8 V I/O thresholds.
Connect IO_SEL to 1.8 V to select 1.8 V I/O
threshold and to ground to select 3.3 V I/O
threshold.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
31
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
DDC Bus
25B
The DDC signals operate from an internally generated power plane, but are tolerant up to the 5 V power specified for
DDC.
Name
VFBGA
QFN
Type
Dir
49
Schmitt
Open-drain
5 V tolerant
Input/
Output
DDC I2C Bus Clock.
This bus accesses the EDID and HDCP data on an
attached sink device. The DSCL signal is bi-directional,
since the transmitter monitors the state of DSCL so that
it can accommodate I2C clock stretching by the slave
device.
An external pullup resistor between 1.8 kΩ and 2.2 kΩ
on the board is required.
48
Schmitt
Open-drain
5 V tolerant
Input/
Output
DDC I2C Bus Data.
This bus accesses the EDID and HDCP data on an
attached sink device.
An external pullup resistor between 1.8 kΩ and 2.2 kΩ
on the board is required.
Type
Dir
49-Ball
81-Ball
72-Pin
DSCL
C7
C9
DSDA
B5
C8
Description
Differential Data
Name
VFBGA
QFN
49-Ball
81-Ball
72-Pin
TX0+
A4
A5
62
TMDS
Output
TX0-
A5
B6
61
TMDS
Output
TX1+
A2
A4
65
TMDS
Output
TX1-
A3
B5
64
TMDS
Output
TX2+
A1
B3
68
TMDS
Output
TX2-
B2
B4
67
TMDS
Output
TXC+
A6
A6
59
TMDS
Output
TXC-
A7
A7
58
TMDS
Output
EXT_SWING
B7
A9
56
Analog
Input
Description
TMDS output data pairs.
TMDS output clock pair.
Voltage Swing Adjust.
A resistor (REXT_SWING ) is connected from this ball or pin
to GROUND. This resistor determines the amplitude of
the voltage swing. The recommended value is 4.3 kΩ
±1% with internal source termination enabled and 5.1
kΩ ±1% without internal source termination. The value
of this resistor can be adjusted to optimize the signal
swing in the specific design.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
32
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Power and Ground
Name
VFBGA
QFN
Type
Description
5, 12, 26,
42, 47, 53
Power
Digital Core VCC.
Connect to 1.2 V supply.
D1, D2, G5,
H5, J5
43
Ground
Digital Core GND.
E3
D5, E5, E8,
E9
3, 21, 46
Power
I/O VCC.
Connect to either the 1.8 V or 3.3 V supply. This ball must be
connected to 1.8 V in the 49-ball package.
IOGND
D3
C5, D4, D6
57
Ground
I/O GND.
AVCC12
B4
C6, C7
60, 66
Power
Analog VCC.
Connect to 1.2 V supply.
AGND
B3
A3, A8
63
Ground
Analog GND.
RSVDH0
NA
A2
NA
No connect
RSVDL
B6
B9
55
LVTTL Input Reserved.
Must be tied LOW.
VDDQ
C3
B2
70
LVTTL Input Reserved.
Must be tied LOW.
49-Ball
81-Ball
72-Pin
CVCC12
C4
C4, D3, D7,
E7, F5, G6
CGND
D4
IOVCC
Reserved.
This ball is not connected in the 81-ball package for downward
compatibility with the SiI9022A/SiI9024A transmitter. It can be left
open, or connected to ground or CVCC12 without adverse effect.
Note: The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
33
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6. Feature Information
RGB to YCbCr Color Space Converter
The RGBYCbCr color space converter can convert from video data RGB to standard definition or to high definition
YCbCr formats. Table 6.1 lists the conversion formulas that are used. The HDMI AVI packet defines the color space of
the incoming video.
Table 6.1. RGB to YCbCr Conversion Formulas
Video Format
Conversion
640 × 480
ITU-R BT.601
480i
576i
ITU-R BT.601
ITU-R BT.601
480p
576p
240p
ITU-R BT.601
ITU-R BT.601
ITU-R BT.601
288p
720p
ITU-R BT.601
ITU-R BT.709
1080i
1080p
ITU-R BT.709
ITU-R BT.709
Formulas
CE Mode 16-235 RGB
Y = 0.299R′ + 0.587G′ + 0.114B′
Cb = –0.172R′ – 0.339G′ + 0.511B′ + 128
Cr = 0.511R′ – 0.428G′ – 0.083B′ + 128
Y = 0.213R′ + 0.715G′ + 0.072B′
Cb = –0.117R′ – 0.394G′ + 0.511B′ + 128
Cr = 0.511R′ – 0.464G′ – 0.047B′ + 128
YCbCr to RGB Color Space Converter
The YCbCrRGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert
from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. Refer to the detailed formulas in
Table 6.2. Note the difference between RGB range for CE modes and PC modes.
X
Table 6.2. YCbCr-to-RGB Conversion Formulas
Format change
Conversion
YCbCr 16-235 Input
to
RGB 16-235 Output
YCbCr 16-235 Input
to
RGB 0-255 Output
YCbCr Input Color Range
601*
R′ = Y + 1.371(Cr – 128)
G′ = Y – 0.698(Cr – 128) – 0.336(Cb – 128)
B′ = Y + 1.732(Cb – 128)
7091
R′ = Y + 1.540(Cr – 128)
G′ = Y – 0.459(Cr – 128) – 0.183(Cb – 128)
B′ = Y + 1.816(Cb – 128)
R′ = 1.164((Y-16) + 1.371(Cr – 128))
G′ = 1.164((Y-16) – 0.698(Cr – 128) – 0.336(Cb – 128))
B′ = 1.164((Y-16) + 1.732(Cb – 128))
R′ = 1.164((Y-16) + 1.540(Cr – 128))
G′ = 1.164((Y-16) – 0.459(Cr – 128) – 0.183(Cb – 128))
B′ = 1.164((Y-16) + 1.816(Cb – 128))
601
709
*Note: No clipping can be done.
3D Video Formats
The SiI9022A/SiI9024A transmitter supports the 3D video modes described in the HDMI 1.4a Specification. All modes
support RGB 4:4:4, YCbCr 4:2:2, and YCbCr 4:4:4 color formats and 8-bit color depth. External separate HSYNC, VSYNC,
and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV sequences in the video stream.
Table 6.3 lists only the maximum possible resolution with a given frame rate; for example, Side-by-Side mode is defined
for 1080p60, which implies that 720p60 and 480p60 are also supported. Furthermore, a frame rate of 24 Hz also means
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
34
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz also means a frame rate of 59.94 Hz and its
associated pixel frequency is supported.
Limitations
Frame Packing format: The Frame packing format requires Vact_space which must have constant video data. Dithering
should be disabled when transmitting the frame packing format.
The 1080p 24 Hz video format has a total of 2250 lines. However, the VRES counter (TPI 0x6C, 0x6D) of the
SiI9022A/SiI9024A device is only 11 bits, which provides for a maximum of 2047 lines. In this case, the VRES counter
will overflow and show the value of 0. This does not affect the output of the transmitter.
The DE generator is supported for all formats except 1080p 24 Hz. DE_LIN (TPI 0x68, 0x69) is only 11 bits (maximum
2047) while this value for 1080p 24 Hz should be 2205 lines.
Side-by-Side format: L frame and R frame are concatenated without a border. Since 4:4:4 to 4:2:2 downsampling and
4:2:2 dithering and upsampling to 4:4:4 has a decimation filter and looks at some adjacent pixels, these three features
should be avoided to prevent possible visible artifacts.
L + Depth format: No video processing should be used.
Top-and-Bottom format: There are no limitations.
Table 6.3. Supported 3D Video Formats
3D Format
Extended Definition
—
Frame Packing
interlaced
L + Depth
—
Full
Side-by-Side
Half
Top-and-Bottom
—
Resolution
Frame Rate (Hz)
1080p
24
720p
50 / 60
1080i
50 / 60
1080p
720p
1080i
24
50/60
50/60
720p
1080p
50/60
50/60
1080p
720p
1080i 50/60
24
50/60
60
1080p
720p
24
50/60
Input Pixel Clock (MHz)
148.5
74.25
S/PDIF Audio Input
The S/PDIF stream carries 2-channel uncompressed PCM data (IEC 60958) or a compressed bit stream for multi-channel
(IEC 61937) formats. The audio data capture logic described in the Audio Data Capture Logic section packetizes the
audio data according to the HDMI specification. The S/PDIF input supports audio sampling rates from 32 to 192 kHz. No
clock input is required for S/PDIF since the chip logic extracts the clock from the incoming S/PDIF data stream.
Optionally, an external MCLK source can be used.
I2S Audio Inputs
The 81-ball and 72-pin packages support four I2S inputs, SD0 through SD3, which allow transmission of DVD-Audio and
decoded Dolby Digital/DTS bit stream to A/V receivers and high-end displays. This interface supports 2-channel to 8channel audio with up to 192 kHz sampling rate. The input clock SCK is used to latch the incoming data; data must meet
specified setup and hold time requirements with respect to SCK.
The 49-ball package has only one I2S input, SD0, which supports only 2-channel audio up to 192 kHz sampling rate.
A separate master clock signal that is coherent with the I2S inputs is required for HDMI time-stamping purposes.
Coherent means that this clock signal and the I2S inputs must have been created from the same clock source. This clock
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
35
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
can be generated internally, using a PLL. As an option, the original MCLK signal used to strobe the I 2S signals out from
the sourcing chip can be used. If the internal PLL is used, then an external MCLK input is not required.
Supported Audio Sampling Rates
The audio data can be down-sampled by one-half or one-fourth with register control. This feature allows the
transmitter to share the audio bus with a high-sample-rate audio DAC, while down-sampling audio for an attached
display that supports only lower rates. The transmitter supports conversions from 192 to 48 kHz, 176.4 to 44.1 kHz, 96
to 48 kHz, and 88.2 to 44.1 kHz.
The appropriate registers must be configured to describe the format of audio provided to the transmitter. This
information is passed over the HDMI link in the CEA-861D Audio Info (AI) packets.
Table 6.4 lists the supported MCLK frequencies and audio sample rates.
Table 6.4. Supported MCLK Frequencies
Audio Sample Rate, Fs
Multiple
of Fs
128
32 kHz1, 2
4.096 MHz
44.1 kHz1, 2
5.645 MHz
48 kHz1, 2
6.144 MHz
88.2 kHz1, 2
11.290 MHz
96 kHz1, 2
12.288 MHz
176.4 kHz2
22.579 MHz
192 kHz2
24.576 MHz
192
256
384
6.144 MHz
8.192 MHz
12.288 MHz
8.467 MHz
11.290 MHz
16.934 MHz
9.216 MHz
12.288 MHz
18.432 MHz
16.934 MHz
22.579 MHz
33.869 MHz
18.432 MHz
24.576 MHz
36.864 MHz
33.869 MHz
45.158 MHz
67.738 MHz
36.864 MHz
49.152 MHz
73.728 MHz
512
768
1024
16.384 MHz
24.576 MHz
32.768 MHz
22.579 MHz
33.869 MHz
45.158 MHz
24.576 MHz
36.864 MHz
49.152 MHz
45.158 MHz
67.738 MHz
49.152 MHz
73.728 MHz
1152
36.864 MHz
50.803 MHz
55.296 MHz
Notes:
1. 2-channel S/PDIF supported rate.
2. 2-channel and 8-channel I2S supported rate.
Table 6.5. S/PDIF Audio Formats Supported for each Video Format
Video Format
32 kHz
44.1 kHz
48 kHz
96 kHz
96 kHz48 kHz
192 kHz
2-ch
2-ch
2-ch
5.1-ch
2-ch
2-ch
2-ch
VGA
480i
480p
576p
720p and above
Note: = Supported, — = Not Supported
Table 6.6. I2S Audio Formats Supported for each Video Format
I2S Format
Video Format
8-Channel Audio
(81-Ball and 72-Pin package only)
2-Channel Audio
32
44.1
48
88.2
96
96→48
176.4
192
192→48
48
88.2
96
192
—
—
—
—
—
—
—
—
—
576p
—
—
—
480p 2x
720p and above
—
VGA
480i
480p
Note: = Supported, — = Not Supported
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
36
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
I2C Register Information
I2C registers monitor and control all functions of the transmitter. For devices in the 81-ball and 72-pin package, the
device I2C addresses can be altered setting the CI2CA signal LOW or HIGH as listed in Table 6.7. An external pull-up or
pull-down resistor (depending on the desired set of I 2C addresses) is used to set the level on the CI2CA signal. Note that
the level on the CI2CA signal is not latched internally and should not be changed during any active I2C operations.
The CI2CA signal is not externally accessible on the 49-ball package and is internally connected to ground. As a result,
the device I2C addresses for devices in the 49-ball package cannot be changed and are fixed to the same addresses as
when the CI2CA signal is LOW.
Table 6.7. Control of I2C Address with CI2CA Signal
Internal Function
CI2CA = LOW
CI2CA = HIGH
49-Ball / 81-Ball / 72-Pin
81-Ball / 72-Pin
Transmitter Programming Interface (TPI) device address
CEC Programming Interface (CPI) device address
0x72
0xC0
0x76
0xC4
SiI9020-compatible internal registers: first device address
SiI9020-compatible internal registers: second device address
0x72
0x7A
0x76
0x7E
Two separate sets of registers are available for the transmitter subsystem.
SiI9020-compatible registers are nearly identical to those used by previous generations of Lattice Semiconductor
parts. These registers can run under the direct control of existing code on a host processor and are used to
perform audio/video format processing, CEA-861D InfoFrame packet formatting, and power-down control. Refer
to the SiI9020 HDMI PanelLink Transmitter Programmer’s Reference (listed in References section) for information
about these registers.
Transmitter Programming Interface (TPI) registers represent a higher-level interface. Lattice Semiconductor
recommends using the TPI registers instead of the SiI9020-compatible registers, because they automate in
hardware many functions such as audio N-value calculation, HDCP local link authentication and integrity checking,
and HDCP repeater authentication. The HDCP feature, which was not available on the SiI9020 transmitter, can only
be used through the TPI register interface of the SiI9024A device. Refer to the Programmer’s Reference (listed in
References section) for information on these registers.
For the CEC subsystem, a set of CEC Programming Interface registers fully automates CEC handling. Refer to the CEC
Programming Interface (CPI) Programmer’s Reference (listed in References section) for information on these registers.
DDC Support
Video
SiI9022A Transmitter
SiI9024A Transmitter
Audio
CEC Programming
Interface registers
I2C
Transmitter
Programming
Interface registers
MPEG Chip
HDMI
DDC
HDMI Connnector
The Master DDC block supports I2C transactions specified by VESA Enhanced Display Data Channel Standard (Section
3.1.2). The Master DDC block complies with the Standard Mode timing of the I2C specification, limited to 100 kHz by
Section 8.4.1 of the HDMI specification, and supports slave clock stretching as required by E-DDC. Figure 6.1 below and
Figure 7.6 on page 71 show the connection of the HDMI connector to the DDC ports of the transmitter. Figure 6.2 on the
next page shows the supported I2C transactions.
DDC Master access
Figure 6.1. Simplified Host I2C Interface using Master DDC Port
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
37
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Current Read
S
slv addr + R
As
data 0
Am
data 1
Am
Am
data n
N/As
P
Sequential Read
S
slv addr + W As device offset As
Sr
slv addr + R
As
data 0
Am
Am
data n
P
N/As
Enhanced DDC Read
S
0x60
N/As
segment
N/As* Sr
slv addr + W As device offset As
Sr
slv addr + R
data n
N/As
As
data 0
Am
Am
data n
N/As
P
Sequential Write
S
slv addr + W As device offset As
data 0
As
As
P
S = start
Sr = restart
As = slave acknowledge
Am = master acknowledge
N = no ack
P = stop
* Don't care for segment 0, ACK for segment 1 and above
Figure 6.2. Master I2C Supported Transactions
DDC Stall Support
Stall feature is also supported on the SiI9022A/SiI9024A device. Stall can be enabled after ACK or on every cycle. This
feature can also reduce an incoming 400 kHz Local I2C speed to 100 kHz DDC. Lattice Semiconductor does not recommend
enabling this feature when the incoming local I2C speed and DDC speed is set to 100 kHz since additional I2C bus free time
is required. Additionally, if a sink device supports I2C speeds higher than 100 kHz, this feature should be disabled.
Power Saving Modes and Wakeup Feature
In addition to D2 mode, the SiI9022A/SiI9024A device supports 2 additional power saving modes which include the D3
Hot and D3 Cold mode. D3 Hot mode provides better power savings compared to D2 mode. D3 Cold mode offers the
best power savings compared to D2 and D3 Hot. Once in D3 Hot or Cold modes, the I 2C registers are no longer
accessible, and to regain full access to the internal registers, the transmitter must be hardware reset.
The wakeup feature is an additional function to alert the host and re-enable the SiI9022A/SiI9024A device from D3 Cold
or D3 Hot mode. The wakeup feature works by sending an INT# signal to the host when an active display sink is
connected to the transmitter. The INT# signal is generated when either an active Receiver Sense or a Hotplug signal is
detected by the transmitter.
Wakeup Support in D3 Cold and D3 Hot Modes
To enable the wakeup feature in either D3 Hot or D3 Cold mode, adhere to the following sequences; refer to the
Programmer’s Reference for more details. Table 6.8 below summarizes the detection support of D3 Hot and Cold.
Table 6.8. D3 hot and D3 Cold Feature
Mode
RSEN
Detect
Hotplug
Detect
Minimum
Requirements
Condition
D3 Cold
Complete Power
Down
No
Yes
HPD low or Cable
Disconnected
HPD only. Cable must be disconnected
before entering D3 Cold.
D3 Hot
Complete Power
Down
Yes
Yes
RSEN disconnected
Can be used with Display Sinks with multi
input ports that disable input but keep HPD
high.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
38
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.9.1.1. D3 Cold Wakeup
The D3 Cold Wakeup feature sends an INT signal when connecting a cable produces a Hotplug signal. Lattice
Semiconductor recommends disconnecting the cable to theSiI9022A/SiI9024A transmitter before entering D3 Cold
mode.
1.
1.
Disconnect the cable.
2.
2.
Clear any pending interrupts.
3.
3.
Perform a hardware reset of the transmitter.
4.
4.
Program register 0xC7 to 0x00 to enter TPI mode.
5.
5.
Set INT# source to Hotplug using register 0x3C.
6.
6.
Clear any pending interrupts.
7.
7.
Enter D3 Cold mode using register 0x1E.
6.9.1.2. D3 Hot Wakeup
Unlike the D3 Cold mode, the D3 Hot mode also supports using RSEN for a wakeup event. This allows the D3 Hot mode
to support a different usage model. In a situation where the sink may have additional input ports but may disable the
inputs while keeping the Hotplug active or vice versa, a change in either the RSEN or Hotplug signal prompts an INT#
signal from the transmitter. The INT# will trigger if there is any change in the HPD signal, such as a HIGH-to-LOW
change. Since this is not the intended wakeup event required, the host can choose to re-enter the D3 Hot mode.
8.
1.
Cable can be disconnected or left connected.
9.
2.
Set INT# source to either RSEN or HPD.
10. 3.
Clear any pending interrupts.
11. 4.
Enable D3 Hot mode via register 0x1E.
Common Video Input Formats
Table 6.9 lists the bus interface formats available to support common video input resolutions. The format number in
the left column of this table lists the input modes indicated in Table 6.10 on the next page that are required to support
each format. Additional discrete CEA and VESA resolutions meeting the requirements listed in Table 3.14 on page 20
and Table 4.1 on page 25 may also be supported.
Table 6.9. Video Input Formats
Format
Input Pixel Clock (MHz)
Notes
480i1, 3
480p2
XGA
720p
1080i
1080p24
1080p
UXGA
1
27
27
65
74.25
74.25
74.25
148.5
162
—
2
27
27
65
74.25
74.25
74.25
—
—
—
3
27
27
—
74.25
74.25
74.25
148.5
162
—
4
27
54
—
148.5
148.5
148.5
—
—
—
5
—
54
—
—
—
—
—
—
4
40H
402H
Notes:
1. 480i support also encompasses 576i support.
2. 480p support also encompasses 576p support.
3. 480i must be input at 27 MHz using pixel replication to be transmitted across the HDMI link.
4. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
39
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Data Bus Mappings
The transmitter supports multiple input data mappings. Some have explicit control signals, and some have embedded
control signals. The selection of data mapping mode should be consistent at the signals and in the corresponding
register settings. Refer to the Programmer’s Reference for more details. All versions of this transmitter support up to a
maximum of 8-bit color depth in any mode.
Table 6.10. Input Video Formats
Input
Format
Data Bus
Width
Clock
Mode11
Sync Signals
RGB 4:4:4
YCbCr 4:4:4
YC 4:2:2 Separate Syncs
1
2
3
24
24
16, 2010, 2410
1x
1x
1x
Separate
Separate
Separate
42
42
43
—
—
58
YC 4:2:2 Embedded Syncs
1
16, 2010, 2410
1x
Embedded
46
59
2, 4
YC MUX 4:2:2 Separate Syncs
YC MUX 4:2:2 Embedded Syncs
3
4
8, 1010, 1210
8, 1010, 1210
2x
2x
Separate
Embedded
49
51
60
61
2, 3, 4, 7
2, 3, 4, 5, 7
RGB 4:4:4
YCbCr 4:4:4
1
1
12
12
dual-edge
dual-edge
Separate
Separate
54
54
63
63
8
1, 8
YC 4:2:2 Separate Syncs
YC 4:2:2 Embedded Syncs
1
1
8, 10, 12
12
dual-edge
dual-edge
Separate
Embedded
55
53
64
62
2, 4, 8
2, 4, 8
Input Mode
Page
81-Ball/72-Pin
49-Ball
Notes
6, 10
1, 6, 10
2
Notes:
1. 4:4:4 data contains one Cr, one Cb, and one Y value for every pixel.
2. 4:2:2 data contains one Cr and one Cb value for every two pixels, and one Y value for every pixel.
3. In YC MUX mode, data is input on one or two 8-bit channels. A 2x pixel clock is required.
4. Y and CbCr data can be input on 12 bits (as part of a 24-bit mode or as a 12-bit mode), but the two least-significant bits will be
zero since the internal data path is 10 bits wide.
5. Embedded sync decoding extracts the syncs. A 2x pixel clock is required. Note that the DE generator may be needed to convert
extracted sync timings to CEA-861D-compliant timings.
6. A 2x pixel clock can also be sent with 4:4:4 data. This is necessary when the receiver is required to reformat such a stream into
4:2:2 data or into a multiplexed YC MUX output format.
7. When sending a 2x pixel clock, the HDMI source must also send AVI InfoFrames with an accurate pixel replication
field. Refer to the HDMI Specification, section 6.4.
8. Dual-edge clocking is allowed for these video mappings. Frequencies above 82.5 MHz dual-edge mode are only supported by
the 72-pin QFN package and with IOVCC supplied at 3.3 V ± 10%.
9. The HDMI and the EIA/CEA-861D specifications require virtually every HDMI source to transmit an accurate AVI InfoFrame.
Even in the rare cases where it is not absolutely required, Lattice Semiconductor strongly recommends that an AVI InfoFrame
be transmitted during every vertical blanking interval.
10. Supported only in the 81-ball and 72-pin package.
11. Latching edge is programmable in single-edge clocking.
The transmitter can provide video across the HDMI link in various formats. Figure 6.3 on the next page shows an
overview of the processing blocks needed for some of the available format transformations from video input to HDMI
output. The TMDS encoding step is not shown in this figure. See also Figure 2.1 on page 9.
The mapping tables and timing diagrams beginning on page 42 are divided into two sections. The first is for the 81-ball
and 72-pin package, and begins on page 42; the second is for the 49-ball package, and begins on page 58. In these
tables, the term Swap indicates that the Y and the Cb/Cr pin assignments are reversed, meaning the Y signals of the
Swap mapping appear on the Cb/Cr signals of the standard mapping. The term Non-broken (NB) indicates that the
signal assignments of Y, Cb, and Cr signals are contiguous. For example, signals Y0 through Y9 appear on consecutive
data pins D[2:11], whereas in the standard mapping they may be broken by NC or Cb/Cr signals.
In the timing diagrams which follow, data bits labeled val do not convey pixel information and will contain values
defined by the relevant specification. In the diagrams showing embedded sync, the SAV and EAV sequence FF, 00, 00,
XY is specified by ITU-R BT.656.
Unused inputs should be left unconnected.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
40
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Clock
Data
HS,VS
HSYNC
VSYNC
Dither10To8
DE
DE
Generator
DE
YCbCrToRGB
CSC
bypass 422
bypass CSC
external DE
Dithering is required whenever
processing pixels in 10-bit internal
path, and outputting 8-bit values.
All signals required
for TMDS formatting.
RGB or YCbCr 4:4:4
RGB or YCbCr 4:4:4
IDCK
D[23:0]
Explicit syncs, with or without DE.
Data
422to444
Upsampler
HS,VS
HSYNC
VSYNC
bypass CSC
external DE
Up-sample to 4:4:4 for link
IDCK
YCbCr 4:2:2 with syncs
Dither10To8
DE
DE
Generator
DE
YCbCrToRGB
CSC
RGB or YCbCr 4:4:4
Clock
D[23:0] /
D[15:0]*
Convert to RGB or allow
YCbCr, depending on EDID
Clock
D[23:0] /
D[15:0]*
Data
bypass 422
HS,VS
HSYNC
VSYNC
Explicit syncs, with
or without DE.
DE
bypass CSC
bypass dither
DE
DE
Generator
Transmit 4:2:2
YCbCr 4:2:2
YCbCr 4:2:2 with syncs
IDCK
Transmit YCbCr
external DE
Clock
DeMux656
DE
Dither10To8
bypass CSC
Up-sample to
4:4:4 for link
IDCK
Convert to RGB or allow
YCbCr, depending on EDID
DeMux656
Data
HS,VS
DE
bypass CSC
bypass 422
All signals required
for TMDS formatting.
bypass dither
YCbCr 4:2:2
Clock
D[23:0] /
D[15:0]*
D[15:0] /
D[7:0]
YCbCrToRGB
CSC
Transmit
4:2:2
Transmit YCbCr
Clock
Data
DeMux YC
HSYNC
VSYNC
bypass CSC
bypass 422
HS,VS
DE
All signals required
for TMDS formatting.
DE
bypass dither
YCbCr 4:2:2
YCMux 4:2:2 with syncs
422to444
Upsampler
Embedded syncs
with no explicit DE
2x IDCK
YCMux 4:2:2 emb. syncs
Data
HS,VS
RGB or YCbCr 4:4:4
IDCK
D[23:0] /
D[15:0]*
Transmit
4:2:2
Transmit YCbCr
Embedded syncs
with no explicit DE
2x IDCK
D[15:0] /
D[7:0]*
Clock
DeMux YC
DeMux656
Data
HS,VS
DE
bypass 422
bypass CSC
bypass dither
YCbCr 4:2:2
YCbCr 4:2:2 emb. syncs
YCbCr 4:2:2 emb. syncs
All signals required
for TMDS formatting.
* 49-ball VFBGA only
Figure 6.3. Parallel Input Video to HDMI Output Video Permutations
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
41
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Data Mappings for 81-ball and 72-pin Package
6.11.1.1. RGB and YCbCr 4:4:4 Separate Sync Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. Each
column in Table 6.11 lists the first pixel of n + 1 pixels in the line of video. The figure below the table shows RGB and
YCbCr data; the YCbCr 4:4:4 data is given in braces {}.
Table 6.11. RGB/YCbCr 4:4:4 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
24-bit Data Bus
Pin Name
D0
RGB
B0[0]
YCbCr
Cb0[0]
D1
D2
D3
B0[1]
B0[2]
B0[3]
Cb0[1]
Cb0[2]
Cb0[3]
D4
D5
D6
B0[4]
B0[5]
B0[6]
Cb0[4]
Cb0[5]
Cb0[6]
D7
D8
B0[7]
G0[0]
Cb0[7]
Y0[0]
D9
D10
D11
G0[1]
G0[2]
G0[3]
Y0[1]
Y0[2]
Y0[3]
D12
D13
G0[4]
G0[5]
Y0[4]
Y0[5]
D14
D15
D16
G0[6]
G0[7]
R0[0]
Y0[6]
Y0[7]
Cr0[0]
D17
D18
R0[1]
R0[2]
Cr0[1]
Cr0[2]
D19
D20
D21
R0[3]
R0[4]
R0[5]
Cr0[3]
Cr0[4]
Cr0[5]
D22
D23
R0[6]
R0[7]
Cr0[6]
Cr0[7]
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
DE
DE
DE
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixeln - 1
Pixel n
blank
blank
blank
D[23:16]
val
R0[7:0]
{Cr0[7:0]}
R1[7:0]
{Cr1[7:0]}
R2[7:0]
{Cr2[7:0]}
R3[7:0]
{Cr3[7:0]}
Rn-1[7:0]
{Crn-1[7:0]}
Rn[7:0]
{Crn[7:0]}
val
val
val
D[15:8]
val
G0[7:0]
{Y0[7:0]}
G1[7:0]
{Y1[7:0]}
G2[7:0]
{Y2[7:0]}
G3[7:0]
{Y3[7:0]}
Gn-1[7:0]
{Yn-1[7:0]}
Gn[7:0]
{Yn[7:0]}
val
val
val
D[7:0]
val
B0[7:0]
{Cb0[7:0]}
B1[7:0]
{Cb1[7:0]}
B2[7:0]
{Cb2[7:0]}
B3[7:0]
{Cb3[7:0]}
Bn-1[7:0]
{Cbn-1[7:0]}
Bn[7:0]
{Cbn[7:0]}
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.4. RGB/YCbCr 4:4:4 Separate Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
42
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.1.2. YC 4:2:2 Separate Sync Formats
The YC 4:2:2 formats receive one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the
chroma values (Cb and Cr) change only every second pixel. The data bus can be 16-bit, 20-bit, or 24-bit. HSYNC and
VSYNC are driven explicitly on their own pins. Each pair of columns in Table 6.12 and Table 6.13 list the first and second
pixel of n + 1 pixels in the line of video. In the figures of this section, values in braces {} show the Swap mode. The DE
HIGH time must contain an even number of pixel clocks.
Table 6.12. 16-Bit and 20-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
16-bit Data Bus
Swap
16-bit Data Bus
20-bit Data Bus
20-bit Data Bus
NB
20-bit Data Bus
Swap
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D[1:0]
D2
D3
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Y0[0]
Y0[1]
NC
Y1[0]
Y1[1]
NC
Y0[0]
Y0[1]
NC
Y1[0]
Y1[1]
NC
Cb0[0]
Cb0[1]
NC
Cr0[0]
Cr0[1]
D4
D5
D6
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cb0[0]
NC
NC
Cr0[0]
Y0[2]
Y0[3]
Y0[4]
Y1[2]
Y1[3]
Y1[4]
NC
NC
Y0[0]
NC
NC
Y1[0]
D7
D8
NC
Y0[0]
NC
Y1[0]
NC
Cb0[0]
NC
Cr0[0]
Cb0[1]
Y0[2]
Cr0[1]
Y1[2]
Y0[5]
Y0[6]
Y1[5]
Y1[6]
Y0[1]
Cb0[2]
Y1[1]
Cr0[2]
D9
D10
D11
Y0[1]
Y0[2]
Y0[3]
Y1[1]
Y1[2]
Y1[3]
Cb0[1]
Cb0[2]
Cb0[3]
Cr0[1]
Cr0[2]
Cr0[3]
Y0[3]
Y0[4]
Y0[5]
Y1[3]
Y1[4]
Y1[5]
Y0[7]
Y0[8]
Y0[9]
Y1[7]
Y1[8]
Y1[9]
Cb0[3]
Cb0[4]
Cb0[5]
Cr0[3]
Cr0[4]
Cr0[5]
D12
D13
Y0[4]
Y0[5]
Y1[4]
Y1[5]
Cb0[4]
Cb0[5]
Cr0[4]
Cr0[5]
Y0[6]
Y0[7]
Y1[6]
Y1[7]
NC
NC
NC
NC
Cb0[6]
Cb0[7]
Cr0[6]
Cr0[7]
D14
D15
D16
Y0[6]
Y0[7]
Cb0[0]
Y1[6]
Y1[7]
Cr0[0]
Cb0[6]
Cb0[7]
Y0[0]
Cr0[6]
Cr0[7]
Y1[0]
Y0[8]
Y0[9]
Cb0[2]
Y1[8]
Y1[9]
Cr0[2]
Cb0[0]
Cb0[1]
Cb0[2]
Cr0[0]
Cr0[1]
Cr0[2]
Cb0[8]
Cb0[9]
Y0[2]
Cr0[8]
Cr0[9]
Y1[2]
D17
D18
D19
Cb0[1]
Cb0[2]
Cb0[3]
Cr0[1]
Cr0[2]
Cr0[3]
Y0[1]
Y0[2]
Y0[3]
Y1[1]
Y1[2]
Y1[3]
Cb0[3]
Cb0[4]
Cb0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Cb0[3]
Cb0[4]
Cb0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Y0[3]
Y0[4]
Y0[5]
Y1[3]
Y1[4]
Y1[5]
D20
D21
Cb0[4]
Cb0[5]
Cr0[4]
Cr0[5]
Y0[4]
Y0[5]
Y1[4]
Y1[5]
Cb0[6]
Cb0[7]
Cr0[6]
Cr0[7]
Cb0[6]
Cb0[7]
Cr0[6]
Cr0[7]
Y0[6]
Y0[7]
Y1[6]
Y1[7]
D22
D23
Cb0[6]
Cb0[7]
Cr0[6]
Cr0[7]
Y0[6]
Y0[7]
Y1[6]
Y1[7]
Cb0[8]
Cb0[9]
Cr0[8]
Cr0[9]
Cb0[8]
Cb0[9]
Cr0[8]
Cr0[9]
Y0[8]
Y0[9]
Y1[8]
Y1[9]
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixeln - 1
Pixel n
blank
blank
blank
D[23:16]
val
Cb0[7:0]
{Y0[7:0]}
Cr0[7:0]
{Y1[7:0]}
Cb2[7:0]
{Y2[7:0]}
Cr2[7:0]
{Y3[7:0]}
Cbn-1[7:0]
{Yn-1[7:0]}
Crn-1[7:0]
{Yn[7:0]}
val
val
val
D[15:8]
val
Y0[7:0]
{Cb0[7:0]}
Y1[7:0]
{Cr0[7:0]}
Y2[7:0]
{Cb2[7:0]}
Y3[7:0]
{Cr2[7:0]}
Yn -1[7:0]
Yn [7:0]
{Cbn-1[7:0]} {Crn-1[7:0]}
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.5. 16-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
43
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixeln - 1
Pixel n
blank
blank
blank
D[23:16]
val
Cb0[9:2]
{Y0[9:2]}
Cr0[9:2]
{Y1[9:2]}
Cb2[9:2]
{Y2[9:2]}
Cr2[9:2]
{Y3[9:2]}
Cbn-1[9:2]
{Y-1[9:2]}
Crn-1[9:2]
{Yn[9:2]}
val
val
val
D[15:8]
val
Y0[9:2]
{Cb0[9:2]}
Y1[9:2]
{Cr0[9:2]}
Y2[9:2]
{Cb2[9:2]}
Y3[9:2]
{Cr2[9:2]}
Y n -1[9:2]
Y n [9:2]
{Cbn-1[9:2]} {Crn-1[9:2]}
val
val
val
D[7:6]
val
Cb0[1:0]
{Y0[1:0]}
Cr0[1:0]
{Y1[1:0]}
Cb2[1:0]
{Y2[1:0]}
Cr2[1:0]
{Y3[1:0]}
Cbn-1[1:0]
Crn-1[1:0]
{Yn-1[1:0]}
{Yn[1:0]}
val
val
val
D[3:2]
val
Y0[1:0]
{Cb0[1:0]}
Y1[1:0]
{Cr0[1:0]}
Y2[1:0]
{Cb2[1:0]}
Y3[1:0]
{Cr2[1:0]}
Y n -1[1:0]
Y n [1:0]
{Cbn-1[1:0]} {Crn-1[1:0]}
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.6. 20-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixeln - 1
Pixel n
blank
blank
blank
D[23:14]
val
Cb0[9:0]
Cr0[9:0]
Cb2[9:0]
Cr2[9:0]
Cbn-1[9:0]
Crn-1[9:0]
val
val
val
D[11:2]
val
Y0[9:0]
Y1[9:0]
Y2[9:0]
Y3[9:0]
Y n -1[9:0]
Y n [9:0]
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.7. 20-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
44
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 6.13. 24-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
24-bit Data Bus
Pin
Name
24-bit Data Bus NB
24-bit Data Bus Swap
D0
D1
Pixel #0
Y0[0]
Y0[1]
Pixel #1
Y1[0]
Y1[1]
Pixel #0
Y0[0]
Y0[1]
Pixel #1
Y1[0]
Y1[1]
Pixel #0
Cb0[0]
Cb0[1]
Pixel #1
Cr0[0]
Cr0[1]
D2
D3
Y0[2]
Y0[3]
Y1[2]
Y1[3]
Y0[2]
Y0[3]
Y1[2]
Y1[3]
Cb0[2]
Cb0[3]
Cr0[2]
Cr0[3]
D4
D5
D6
Cb0[0]
Cb0[1]
Cb0[2]
Cr0[0]
Cr0[1]
Cr0[2]
Y0[4]
Y0[5]
Y0[6]
Y1[4]
Y1[5]
Y1[6]
Y0[0]
Y0[1]
Y0[2]
Y1[0]
Y1[1]
Y1[2]
D7
D8
D9
Cb0[3]
Y0[4]
Y0[5]
Cr0[3]
Y1[4]
Y1[5]
Y0[7]
Y0[8]
Y0[9]
Y1[7]
Y1[8]
Y1[9]
Y0[3]
Cb0[4]
Cb0[5]
Y1[3]
Cr0[4]
Cr0[5]
D10
D11
Y0[6]
Y0[7]
Y1[6]
Y1[7]
Y0[10]
Y0[11]
Y1[10]
Y1[11]
Cb0[6]
Cb0[7]
Cr0[6]
Cr0[7]
D12
D13
D14
Y0[8]
Y0[9]
Y0[10]
Y1[8]
Y1[9]
Y1[10]
Cb0[0]
Cb0[1]
Cb0[2]
Cr0[0]
Cr0[1]
Cr0[2]
Cb0[8]
Cb0[9]
Cb0[10]
Cr0[8]
Cr0[9]
Cr0[10]
D15
D16
Y0[11]
Cb0[4]
Y1[11]
Cr0[4]
Cb0[3]
Cb0[4]
Cr0[3]
Cr0[4]
Cb0[11]
Y0[4]
Cr0[11]
Y1[4]
D17
D18
D19
Cb0[5]
Cb0[6]
Cb0[7]
Cr0[5]
Cr0[6]
Cr0[7]
Cb0[5]
Cb0[6]
Cb0[7]
Cr0[5]
Cr0[6]
Cr0[7]
Y0[5]
Y0[6]
Y0[7]
Y1[5]
Y1[6]
Y1[7]
D20
D21
D22
Cb0[8]
Cb0[9]
Cb0[10]
Cr0[8]
Cr0[9]
Cr0[10]
Cb0[8]
Cb0[9]
Cb0[10]
Cr0[8]
Cr0[9]
Cr0[10]
Y0[8]
Y0[9]
Y0[10]
Y1[8]
Y1[9]
Y1[10]
D23
Cb0[11]
Cr0[11]
Cb0[11]
Cr0[11]
Y0[11]
Y1[11]
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixeln - 1
Pixel n
blank
blank
blank
D[23:16]
val
Cb0[11:4]
{Y0[11:4]}
Cr0[11:4]
{Y1[11:4]}
Cb2[11:4]
{Y2[11:4]}
Cr2[11:4]
{Y3[11:4]}
Cbn-1[11:4]
{Yn-1[11:4]}
Crn-1[11:4]
{Yn[11:4]}
val
val
val
D[15:8]
val
Y0[11:4]
{Cb0[11:4]}
Y1[11:4]
{Cr0[11:4]}
Y2[11:4]
{Cb2[11:4]}
Y3[11:4]
{Cr2[11:4]}
Yn-1[11:4]
Yn[11:4]
{Cbn-1[11:4]} {Crn-1[11:4]}
val
val
val
D[7:4]
val
Cb0[3:0]
{Y0[3:0]}
Cr0[3:0]
{Y1[3:0]}
Cb2[3:0]
{Y2[3:0]}
Cr2[3:0]
{Y3[3:0]}
Cbn-1[3:0]
{Yn-1[3:0]}
Crn-1[3:0]
{Yn[3:0]}
val
val
val
D[3:0]
val
Y0[3:0]
{Cb0[3:0]}
Y1[3:0]
{Cr0[3:0]}
Y2[3:0]
{Cb2[3:0]}
Y3[3:0]
{Cr2[3:0]}
Yn-1[3:0]
{Cbn-1[3:0]}
Yn[3:0]
{Crn-1[3:0]}
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.8. 24-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
45
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Pixeln - 1
Pixel n
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
D[23:12]
val
Cb0[11:0]
Cr0[11:0]
Cb2[11:0]
Cr2[11:0]
Cbn-1[11:0] Crn-1[11:0]
D[11:0]
val
Y0[11:0]
Y1[11:0]
Y2[11:0]
Y3[11:0]
Yn-1[11:0]
blank
blank
blank
val
val
val
val
val
val
Yn[11:0]
IDCK
DE
.
HSYNC,
VSYNC
Figure 6.9. 24-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package)
6.11.1.3. YC 4:2:2 Embedded Sync Formats
The Embedded Sync format is identical to the YC 4:2:2 Formats with Separate Syncs format, except that the syncs are
embedded and not explicit. The data bus can be 16-bit, 20-bit, or 24-bit. Each pair of columns in Table 6.14 and Table
6.15 list the first and second pixel of n + 1 pixels in the line of video. In the figures of this section, values in braces {}
show the Swap mode.
Table 6.14. 16-Bit and 20-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
16-bit Data Bus
16-bit Data Bus
Swap
20-bit Data Bus
20-bit Data Bus
Swap
20-bit Data Bus
NB
D[1:0]
Pixel #0
NC
Pixel #1
NC
Pixel #0
NC
Pixel #1
NC
Pixel #0
NC
Pixel #1
NC
Pixel #0
NC
Pixel #1
NC
Pixel #0
NC
Pixel #1
NC
D2
D3
D4
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Y0[0]
Y0[1]
NC
Y1[0]
Y1[1]
NC
Cb0[0]
Cb0[1]
NC
Cr0[0]
Cr0[1]
NC
Y0[0]
Y0[1]
Y0[2]
Y1[0]
Y1[1]
Y1[2]
D5
D6
D7
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Cb0[0]
Cb0[1]
NC
Cr0[0]
Cr0[1]
NC
Y0[0]
Y0[1]
NC
Y1[0]
Y1[1]
Y0[3]
Y0[4]
Y0[5]
Y1[3]
Y1[4]
Y1[5]
D8
D9
Y0[0]
Y0[1]
Y1[0]
Y1[1]
Cb0[0]
Cb0[1]
Cr0[0]
Cr0[1]
Y0[2]
Y0[3]
Y1[2]
Y1[3]
Cb0[2]
Cb0[3]
Cr0[2]
Cr0[3]
Y0[6]
Y0[7]
Y1[6]
Y1[7]
D10
D11
D12
Y0[2]
Y0[3]
Y0[4]
Y1[2]
Y1[3]
Y1[4]
Cb0[2]
Cb0[3]
Cb0[4]
Cr0[2]
Cr0[3]
Cr0[4]
Y0[4]
Y0[5]
Y0[6]
Y1[4]
Y1[5]
Y1[6]
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[4]
Cr0[5]
Cr0[6]
Y0[8]
Y0[9]
NC
Y1[8]
Y1[9]
NC
D13
D14
Y0[5]
Y0[6]
Y1[5]
Y1[6]
Cb0[5]
Cb0[6]
Cr0[5]
Cr0[6]
Y0[7]
Y0[8]
Y1[7]
Y1[8]
Cb0[7]
Cb0[8]
Cr0[7]
Cr0[8]
NC
Cb0[0]
NC
Cr0[0]
D15
D16
D17
Y0[7]
Cb0[0]
Cb0[1]
Y1[7]
Cr0[0]
Cr0[1]
Cb0[7]
Y0[0]
Y0[1]
Cr0[7]
Y1[0]
Y1[1]
Y0[9]
Cb0[2]
Cb0[3]
Y1[9]
Cr0[2]
Cr0[3]
Cb0[9]
Y0[2]
Y0[3]
Cr0[9]
Y1[2]
Y1[3]
Cb0[1]
Cb0[2]
Cb0[3]
Cr0[1]
Cr0[2]
Cr0[3]
D18
D19
D20
Cb0[2]
Cb0[3]
Cb0[4]
Cr0[2]
Cr0[3]
Cr0[4]
Y0[2]
Y0[3]
Y0[4]
Y1[2]
Y1[3]
Y1[4]
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[4]
Cr0[5]
Cr0[6]
Y0[4]
Y0[5]
Y0[6]
Y1[4]
Y1[5]
Y1[6]
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[4]
Cr0[5]
Cr0[6]
D21
D22
Cb0[5]
Cb0[6]
Cr0[5]
Cr0[6]
Y0[5]
Y0[6]
Y1[5]
Y1[6]
Cb0[7]
Cb0[8]
Cr0[7]
Cr0[8]
Y0[7]
Y0[8]
Y1[7]
Y1[8]
Cb0[7]
Cb0[8]
Cr0[7]
Cr0[8]
D23
Cb0[7]
Cr0[7]
Y0[7]
Y1[7]
Cb0[9]
Cr0[9]
Y0[9]
Y1[9]
Cb0[9]
Cr0[9]
HSYNC
VSYNC
DE
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
46
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
SAV
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1 Pixel n
D[23:16]
nc
nc
nc
nc
Cb0[7:0]
{Y0[7:0]}
Cr0[7:0]
{Y1[7:0]}
Cb2[7:0]
{Y2[7:0]}
Cr2[7:0]
{Y3[7:0]}
Cb n-1[7:0]
{Yn-1[7:0]}
D[15:8]
FF
00
00
XY
Y0[7:0]
{Cb0[7:0]}
Y1[7:0]
{Cr0[7:0]}
Y2[7:0]
{Cb2[7:0]}
Y3[7:0]
{Cr2[7:0]}
EAV
Cr n-1[7:0]
{Yn[7:0]}
nc
nc
Yn -1[7:0]
Yn [7:0]
{Cbn-1[7:0]} {Crn-1[7:0]}
FF
00
nc
nc
00
XY
IDCK
Active
video
Figure 6.10. 16-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SAV
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1 Pixel n
Cr0[9:2]
{Y1[9:2]}
Cb2[9:2]
{Y2[9:2]}
Cr2[9:2]
{Y3[9:2]}
Cbn-1[9:2]
{Y-1[9:2]}
D[23:16]
nc
nc
nc
nc
Cb0[9:2]
{Y0[9:2]}
D[15:8]
FF
00
00
XY
Y0[9:2]
{Cb0[9:2]}
Y1[9:2]
{Cr0[9:2]}
Y2[9:2]
{Cb2[9:2]}
Y3[9:2]
{Cr2[9:2]}
D[7:6]
FF
00
00
XY
Cb0[1:0]
{Y0[1:0]}
Cr0[1:0]
{Y1[1:0]}
Cb2[1:0]
{Y2[1:0]}
D[3:2]
FF
00
00
XY
Y0[1:0]
{Cb0[1:0]}
Y1[1:0]
{Cr0[1:0]}
Y2[1:0]
{Cb2[1:0]}
Cr n-1[9:2]
{Yn[9:2]}
EAV
nc
nc
nc
nc
Y n -1[9:2]
Y n [9:2]
{Cbn-1[9:2]} {Crn-1[9:2]}
FF
00
00
XY
Cr2[1:0]
{Y3[1:0]}
Cbn-1[1:0]
{Yn-1[1:0]}
Cr n-1[1:0]
{Yn[1:0]}
FF
00
00
XY
Y3[1:0]
{Cr2[1:0]}
Y n -1[1:0]
Y n [1:0]
{Cbn-1[1:0]} {Cr n-1[1:0]}
FF
00
00
XY
IDCK
Active
video
Figure 6.11. 20-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SAV
Pixel 0
Pixel 1
Pixel 2
Pixel 3
EAV
Pixel n - 1 Pixel n
D[23:14]
nc
nc
nc
nc
Cb0[9:0]
Cr0[9:0]
Cb2[9:0]
Cr2[9:0]
Cbn-1[9:0]
Crn-1[9:0]
nc
D[11:2]
FF
00
00
XY
Y0[9:0]
Y1[9:0]
Y2[9:0]
Y3[9:0]
Y n -1[9:0]
Y n [9:0]
FF
nc
00
nc
00
nc
XY
IDCK
Active
video
Figure 6.12. 20-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
47
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 6.15. 24-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package)
24-bitData Bus
Swap
24-bitData Bus
Pin
Name
24-bitData Bus
NB
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D0
D1
Y0[0]
Y0[1]
Y1[0]
Y1[1]
Cb0[0]
Cb0[1]
Cr0[0]
Cr0[1]
Y0[0]
Y0[1]
Y1[0]
Y1[1]
D2
D3
D4
Y0[2]
Y0[3]
Cb0[0]
Y1[2]
Y1[3]
Cr0[0]
Cb0[2]
Cb0[3]
Y0[0]
Cr0[2]
Cr0[3]
Y1[0]
Y0[2]
Y0[3]
Y0[4]
Y1[2]
Y1[3]
Y1[4]
D5
D6
D7
Cb0[1]
Cb0[2]
Cb0[3]
Cr0[1]
Cr0[2]
Cr0[3]
Y0[1]
Y0[2]
Y0[3]
Y1[1]
Y1[2]
Y1[3]
Y0[5]
Y0[6]
Y0[7]
Y1[5]
Y1[6]
Y1[7]
D8
D9
Y0[4]
Y0[5]
Y1[4]
Y1[5]
Cb0[4]
Cb0[5]
Cr0[4]
Cr0[5]
Y0[8]
Y0[9]
Y1[8]
Y1[9]
D10
D11
D12
Y0[6]
Y0[7]
Y0[8]
Y1[6]
Y1[7]
Y1[8]
Cb0[6]
Cb0[7]
Cb0[8]
Cr0[6]
Cr0[7]
Cr0[8]
Y0[10]
Y0[11]
Cb0[0]
Y1[10]
Y1[11]
Cr0[0]
D13
D14
Y0[9]
Y0[10]
Y1[9]
Y1[10]
Cb0[9]
Cb0[10]
Cr0[9]
Cr0[10]
Cb0[1]
Cb0[2]
Cr0[1]
Cr0[2]
D15
D16
D17
Y0[11]
Cb0[4]
Cb0[5]
Y1[11]
Cr0[4]
Cr0[5]
Cb0[11]
Y0[4]
Y0[5]
Cr0[11]
Y1[4]
Y1[5]
Cb0[3]
Cb0[4]
Cb0[5]
Cr0[3]
Cr0[4]
Cr0[5]
D18
D19
D20
Cb0[6]
Cb0[7]
Cb0[8]
Cr0[6]
Cr0[7]
Cr0[8]
Y0[6]
Y0[7]
Y0[8]
Y1[6]
Y1[7]
Y1[8]
Cb0[6]
Cb0[7]
Cb0[8]
Cr0[6]
Cr0[7]
Cr0[8]
D21
D22
Cb0[9]
Cb0[10]
Cr0[9]
Cr0[10]
Y0[9]
Y0[10]
Y1[9]
Y1[10]
Cb0[9]
Cb0[10]
Cr0[9]
Cr0[10]
D23
Cb0[11]
Cr0[11]
Y0[11]
Y1[11]
Cb0[11]
Cr0[11]
HSYNC
VSYNC
DE
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
SAV
EAV
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1 Pixel n
Cr0[11:4]
{Y1[11:4]}
Cb2[11:4]
{Y2[11:4]}
Cr2[11:4]
{Y3[11:4]}
Cbn-1[11:4] Crn-1[11:4]
{Yn-1[11:4]} {Yn[11:4]}
nc
nc
nc
nc
Y2[11:4]
{Cb2[11:4]}
Y3[11:4]
{Cr2[11:4]}
Yn[11:4]
Yn-1[11:4]
Cbn-1[11:4]} {Crn-1[11:4]}
nc
nc
nc
nc
D[23:16]
nc
nc
nc
nc
Cb0[11:4]
{Y0[11:4]}
D[15:8]
nc
nc
nc
nc
Y0[11:4]
Y1[11:4]
{Cb0[11:4]} {Cr0[11:4]}
D[7:4]
FF
00
00
XY
Cb0[3:0]
{Y0[3:0]}
Cr0[3:0]
{Y1[3:0]}
Cb2[3:0]
{Y2[3:0]}
Cr2[3:0]
{Y3[3:0]}
Cbn-1[3:0]
{Yn-1[3:0]}
Crn-1[3:0]
{Yn[3:0]}
FF
00
00
XY
D[3:0]
FF
00
00
XY
Y0[3:0]
{Cb0[3:0]}
Y1[3:0]
{Cr0[3:0]}
Y2[3:0]
{Cb2[3:0]}
Y3[3:0]
{Cr2[3:0]}
Yn-1[3:0]
Yn[3:0]
{Cbn-1[3:0]} {Crn-1[3:0]}
FF
00
00
XY
IDCK
Active
video
Figure 6.13. 24-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
48
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
SAV
D[23:12]
nc
nc
nc
nc
D[11:0]
FF
00
00
XY
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1
Cb0[11:0]
Cr0[11:0]
Cb2[11:0]
Cr2[11:0]
Cbn-1[11:0] Crn-1[11:0]
Y0[11:0]
Y1[11:0]
Y2[11:0]
Y3[11:0]
Yn-1[11:0]
EAV
Pixel n
Yn[11:0]
nc
nc
FF
00
nc
nc
00
XY
IDCK
Active
video
Figure 6.14. 24-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)
6.11.1.4. YC Mux 4:2:2 Separate Sync Formats
The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on
page 43. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for
the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. Each group of four columns in Table 6.16 lists the four clock cycles for the first two pixels of the line. Pixel values
for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the
second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the rest of the
pixels in a video line of n + 1 pixels.
Table 6.16. 8-, 10-, and 12-Bit YC Mux 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package)
Pin
Name
8-bit Data Bus
Clock cycle
Second Third
First
D0
D1
NC
NC
D2
D3
D[7:4]
NC
NC
NC
Fourth
First
10-bit Data Bus
Clock cycle
Second Third
Fourth
First
NC
NC
Cb0[0]
Cb0[1]
Y0[0]
Y0[1]
Cr0[0]
Cr0[1]
Y1[0]
Y1[1]
12-bit Data Bus
Clock cycle
Second
Third
Fourth
Cb0[0]
Cb0[1]
Y0[0]
Y0[1]
Cr0[0]
Cr0[1]
Y1[0]
Y1[1]
Cb0[2]
Cb0[3]
Y0[2]
Y0[3]
Cr0[2]
Cr0[3]
Y1[2]
Y1[3]
NC
NC
D8
D9
D10
Cb0[0]
Cb0[1]
Cb0[2]
Y0[0]
Y0[1]
Y0[2]
Cr0[0]
Cr0[1]
Cr0[2]
Y1[0]
Y1[1]
Y1[2]
Cb0[2]
Cb0[3]
Cb0[4]
Y0[2]
Y0[3]
Y0[4]
Cr0[2]
Cr0[3]
Cr0[4]
Y1[2]
Y1[3]
Y1[4]
Cb0[4]
Cb0[5]
Cb0[6]
Y0[4]
Y0[5]
Y0[6]
Cr0[4]
Cr0[5]
Cr0[6]]
Y1[4]
Y1[5]
Y1[6]
D11
D12
Cb0[3]
Cb0[4]
Y0[3]
Y0[4]
Cr0[3]
Cr0[4]
Y1[3]
Y1[4]
Cb0[5]
Cb0[6]
Y0[5]
Y0[6]
Cr0[5]
Cr0[6]]
Y1[5]
Y1[6]
Cb0[7]
Cb0[8]
Y0[7]
Y0[8]
Cr0[7]
Cr0[8]
Y1[7]
Y1[8]
D13
D14
D15
Cb0[5]
Cb0[6]
Cb0[7]
Y0[5]
Y0[6]
Y0[7]
Cr0[5]
Cr0[6]]
Cr0[7]
Y1[5]
Y1[6]
Y1[7]
Cb0[7]
Cb0[8]
Cb0[9]
Y0[7]
Y0[8]
Y0[9]
Cr0[7]
Cr0[8]
Cr0[9]
Y1[7]
Y1[8]
Y1[9]
Cb0[9]
Cb0[10]
Cb0[11]
Y0[9]
Y0[10]
Y0[11]
Cr0[9]
Cr0[10]
Cr0[11]
Y1[9]
Y1[10]
Y1[11]
D[23:16]
NC
NC
NC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
HSYNC
VSYNC
DE
DE
DE
DE
Pixel 0
D[15:8]
val
Cb0[7:0]
Y0[7:0]
Pixel 1
Cr0[7:0]
Y1[7:0]
Pixel 2
Cb2[7:0]
Y2[7:0]
Pixel 3
Cr2[7:0]
Y3[7:0]
Pixel n - 1
Cbn-1[7:0]
Yn-1[7:0]
Pixel n
Crn-1[7:0]
Yn[7:0]
val
IDCK
DE
HSYNC
VSYNC
Figure 6.15. 8-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
49
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1
Pixel n
D[15:8]
val
Cb0[9:2]
Y0[9:2]
Cr0[9:2]
Y1[9:2]
Cb2[9:2]
Y2[9:2]
Cr2[9:2]
Y3[9:2]
Cbn-1[9:2]
Yn-1[9:2]
Crn-1[9:2]
Yn[9:2]
val
D[3:2]
val
Cb0[1:0]
Y0[1:0]
Cr0[1:0]
Y1[1:0]
Cb2[1:0]
Y2[1:0]
Cr2[1:0]
Y3[1:0]
Cbn-1[1:0]
Yn-1[1:0]
Crn-1[1:0]
Yn[1:0]
val
IDCK
DE
HSYNC
VSYNC
Figure 6.16. 10-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1
Pixel n
D[15:8]
val
Cb0[11:4]
Y0[11:4]
Cr0[11:4]
Y1[11:4]
Cb2[11:4]
Y2[11:4]
Cr2[11:4]
Y3[11:4]
Cbn-1[11:4]
Yn-1[11:4]
Crn-1[11:4]
Yn[11:4]
val
D[3:0]
val
Cb0[3:0]
Y0[3:0]
Cr0[3:0]
Y1[3:0]
Cb2[3:0]
Y2[3:0]
Cr2[3:0]
Y3[3:0]
Cbn-1[3:0]
Yn-1[3:0]
Crn-1[3:0]
Yn[3:0]
val
IDCK
DE
HSYNC
VSYNC
Figure 6.17. 12-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
50
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.1.5. YC Mux 4:2:2 Embedded Sync Formats
This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Formats section on page 49, except the
syncs are embedded. Normally this mode is used only for 480i, 480p, 576i and 576p modes. It is similar to SMTPE 293
in embedding the syncs. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. The input clock rate is twice the pixel clock rate. Each group of four columns in Table 6.17 lists the four clock
cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock
cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figures following this
table show only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but the
remaining pixels are similar to those shown in the figures of the previous section. 480p, 54 MHz input can be achieved
if the input clock is 54 MHz. The DE generator may be needed to convert extracted sync timings to CEA-861D timings.
See the ITU-R BT.656 Specification.
Table 6.17. 8-, 10-, and 12-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package)
8-bit Data Bus
Pin
Name
10-bit Data Bus
12-bit Data Bus
D0
Clock cycle
Second Third
NC
D1
D2
NC
NC
D3
D[7:4]
D8
NC
NC
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
Cb0[2]
Y0[2]
Cr0[2]
Y1[2]
Cb0[4]
D9
D10
D11
Cb0[1]
Cb0[2]
Cb0[3]
Y0[1]
Y0[2]
Y0[3]
Cr0[1]
Cr0[2]
Cr0[3]
Y1[1]
Y1[2]
Y1[3]
Cb0[3]
Cb0[4]
Cb0[5]
Y0[3]
Y0[4]
Y0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Y1[3]
Y1[4]
Y1[5]
D12
D13
Cb0[4]
Cb0[5]
Y0[4]
Y0[5]
Cr0[4]
Cr0[5]
Y1[4]
Y1[5]
Cb0[6]
Cb0[7]
Y0[6]
Y0[7]
Cr0[6]]
Cr0[7]
D14
D15
D[23:16]
Cb0[6]
Cb0[7]
Y0[6]
Y0[7]
Cr0[6]]
Cr0[7]
NC
Y1[6]
Y1[7]
Cb0[8]
Cb0[9]
Y0[8]
Y0[9]
Cr0[8]
Cr0[9]
First
HSYNC
VSYNC
DE
First
Clock cycle
Second Third
NC
Cb0[0]
Y0[0]
Cb0[1]
Y0[1]
00
Pixel 0
00
First
Cb0[0]
Clock cycle
Second
Third
Y0[0]
Cr0[0]
Cr0[0]
Y1[0]
Cb0[1]
Cb0[2]
Y0[1]
Y0[2]
Cr0[1]
Y1[1]
Cb0[3]
Y0[3]
Y1[1]
Y1[2]
Cr0[3]
Y1[3]
Y0[4]
Cr0[4]
Y1[4]
Cb0[5]
Cb0[6]
Cb0[7]
Y0[5]
Y0[6]
Y0[7]
Cr0[5]
Cr0[6]]
Cr0[7]
Y1[5]
Y1[6]
Y1[7]
Y1[6]
Y1[7]
Cb0[8]
Cb0[9]
Y0[8]
Y0[9]
Cr0[8]
Cr0[9]
Y1[8]
Y1[9]
Y1[8]
Y1[9]
Cb0[10]
Cb0[11]
Y0[10]
Y0[11]
Cr0[10]
Cr0[11]
Y1[10]
Y1[11]
XY
Cb0[7:0]
Y0[7:0]
Cr0[7:0]
NC
NC
NC
NC
NC
NC
NC
NC
NC
Pixel 1
Y1[7:0]
Fourth
Y1[0]
Cr0[1]
Cr0[2]
NC
NC
NC
NC
FF
Fourth
NC
SAV
D[15:8]
Fourth
EAV
Pixel n
Crn-1[7:0]
Yn[7:0]
FF
00
00
XY
IDCK
Active
video
Figure 6.18. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
SAV
Pixel 0
Pixel 1
EAV
Pixel n
D[15:8]
FF
00
00
XY
Cb0[9:2]
Y0[9:2]
Cr0[9:2]
Y1[9:2]
Crn-1[9:2]
Yn[9:2]
FF
00
00
XY
D[3:2]
FF
00
00
XY
Cb0[1:0]
Y0[1:0]
Cr0[1:0]
Y1[1:0]
Crn-1[1:0]
Yn[1:0]
FF
00
00
XY
IDCK
Active
video
Figure 6.19. 10-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
51
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
SAV
Pixel 0
Pixel 1
EAV
Pixel n
D[15:8]
FF
00
00
XY
Cb0[11:4]
Y0[11:4]
Cr0[11:4]
Y1[11:4]
Crn-1[11:4]
Yn[11:4]
FF
00
00
XY
D[3:0]
FF
00
00
XY
Cb0[3:0]
Y0[3:0]
Cr0[3:0]
Y1[3:0]
Crn-1[3:0]
Yn[3:0]
FF
00
00
XY
IDCK
Active
video
Figure 6.20. 12-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
52
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.1.6. YC 4:2:2 Embedded Sync Dual Edge Format
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock. One clock edge
latches in half the pixel data on 12 pins. The opposite clock edge latches in the remaining half of the pixel data on the
same 12 pins. Data signals (Dx]) must change state to meet the setup and hold times, specified for the 12-bit dual edge
mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. See Table 3.12 on page 18
or Table 3.13 on page 19. The syncs are embedded and not explicit. Figure 6.21 lists IDCK latching input data when the
Edge Select bit is set to 1 (first edge is the rising edge).
Table 6.18. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
12-bit Data Bus
Pin Name
Pixel #0
Pixel #1
D0
First Edge
Y0[0]
Second Edge
Y0[8]
First Edge
Y1[0]
Second Edge
Y1[8]
D1
D2
Y0[1]
Y0[2]
Y0[9]
Y0[10]
Y1[1]
Y1[2]
Y1[9]
Y1[10]
D3
D4
D5
Y0[3]
Cb0[0]
Cb0[1]
Y0[11]
Cb0[4]
Cb0[5]
Y13]
Cr0[0]
Cr0[1]
Y1[11]
Cr0[4]
Cr0[5]
D6
D7
Cb0[2]
Cb0[3]
Cb0[6]
Cb0[7]
Cr0[2]
Cr0[3]
Cr0[6]
Cr0[7]
D8
D9
D10
Y0[4]
Y0[5]
Y0[6]
Cb0[8]
Cb0[9]
Cb0[10]
Y1[4]
Y1[5]
Y1[6]
Cr0[8]
Cr0[9]
Cr0[10]
D11
D[23:12]
Y0[7]
NC
Cb0[11]
NC
Y1[7]
NC
Cr0[11]
NC
HSYNC
VSYNC
NC
NC
—
—
NC
NC
—
—
DE
NC
—
NC
—
Pixel 0
SAV
D[11:8]
nc
nc
D[7:4]
FF
nc
00
nc
00
nc
D[3:0]
FF
nc
00
nc
00
nc
nc
nc
nc
nc
Pixel 1
nc
Y0[7:4]
Cb0[11:8]
Y1[7:4]
Cr0[11:8]
XY
nc
Cb0[3:0]
Cb0[7:4]
Cr0[3:0]
Cr0[7:4]
XY
nc
Y0[3:0]
Y0[11:8]
Y1[3:0]
Y1[11:8]
nc
IDCK
Active
video
Pixel n - 1
EAV
Pixel n
D[11:8]
Yn-1[7:4]
Cbn-1[11:8]
Yn[7:4]
Crn-1[11:8]
nc
nc
D[7:4]
Cbn-1[3:0]
Cbn-1[7:4]
Crn-1[3:0]
Crn-1[7:4]
FF
nc
D[3:0]
Yn-1[3:0]
Yn-1[11:8]
Yn[3:0]
Yn[11:8]
FF
nc
nc
nc
nc
00
nc
00
nc
XY
nc
00
nc
00
nc
XY
nc
nc
nc
nc
IDCK
Active
video
Figure 6.21. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
53
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.1.7. RGB and YCbCr 4:4:4 Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.19 lists the first pixel of n
+ 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in
braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times
specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit
(see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first
edge is the rising edge). See Table 3.12 on page 18 or Table 3.13 on page 19 for the required timing relationships.
Table 6.19. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
12-bit Data Bus
Pin
Name
RGB
YCbCr
D0
First Edge
B0[0]
Second Edge
G0[4]
First Edge
Cb0[0]
Second Edge
Y0[4]
D1
D2
D3
B0[1]
B0[2]
B0[3]
G0[5]
G0[6]
G0[7]
Cb0[1]
Cb0[2]
Cb0[3]
Y0[5]
Y0[6]
Y0[7]
D4
D5
D6
B0[4]
B0[5]
B0[6]
R0[0]
R0[1]
R0[2]
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[0]
Cr0[1]
Cr0[2]
D7
D8
B0[7]
G0[0]
R0[3]
R0[4]
Cb0[7]
Y0[0]
Cr0[3]
Cr0[4]
D9
D10
D11
G0[1]
G0[2]
G0[3]
R0[5]
R0[6]
R0[7]
Y0[1]
Y0[2]
Y0[3]
Cr0[5]
Cr0[6]
Cr0[7]
D[23:12]
NC
NC
NC
NC
HSYNC
VSYNC
DE
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
Note: Unused inputs should be left not connected.
Figure 6.22 shows IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge).
blank
Pixel 0
Pixel 1
Pixel 2
Pixel n - 1
blank
Pixel n
blank
D[11:8]
val
G0[3:0]
{Y0[3:0]}
R0[7:4]
{Cr0[7:4]}
G1[3:0]
{Y1[3:0]}
R1[7:4]
{Cr1[7:4]}
G2[3:0]
{Y2[3:0]}
R2[7:4]
{Cr2[7:4]}
Gn-1[3:0]
{Yn-1[3:0]}
Rn-1[7:4]
{Crn-1[7:4]}
Gn[3:0]
{Yn[3:0]}
Rn[7:4]
{Crn[7:4]}
val
val
val
val
D[7:4]
val
B0[7:4]
{Cb0[7:4]}
R0[3:0]
{Cr0[3:0]}
B1[7:4]
{Cb1[7:4]}
R1[3:0]
{Cr1[3:0]}
B2[7:4]
{Cb2[7:4]}
R0[3:0]
{Cr2[3:0]}
Bn-1[7:4]
{Cbn-1[7:4]}
Rn-1[3:0]
{Crn-1[3:0]}
Bn[7:4]
{Cbn[7:4]}
Rn[3:0]
{Crn[3:0]}
val
val
val
val
val
B0[3:0]
{Cb0[3:0]}
G0[7:4]
{Y0[7:4]}
B1[3:0]
{Cb1[3:0]}
G1[7:4]
{Y1[7:4]}
B2[3:0]
{Cb2[3:0]}
G0[7:4]
{Y2[7:4]}
Bn-1[3:0]
{Cbn-1[3:0]}
Gn-1[7:4]
{Yn-1[7:4]}
Bn[3:0]
{Cbn[3:0}
Gn[7:4]
{Yn[7:4]}
val
val
val
val
D[3:0]
IDCK
DE
HSYNC,
VSYNC
Figure 6.22. 12-Bit RGB 4:4:4 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
54
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.1.8. YC 4:2:2 Separate Sync Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. Each group of 4 columns in the tables of this section lists the first two pixels of n + 1 pixels in the line of video. Data
and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the
dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the
Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the
rising edge). See Table 3.12 on page 18 or Table 3.13 on page 19 for the required timing relationships. Pixel values
within braces {} in the figures show the values in Swap mode.
Table 6.20. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
8-bit Data Bus
Pixel #0
Pin Name
Pixel #1
8-bit Data Bus Swap
Pixel #0
Pixel #1
Second
Second
First Edge
First Edge
Edge
Edge
First Edge
Second Edge
First Edge
Second Edge
D[3:0]
NC
NC
NC
NC
NC
NC
NC
NC
D4
Y0[0]
Cb0[0]
Y1[0]
Cr0[0]
Cb0[0]
Y0[0]
Cr0[0]
Y1[0]
D5
D6
Y0[1]
Y0[2]
Cb0[1]
Cb0[2]
Y1[1]
Y1[2]
Cr0[1]
Cr0[2]
Cb0[1]
Cb0[2]
Y0[1]
Y0[2]
Cr0[1]
Cr0[2]
Y1[1]
Y1[2]
D7
D8
D9
Y0[3]
Y0[4]
Y0[5]
Cb0[3]
Cb0[4]
Cb0[5]
Y1[3]
Y1[4]
Y1[5]
Cr0[3]
Cr0[4]
Cr0[5]
Cb0[3]
Cb0[4]
Cb0[5]
Y0[3]
Y0[4]
Y0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Y1[3]
Y1[4]
Y1[5]
D10
D11
Y0[6]
Y0[7]
Cb0[6]
Cb0[7]
Y1[6]
Y1[7]
Cr0[6]
Cr0[7]
Cb0[6]
Cb0[7]
Y0[6]
Y0[7]
Cr0[6]
Cr0[7]
Y1[6]
Y1[7]
D[23:12]
NC
NC
NC
NC
NC
NC
NC
NC
HSYNC
HSYNC
—
HSYNC
—
HSYNC
—
HSYNC
—
VSYNC
DE
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
blank
D[11:4]
val
Pixel 0
Y0[7:0]
{Cb0[7:0]}
Cb0[7:0]
{Y0[7:0]}
Pixel 1
Y1[7:0]
{Cr0[7:0]}
Cr0[7:0]
{Y1[7:0]}
Pixel 2
Y2[7:0]
{Cb2[7:0]}
Cb2[7:0]
{Y2[7:0]}
Pixel n - 1
blank
Pixel n
Yn-1[7:0] Cbn-1[7:0]
Yn[7:0]
Crn-1[7:0]
{Cbn-1[7:0]} {Yn-1[7:0]} {Crn-1[7:0]} {Yn[7:0]}
val
blank
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.23. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-b all and 72-p in Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
55
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 6.21. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
10-bit Data Bus
Pin Name
Pixel #0
First Edge Second Edge
10-bit Data Bus Swap
Pixel #1
First Edge Second Edge
Pixel #0
First Edge Second Edge
Pixel #1
First Edge Second Edge
D[1:0]
D2
D3
NC
Y0[0]
Y0[1]
NC
Cb0[0]
Cb0[1]
NC
Y1[0]
Y1[1]
NC
Cr0[0]
Cr0[1]
NC
Cb0[0]
Cb0[1]
NC
Y0[0]
Y0[1]
NC
Cr0[0]
Cr0[1]
NC
Y1[0]
Y1[1]
D4
D5
Y0[2]
Y0[3]
Cb0[2]
Cb0[3]
Y1[2]
Y1[3]
Cr0[2]
Cr0[3]
Cb0[2]
Cb0[3]
Y0[2]
Y0[3]
Cr0[2]
Cr0[3]
Y1[2]
Y1[3]
D6
D7
D8
Y0[4]
Y0[5]
Y0[6]
Cb0[4]
Cb0[5]
Cb0[6]
Y1[4]
Y1[5]
Y1[6]
Cr0[4]
Cr0[5]
Cr0[6]
Cb0[4]
Cb0[5]
Cb0[6]
Y0[4]
Y0[5]
Y0[6]
Cr0[4]
Cr0[5]
Cr0[6]
Y1[4]
Y1[5]
Y1[6]
D9
D10
D11
Y0[7]
Y0[8]
Y0[9]
Cb0[7]
Cb0[8]
Cb0[9]
Y1[7]
Y1[8]
Y1[9]
Cr0[7]
Cr0[8]
Cr0[9]
Cb0[7]
Cb0[8]
Cb0[9]
Y0[7]
Y0[8]
Y0[9]
Cr0[7]
Cr0[8]
Cr0[9]
Y1[7]
Y1[8]
Y1[9]
D[23:12]
NC
NC
NC
NC
NC
NC
NC
NC
HSYNC
VSYNC
HSYNC
VSYNC
—
—
HSYNC
VSYNC
—
—
HSYNC
VSYNC
—
—
HSYNC
VSYNC
—
—
DE
DE
—
DE
—
DE
—
DE
—
blank
D[11:2]
val
Pixel 0
Y0[9:0]
{Cb0[9:0]}
Cb0[9:0]
{Y0[9:0]}
Pixel 1
Y1[9:0]
{Cr0[9:0]}
Cr0[9:0]
{Y1[9:0]}
Pixel 2
Y2[9:0]
{Cb2[9:0]}
Cb2[9:0]
{Y2[9:0]}
Pixel n - 1
blank
Pixel n
Yn-1[9:0] Cbn-1[9:0]
Yn[9:0]
Crn-1[9:0]
{Cbn-1[9:0]} {Yn-1[9:0]} {Crn-1[9:0]} {Yn[9:0]}
val
blank
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.24. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
56
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 6.22. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package)
12-bit Data Bus
12-bit Data Bus NB
12-bit Data Bus NB Swap
Pixel #0
First
Second
Edge
Edge
Pixel #1
First
Second
Edge
Edge
Pixel #0
First
Second
Edge
Edge
Pixel #1
First
Second
Edge
Edge
D0
D1
Y0[0]
Y0[1]
Y0[8]
Y0[9]
Y1[0]
Y1[1]
Y1[8]
Y1[9]
Y0[0]
Y0[1]
Cb0[0]
Cb0[1]
Y1[0]
Y1[1]
Cr0[0]
Cr0[1]
Cb0[0]
Cb0[1]
Y0[0]
Y0[1]
Cr0[0]
Cr0[1]
Y1[0]
Y1[1]
D2
D3
D4
Y0[2]
Y0[3]
Cb0[0]
Y0[10]
Y0[11]
Cb0[4]
Y1[2]
Y1[3]
Cr0[0]
Y1[10]
Y1[11]
Cr0[4]
Y0[2]
Y0[3]
Y0[4]
Cb0[2]
Cb0[3]
Cb0[4]
Y1[2]
Y1[3]
Y1[4]
Cr0[2]
Cr0[3]
Cr0[4]
Cb0[2]
Cb0[3]
Cb0[4]
Y0[2]
Y0[3]
Y0[4]
Cr0[2]
Cr0[3]
Cr0[4]
Y1[2]
Y1[3]
Y1[4]
D5
D6
Cb0[1]
Cb0[2]
Cb0[5]
Cb0[6]
Cr0[1]
Cr0[2]
Cr0[5]
Cr0[6]
Y0[5]
Y0[6]
Cb0[5]
Cb0[6]
Y1[5]
Y1[6]
Cr0[5]
Cr0[6]
Cb0[5]
Cb0[6]
Y0[5]
Y0[6]
Cr0[5]
Cr0[6]
Y1[5]
Y1[6]
D7
D8
D9
Cb0[3]
Y0[4]
Y0[5]
Cb0[7]
Cb0[8]
Cb0[9]
Cr0[3]
Y1[4]
Y1[5]
Cr0[7]
Cr0[8]
Cr0[9]
Y0[7]
Y0[8]
Y0[9]
Cb0[7]
Cb0[8]
Cb0[9]
Y1[7]
Y1[8]
Y1[9]
Cr0[7]
Cr0[8]
Cr0[9]
Cb0[7]
Cb0[8]
Cb0[9]
Y0[7]
Y0[8]
Y0[9]
Cr0[7]
Cr0[8]
Cr0[9]
Y1[7]
Y1[8]
Y1[9]
D10
D11
Y0[6]
Y0[7]
Cb0[10]
Cb0[11]
Y1[6]
Y1[7]
Cr0[10]
Cr0[11]
Y0[10]
Y0[11]
Cb0[10]
Cb0[11]
Y1[10]
Y1[11]
Cr0[10]
Cr0[11]
Cb0[10]
Cb0[11]
Y0[10]
Y0[11]
Cr0[10]
Cr0[11]
Y1[10]
Y1[11]
D[23:12]
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
HSYNC
VSYNC
DE
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
Pin Name
blank
Pixel 0
Pixel 1
Pixel 2
Pixel n - 1
Pixel #0
First
Second
Edge
Edge
Pixel #1
First
Second
Edge
Edge
blank
Pixel n
blank
D[11:8]
val
Y0[7:4]
Cb0[11:8]
Y1[7:4]
Cr0[11:8]
Y2[7:4]
Cb2[11:8]
Yn-1[7:4]
Cbn-1[11:8]
Yn[7:4]
Crn-1[11:8]
val
val
val
val
D[7:4]
val
Cb0[3:0]
Cb0[7:4]
Cr0[3:0]
Cr0[7:4]
Cb2[3:0]
Cb2[7:4]
Cbn-1[3:0]
Cbn-1[7:4]
Crn-1[3:0]
Crn-1[7:4]
val
val
val
val
val
Y0[3:0]
Y0[11:8]
Y1[3:0]
Y1[11:8]
Y2[3:0]
Y2[11:8]
Yn-1[3:0]
Yn-1[11:8
Yn[3:0]
Yn[11:8
val
val
val
val
D[3:0]
IDCK
DE
HSYNC,
VSYNC
Figure 6.25. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package)
blank
D[11:0]
val
Pixel 0
Y0[11:0]
{Cb0[11:0]}
Cb0[11:0]
{Y0[11:0]}
Pixel 1
Y1[11:0]
{Cr0[11:0]}
Cr0[11:0]
{Y1[11:0]}
Pixel 2
Y2[11:0]
{Cb2[11:0]}
Cb2[11:0]
{Y2[11:0]}
Pixel n - 1
Pixel n
Yn-1[11:0] Cbn-1[11:0]
{Cbn-1[11:0]} {Yn-1[11:0]}
Yn[11:0] Crn-1[11:0]
{Crn-1[11:0]} {Yn[11:0]}
blank
val
blank
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.26. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (81-Ball and 72-Pin Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
57
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Data Mappings for 49-Ball Package
6.11.2.1. YC 4:2:2 Separate Sync Formats
The YC 4:2:2 format receives one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the
chroma values (Cb and Cr) change only every second pixel. The data bus can only be 16-bits. HSYNC and VSYNC are
driven explicitly on their own pins. Each pair of columns in Table 6.23 lists the first and second pixel of n + 1 pixels in
the line of video. Pixel values within braces {} in the figures show the values in Swap mode. The DE HIGH time must
contain an even number of pixel clocks.
Table 6.23. 16-Bit YC 4:2:2 Separate Sync Data Mapping (49-Ball Package)
16-bit Data Bus
16-bit Data Bus Swap
Pixel #0
Pixel #1
Pin
Name
Pixel #0
Pixel #1
D0
D1
D2
Y0[0]
Y0[1]
Y0[2]
Y1[0]
Y1[1]
Y1[2]
Cb0[0]
Cb0[1]
Cb0[2]
Cr0[0]
Cr0[1]
Cr0[2]
D3
D4
Y0[3]
Y0[4]
Y1[3]
Y1[4]
Cb0[3]
Cb0[4]
Cr0[3]
Cr0[4]
D5
D6
D7
Y0[5]
Y0[6]
Y0[7]
Y1[5]
Y1[6]
Y1[7]
Cb0[5]
Cb0[6]
Cb0[7]
Cr0[5]
Cr0[6]
Cr0[7]
D8
D9
D10
Cb0[0]
Cb0[1]
Cb0[2]
Cr0[0]
Cr0[1]
Cr0[2]
Y0[0]
Y0[1]
Y0[2]
Y1[0]
Y1[1]
Y1[2]
D11
D12
Cb0[3]
Cb0[4]
Cr0[3]
Cr0[4]
Y0[3]
Y0[4]
Y1[3]
Y1[4]
D13
D14
D15
Cb0[5]
Cb0[6]
Cb0[7]
Cr0[5]
Cr0[6]
Cr0[7]
Y0[5]
Y0[6]
Y0[7]
Y1[5]
Y1[6]
Y1[7]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
DE
VSYNC
DE
VSYNC
DE
VSYNC
DE
VSYNC
DE
blank
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixeln - 1
Pixel n
blank
blank
blank
D[15:8]
val
Cb0[7:0]
{Y0[7:0]}
Cr0[7:0]
{Y1[7:0]}
Cb2[7:0]
{Y2[7:0]}
Cr2[7:0]
{Y3[7:0]}
Cbn-1[7:0]
{Yn-1[7:0]}
Crn-1[7:0]
{Yn[7:0]}
val
val
val
D[7:0]
val
Y0[7:0]
{Cb0[7:0]}
Y1[7:0]
{Cr0[7:0]}
Y2[7:0]
{Cb2[7:0]}
Y3[7:0]
{Cr2[7:0]}
Yn -1[7:0]
Yn [7:0]
{Cbn-1[7:0]} {Crn-1[7:0]}
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.27. 16-bit YC 4:2:2 Separate Sync Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
58
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.2.2. YC 4:2:2 Embedded Sync Format
The Embedded Sync format is identical to the YC 4:2:2 Format with Separate Syncs, except that the syncs are
embedded and not explicit. The data bus can be 16-bit, 20-bit, or 24-bit. Each pair of columns in Table 6.24 lists the first
and second pixel of n + 1 pixels in the line of video.
Table 6.24. 16-Bit YC 4:2:2 Embedded Sync Data Mapping (49-Ball Package)
16-bit Data Bus
Pin
Name
D0
D1
Pixel #0
Y0[0]
Y0[1]
Pixel #1
Y1[0]
Y1[1]
D2
D3
D4
Y0[2]
Y0[3]
Y0[4]
Y1[2]
Y1[3]
Y1[4]
D5
D6
Y0[5]
Y0[6]
Y1[5]
Y1[6]
D7
D8
D9
Y0[7]
Cb0[0]
Cb0[1]
Y1[7]
Cr0[0]
Cr0[1]
D10
D11
Cb0[2]
Cb0[3]
Cr0[2]
Cr0[3]
D12
D13
D14
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[4]
Cr0[5]
Cr0[6]
D15
Cb0[7]
Cr0[7]
HSYNC
VSYNC
DE
NC
NC
NC
NC
NC
NC
SAV
Pixel 0
Pixel 1
Pixel 2
Pixel 3
Pixel n - 1 Pixel n
EAV
D[15:8]
nc
nc
nc
nc
Cb0[7:0]
Cr0[7:0]
Cb2[7:0]
Cr2[7:0]
Cbn-1[7:0]
Cr n-1[7:0]
nc
nc
D[7:0]
FF
00
00
XY
Y0[7:0]
Y1[7:0]
Y2[7:0]
Y3[7:0]
Yn -1[7:0]
Yn [7:0]
FF
00
nc
00
nc
XY
IDCK
Active
video
Figure 6.28. 16-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
59
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.2.3. YC Mux 4:2:2 Separate Sync Format
The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on
page 58. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for
the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. Each group of four columns in Table 6.25 lists the four clock cycles for the first two pixels of the line. Pixel values
for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the
second pixel (next two clock cycles). The figure below the table shows how this pattern is extended for the rest of the
pixels in a video line of n + 1 pixels.
Table 6.25. 8-Bit YC Mux 4:2:2 Separate Sync Data Mapping (49-Ball Package)
8-bit Data Bus
Pin
Name
Clock cycle
D0
First
Cb0[0]
Second
Y0[0]
Third
Cr0[0]
Fourth
Y1[0]
D1
D2
Cb0[1]
Cb0[2]
Y0[1]
Y0[2]
Cr0[1]
Cr0[2]
Y1[1]
Y1[2]
D3
D4
D5
Cb0[3]
Cb0[4]
Cb0[5]
Y0[3]
Y0[4]
Y0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Y1[3]
Y1[4]
Y1[5]
D6
D7
D[15:8]
Cb0[6]
Cb0[7]
Y0[6]
Y0[7]
Cr0[6]
Cr0[7]
Y1[6]
Y1[7]
NC
HSYNC
VSYNC
DE
HSYNC
VSYNC
DE
Pixel 0
D[7:0]
val
Cb0[7:0]
Y0[7:0]
Pixel 1
Cr0[7:0]
Y1[7:0]
Pixel 2
Cb2[7:0]
Y2[7:0]
Pixel 3
Cr2[7:0]
Y3[7:0]
Pixel n - 1
Cbn-1[7:0]
Yn-1[7:0]
Pixel n
Crn-1[7:0]
Yn[7:0]
val
IDCK
DE
HSYNC
VSYNC
Figure 6.29. 8-Bit YC Mux 4:2:2 Separate Sync Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
60
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.2.4. YC Mux 4:2:2 Embedded Sync Format
This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Format section on page 60, except the
syncs are embedded. Normally this mode is used only for 480i, 480p, 576i and 576p modes. It is similar to SMTPE 293
in embedding the syncs. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. The input clock rate is twice the pixel clock rate. Each group of four columns in Table 6.17 lists the four clock
cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock
cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figure following this
table shows only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but
the remaining pixels are similar to those shown in the figure of the previous section. 480p, 54 MHz input can be
achieved if the input clock is 54 MHz. The DE generator may be needed to convert extracted sync timings to CEA-861D
timings. See the ITU-R BT.656 Specification.
Table 6.26. 8-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (49-Ball Package)
8-bit Data Bus
Pin
Name
Clock cycle
D0
First
Cb0[0]
Second
Y0[0]
Third
Cr0[0]
Fourth
Y1[0]
D1
D2
Cb0[1]
Cb0[2]
Y0[1]
Y0[2]
Cr0[1]
Cr0[2]
Y1[1]
Y1[2]
D3
D4
D5
Cb0[3]
Cb0[4]
Cb0[5]
Y0[3]
Y0[4]
Y0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Y1[3]
Y1[4]
Y1[5]
D6
D7
D[15:8]
Cb0[6]
Cb0[7]
Y0[6]
Y0[7]
Cr0[6]
Cr0[7]
Y1[6]
Y1[7]
NC
HSYNC
VSYNC
DE
NC
NC
NC
SAV
D[7:0]
FF
00
Pixel 0
00
XY
Cb0[7:0]
Y0[7:0]
Pixel 1
Cr0[7:0]
Y1[7:0]
EAV
Pixel n
Crn-1[7:0]
Yn[7:0]
FF
00
00
XY
IDCK
Active
video
Figure 6.30. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
61
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.2.5. YC 4:2:2 Embedded Sync Dual Edge Format
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock. One clock edge
latches in half the pixel data on 12 pins. The opposite clock edge latches in the remaining half of the pixel data on the
same 12 pins. Data signals (Dx) must change state to meet the setup and hold times, specified for the 12-bit dual edge
mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. See Table 3.12 on page 18.
The syncs are embedded and not explicit. Figure 6.31 shows IDCK latching input data when the Edge Select bit is set to
1 (first edge is the rising edge).
Table 6.27. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (49-Ball Package)
12-bit Data Bus
Pin Name
Pixel #0
Pixel #1
First Edge
Second Edge
First Edge
Second Edge
D[3:0]
D4
D5
NC
Y0[0]
Y0[1]
NC
Y0[8]
Y0[9]
NC
Y1[0]
Y1[1]
NC
Y1[8]
Y1[9]
D6
D7
Y0[2]
Y0[3]
Y0[10]
Y0[11]
Y1[2]
Y1[3]
Y1[10]
Y1[11]
D8
D9
D10
Cb0[0]
Cb0[1]
Cb0[2]
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[0]
Cr0[1]
Cr0[2]
Cr0[4]
Cr0[5]
Cr0[6]
D11
D12
Cb0[3]
Y0[4]
Cb0[7]
Cb0[8]
Cr0[3]
Y1[4]
Cr0[7]
Cr0[8]
D13
D14
D15
Y0[5]
Y0[6]
Y0[7]
Cb0[9]
Cb0[10]
Cb0[11]
Y1[5]
Y1[6]
Y1[7]
Cr0[9]
Cr0[10]
Cr0[11]
HSYNC
NC
—
NC
—
VSYNC
DE
NC
NC
—
—
NC
NC
—
—
Pixel 0
SAV
D[15:12]
nc
nc
D[11:8]
FF
nc
00
nc
00
nc
D[7:4]
FF
nc
00
nc
00
nc
nc
nc
nc
nc
nc
Pixel 1
Y0[7:4]
Cb0[11:8]
Y1[7:4]
Cr0[11:8]
nc
Cb0[3:0]
Cb0[7:4]
Cr0[3:0]
Cr0[7:4]
nc
Y0[3:0]
Y0[11:8]
Y1[3:0]
Y1[11:8]
nc
XY
XY
IDCK
Active
video
Pixel n - 1
EAV
Pixel n
D[15:12]
Yn-1[7:4]
Cbn-1[11:8]
Yn[7:4]
Crn-1[11:8]
nc
nc
D[11:8]
Cbn-1[3:0]
Cbn-1[7:4]
Crn-1[3:0]
Crn-1[7:4]
FF
nc
D[7:4]
Yn-1[3:0]
Yn-1[11:8]
Yn[3:0]
Yn[11:8]
FF
nc
nc
nc
nc
00
nc
00
nc
XY
nc
00
nc
00
nc
XY
nc
nc
nc
nc
IDCK
Active
video
Figure 6.31. 12-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
62
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.2.6. RGB and YCbCr 4:4:4 Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.28 lists the first pixel of n
+ 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in
braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times
specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit
(see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first
edge is the rising edge). See Table 3.12 on page 18 for the required timing relationships.
Table 6.28. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (49-Ball Package)
12-bit Data Bus
Pin
Name
RGB
YCbCr
D[3-0]
D4
First Edge
NC
B0[0]
Second Edge
NC
G0[4]
First Edge
NC
Cb0[0]
Second Edge
NC
Y0[4]
D5
D6
D7
B0[1]
B0[2]
B0[3]
G0[5]
G0[6]
G0[7]
Cb0[1]
Cb0[2]
Cb0[3]
Y0[5]
Y0[6]
Y0[7]
D8
D9
B0[4]
B0[5]
R0[0]
R0[1]
Cb0[4]
Cb0[5]
Cr0[0]
Cr0[1]
D10
D11
D12
B0[6]
B0[7]
G0[0]
R0[2]
R0[3]
R0[4]
Cb0[6]
Cb0[7]
Y0[0]
Cr0[2]
Cr0[3]
Cr0[4]
D13
D14
G0[1]
G0[2]
R0[5]
R0[6]
Y0[1]
Y0[2]
Cr0[5]
Cr0[6]
D15
G0[3]
R0[7]
Y0[3]
Cr0[7]
HSYNC
VSYNC
DE
HSYNC
VSYNC
DE
—
—
—
HSYNC
VSYNC
DE
—
—
—
blank
Pixel 0
Pixel 1
Pixel 2
Pixel n - 1
blank
Pixel n
blank
D[15:12]
val
G0[3:0]
{Y0[3:0]}
R0[7:4]
{Cr0[7:4]}
G1[3:0]
{Y1[3:0]}
R1[7:4]
{Cr1[7:4]}
G2[3:0]
{Y2[3:0]}
R2[7:4]
{Cr2[7:4]}
Gn-1[3:0]
{Yn-1[3:0]}
Rn-1[7:4]
{Crn-1[7:4]}
Gn[3:0]
{Yn[3:0]}
Rn[7:4]
{Crn[7:4]}
val
val
val
val
D[11:8]
val
B0[7:4]
{Cb0[7:4]}
R0[3:0]
{Cr0[3:0]}
B1[7:4]
{Cb1[7:4]}
R1[3:0]
{Cr1[3:0]}
B2[7:4]
{Cb2[7:4]}
R0[3:0]
{Cr2[3:0]}
Bn-1[7:4]
{Cbn-1[7:4]}
Rn-1[3:0]
{Crn-1[3:0]}
Bn[7:4]
{Cbn[7:4]}
Rn[3:0]
{Crn[3:0]}
val
val
val
val
D[7:4]
val
B0[3:0]
{Cb0[3:0]}
G0[7:4]
{Y0[7:4]}
B1[3:0]
{Cb1[3:0]}
G1[7:4]
{Y1[7:4]}
B2[3:0]
{Cb2[3:0]}
G0[7:4]
{Y2[7:4]}
Bn-1[3:0]
{Cbn-1[3:0]}
Gn-1[7:4]
{Yn-1[7:4]}
Bn[3:0]
{Cbn[3:0}
Gn[7:4]
{Yn[7:4]}
val
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.32. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
63
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
6.11.2.7. YC 4:2:2 Separate Sync Dual Edge Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. Each group of 4 columns in the tables of this section lists the first two pixels of n + 1 pixels in the line of video. Data
and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the
dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the
Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the
rising edge). See Table 3.12 on page 18 for the required timing relationships. Pixel values within braces {} in the figures
show the values in Swap mode.
Table 6.29. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package)
8-bit Data Bus
Pin Name
Pixel #0
8-bit Data Bus Swap
Pixel #1
Pixel #0
Pixel #1
D[7:0]
First Edge
NC
Second Edge
NC
First Edge
NC
Second Edge
NC
First Edge
NC
Second Edge
NC
First Edge
NC
Second Edge
NC
D8
D9
D10
Y0[0]
Y0[1]
Y0[2]
Cb0[0]
Cb0[1]
Cb0[2]
Y1[0]
Y1[1]
Y1[2]
Cr0[0]
Cr0[1]
Cr0[2]
Cb0[0]
Cb0[1]
Cb0[2]
Y0[0]
Y0[1]
Y0[2]
Cr0[0]
Cr0[1]
Cr0[2]
Y1[0]
Y1[1]
Y1[2]
D11
D12
D13
Y0[3]
Y0[4]
Y0[5]
Cb0[3]
Cb0[4]
Cb0[5]
Y1[3]
Y1[4]
Y1[5]
Cr0[3]
Cr0[4]
Cr0[5]
Cb0[3]
Cb0[4]
Cb0[5]
Y0[3]
Y0[4]
Y0[5]
Cr0[3]
Cr0[4]
Cr0[5]
Y1[3]
Y1[4]
Y1[5]
D14
D15
Y0[6]
Y0[7]
Cb0[6]
Cb0[7]
Y1[6]
Y1[7]
Cr0[6]
Cr0[7]
Cb0[6]
Cb0[7]
Y0[6]
Y0[7]
Cr0[6]
Cr0[7]
Y1[6]
Y1[7]
HSYNC
HSYNC
—
HSYNC
—
HSYNC
—
HSYNC
—
VSYNC
DE
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
blank
D[15:8]
val
Pixel 0
Y0[7:0]
{Cb0[7:0]}
Cb0[7:0]
{Y0[7:0]}
Pixel 1
Y1[7:0]
{Cr0[7:0]}
Cr0[7:0]
{Y1[7:0]}
Pixel 2
Y2[7:0]
{Cb2[7:0]}
Cb2[7:0]
{Y2[7:0]}
Pixel n - 1
blank
Pixel n
Yn-1[7:0] Cbn-1[7:0]
Yn[7:0]
Crn-1[7:0]
{Cbn-1[7:0]} {Yn-1[7:0]} {Crn-1[7:0]} {Yn[7:0]}
val
blank
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.33. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
64
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 6.30. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package)
10-bit Data Bus
Pin Name
Pixel #0
First Edge Second Edge
NC
NC
D[5:0]
10-bit Data Bus Swap
Pixel #1
First Edge Second Edge
NC
NC
Pixel #0
First Edge Second Edge
NC
NC
Pixel #1
First Edge Second Edge
NC
NC
D6
D7
Y0[0]
Y0[1]
Cb0[0]
Cb0[1]
Y1[0]
Y1[1]
Cr0[0]
Cr0[1]
Cb0[0]
Cb0[1]
Y0[0]
Y0[1]
Cr0[0]
Cr0[1]
Y1[0]
Y1[1]
D8
D9
D10
Y0[2]
Y0[3]
Y0[4]
Cb0[2]
Cb0[3]
Cb0[4]
Y1[2]
Y1[3]
Y1[4]
Cr0[2]
Cr0[3]
Cr0[4]
Cb0[2]
Cb0[3]
Cb0[4]
Y0[2]
Y0[3]
Y0[4]
Cr0[2]
Cr0[3]
Cr0[4]
Y1[2]
Y1[3]
Y1[4]
D11
D12
D13
Y0[5]
Y0[6]
Y0[7]
Cb0[5]
Cb0[6]
Cb0[7]
Y1[5]
Y1[6]
Y1[7]
Cr0[5]
Cr0[6]
Cr0[7]
Cb0[5]
Cb0[6]
Cb0[7]
Y0[5]
Y0[6]
Y0[7]
Cr0[5]
Cr0[6]
Cr0[7]
Y1[5]
Y1[6]
Y1[7]
D14
D15
Y0[8]
Y0[9]
Cb0[8]
Cb0[9]
Y1[8]
Y1[9]
Cr0[8]
Cr0[9]
Cb0[8]
Cb0[9]
Y0[8]
Y0[9]
Cr0[8]
Cr0[9]
Y1[8]
Y1[9]
HSYNC
HSYNC
—
HSYNC
—
HSYNC
—
HSYNC
—
VSYNC
DE
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
blank
D[15:6]
val
Pixel 0
Y0[9:0]
{Cb0[9:0]}
Cb0[9:0]
{Y0[9:0]}
Pixel 1
Y1[9:0]
{Cr0[9:0]}
Cr0[9:0]
{Y1[9:0]}
Pixel 2
Y2[9:0]
{Cb2[9:0]}
Cb2[9:0]
{Y2[9:0]}
Pixel n - 1
blank
Pixel n
Yn-1[9:0] Cbn-1[9:0]
Yn[9:0]
Crn-1[9:0]
{Cbn-1[9:0]} {Yn-1[9:0]} {Crn-1[9:0]} {Yn[9:0]}
val
blank
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.34. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
65
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Table 6.31. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package)
12-bit Data Bus
NB
12-bit Data Bus
Pin Name
12-bit Data Bus
NB Swap
Pixel #0
First
Second
Edge
Edge
Pixel #1
First
Second
Edge
Edge
Pixel #0
First
Second
Edge
Edge
Pixel #1
First
Second
Edge
Edge
D[3:0]
D4
D5
NC
Y0[0]
Y0[1]
NC
Y0[8]
Y0[9]
NC
Y1[0]
Y1[1]
NC
Y1[8]
Y1[9]
NC
Y0[0]
Y0[1]
NC
Cb0[0]
Cb0[1]
NC
Y1[0]
Y1[1]
NC
Cr0[0]
Cr0[1]
NC
Cb0[0]
Cb0[1]
NC
Y0[0]
Y0[1]
NC
Cr0[0]
Cr0[1]
NC
Y1[0]
Y1[1]
D6
D7
Y0[2]
Y0[3]
Y0[10]
Y0[11]
Y1[2]
Y1[3]
Y1[10]
Y1[11]
Y0[2]
Y0[3]
Cb0[2]
Cb0[3]
Y1[2]
Y1[3]
Cr0[2]
Cr0[3]
Cb0[2]
Cb0[3]
Y0[2]
Y0[3]
Cr0[2]
Cr0[3]
Y1[2]
Y1[3]
D8
D9
D10
Cb0[0]
Cb0[1]
Cb0[2]
Cb0[4]
Cb0[5]
Cb0[6]
Cr0[0]
Cr0[1]
Cr0[2]
Cr0[4]
Cr0[5]
Cr0[6]
Y0[4]
Y0[5]
Y0[6]
Cb0[4]
Cb0[5]
Cb0[6]
Y1[4]
Y1[5]
Y1[6]
Cr0[4]
Cr0[5]
Cr0[6]
Cb0[4]
Cb0[5]
Cb0[6]
Y0[4]
Y0[5]
Y0[6]
Cr0[4]
Cr0[5]
Cr0[6]
Y1[4]
Y1[5]
Y1[6]
D11
D12
Cb0[3]
Y0[4]
Cb0[7]
Cb0[8]
Cr0[3]
Y1[4]
Cr0[7]
Cr0[8]
Y0[7]
Y0[8]
Cb0[7]
Cb0[8]
Y1[7]
Y1[8]
Cr0[7]
Cr0[8]
Cb0[7]
Cb0[8]
Y0[7]
Y0[8]
Cr0[7]
Cr0[8]
Y1[7]
Y1[8]
D13
D14
D15
Y0[5]
Y0[6]
Y0[7]
Cb0[9]
Cb0[10]
Cb0[11]
Y1[5]
Y1[6]
Y1[7]
Cr0[9]
Cr0[10]
Cr0[11]
Y0[9]
Y0[10]
Y0[11]
Cb0[9]
Cb0[10]
Cb0[11]
Y1[9]
Y1[10]
Y1[11]
Cr0[9]
Cr0[10]
Cr0[11]
Cb0[9]
Cb0[10]
Cb0[11]
Y0[9]
Y0[10]
Y0[11]
Cr0[9]
Cr0[10]
Cr0[11]
Y1[9]
Y1[10]
Y1[11]
HSYNC
HSYNC
—
HSYNC
—
HSYNC
—
HSYNC
—
HSYNC
—
HSYNC
—
VSYNC
DE
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
VSYNC
DE
—
—
blank
Pixel 0
Pixel 1
Pixel 2
Pixel n - 1
Pixel #0
First
Second
Edge
Edge
Pixel #1
First
Second
Edge
Edge
blank
Pixel n
blank
D[15:12]
val
Y0[7:4]
Cb0[11:8]
Y1[7:4]
Cr0[11:8]
Y2[7:4]
Cb2[11:8]
Yn-1[7:4]
Cbn-1[11:8]
Yn[7:4]
Crn-1[11:8]
val
val
val
val
D[11:8]
val
Cb0[3:0]
Cb0[7:4]
Cr0[3:0]
Cr0[7:4]
Cb2[3:0]
Cb2[7:4]
Cbn-1[3:0]
Cbn-1[7:4]
Crn-1[3:0]
Crn-1[7:4]
val
val
val
val
D[7:4]
val
Y0[3:0]
Y0[11:8]
Y1[3:0]
Y1[11:8]
Y2[3:0]
Y2[11:8]
Yn-1[3:0]
Yn-1[11:8
Yn[3:0]
Yn[11:8
val
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.35. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package)
blank
D[15:4]
val
Pixel 0
Y0[11:0]
{Cb0[11:0]}
Cb0[11:0]
{Y0[11:0]}
Pixel 1
Y1[11:0]
{Cr0[11:0]}
Cr0[11:0]
{Y1[11:0]}
Pixel 2
Y2[11:0]
{Cb2[11:0]}
Cb2[11:0]
{Y2[11:0]}
Pixel n - 1
Pixel n
Yn-1[11:0] Cbn-1[11:0]
{Cbn-1[11:0]} {Yn-1[11:0]}
Yn[11:0] Crn-1[11:0]
{Crn-1[11:0]} {Yn[11:0]}
blank
val
blank
val
val
val
IDCK
DE
HSYNC,
VSYNC
Figure 6.36. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (49-Ball Package)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
66
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
7. Design Recommendations
Power Supplies Decoupling
Designers should include adequate decoupling capacitors and a ferrite for each power supply, and an additional
capacitor at each power ball or pin in the layout. These are shown schematically in Figure 7.1. Place these components
as close as possible to the transmitter device balls or pins, and avoid routing through vias if possible, as shown in
Figure 7.2, which represents a typical power connection on the transmitter. Connections in one group (such as AVCC12)
can share C2, the ferrite, and C3, with each ball or pin having a separate C1 placed as close to the package as possible.
Figure 7.2 shows one of the VFBGA packages; the same information applies to the 72-pin package.
Because of the low noise requirements of AVCC12, particular care must be taken to ensure the noise at the pin is less
than 50 mV.
+1.2 V
L1
VCC Ball
C1
C2
C3
GND
Figure 7.1. Decoupling and Bypass Schematic
VCC
VCC
GND
C1
C2
L1
Ferrite
C3
Via to GND
Figure 7.2. Decoupling and Bypass Capacitor Placement
High-Speed TMDS Signals
Source Termination
Source termination suppresses signal reflection and overshoot, and at the same time allows the transmitter to provide
strong drive to support longer cables. The SiI9022A/SiI9024A transmitter supports internal source termination, which is
disabled by default and can be enabled by programming. Lattice Semiconductor strongly recommends the use of
internal source termination for applications running over 100 MHz.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
67
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
ESD Protection
The transmitter chip is designed to withstand electrostatic discharge during manufacturing handling. In applications
where higher protection levels are required in the finished product, ESD-limiting components should be placed on all of
the device pins connecting to an external interface. Special care should be taken on the TMDS signals to use lowcapacitance ESD devices to minimize signal degradation. In no case should the capacitance value exceed 3 pF.
Transmitter Layout Guidelines
Place the transmitter chip as closely as possible to the output connector that carries the TMDS signals, and place the
ESD diodes as close as possible to the HDMI connector. Route the differential signal lines together and as directly as
possible from transmitter to connector. Lattice Semiconductor TMDS devices are tolerant of skews between
differential pairs, so spiral skew compensation for path length differences is not required. Avoid passing the TMDS lines
through vias unless absolutely necessary when using the HDMI Type-D micro connector. The distance separating the
two traces of the differential pair should be designed for 100- differential impedance. An example of routing for the
49-ball package is shown in Figure 7.3. For additional ball grid array layout guidelines, refer to Designing with BGA
Packages (listed in References section).
ESD
Diodes
TX2+
TX2-
SiI9022A/
9024A
HDMI
Connector
TX1+
TX1TX0+
TX0-
TXC+
TXC-
Figure 7.3. Transmitter to HDMI Connector Routing – Top View
Hot Plug Signal Conditioning
The HDMI interface provides a hot plug signal back to the host side from the display. This signal is generated by routing
a 5 V source, in the host, through the cable to the display and back. The specification defines the minimum HIGH level
for the hot plug as 2.0 V at the connector pin. The HPD signal is 5 V tolerant and can be connected to the HPD signal
directly. However, an external pull down resistor of 10 k is required, as shown in the circuit in Figure 7.5 on page 70,
to guarantee that this CMOS input is not floating.
EMI Considerations
Electromagnetic interference is a function of board layout, shielding, receiver component operating voltage, frequency
of operation, and additional factors. To control emissions, it is important not to place any passive components on the
differential signal lines, except for the essential ESD protection described earlier. The differential signaling used in
HDMI is inherently low in EMI, as long as the routing recommendations noted in the Transmitter Layout Guidelines
section are followed.
The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as
possible, with all ground signals of the chip using a common ground.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
68
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Typical Circuits
Representative circuits for using the transmitter chip are shown in Figure 7.4 through Figure 7.7. For a detailed review
of your intended circuit implementation, contact your Lattice Semiconductor representative.
Power Supply Decoupling
Excessive noise on AVCC12 can cause improper PLL operation as the PLL tries to stay locked to the incoming video
clock. Keep AVCC12 noise below the maximum allowable value VCCN as specified in Table 3.2. If the ripple is higher than
allowed for in the specifications, Lattice Semiconductor recommends using a separate power source to supply the
AVCC12 inputs. The other power planes are relatively insensitive to ripple. Lattice Semiconductor recommends using
low ESR capacitors. The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board.
Place a 0.1 F ceramic capacitor
close to each VCC pin
+1.2 V
Ferrite
AVCC12
(81-ball: C6, C7)
(49-ball: B4)
(72-pin: 60, 66)
F
10 F
0.1 F
0.1 F
AGND
(81-ball: CA3, A8)
(49-ball: B3)
(72-pin: 63)
+1.8 V or
+3.3 V
Ferrite
IOVCC
(81-ball: D5, E5, E8, E9)
(49-ball: E3)
(72-pin: 3, 21, 46)
0.1 F
10 F
0.1 F
0.1 F
0.1 F
IOGND
(81-ball: C5, D4, D6)
(49-ball: D3)
(72-pin: 57)
Provide a minimum of one 0.1 F
decoupling capacitor for each
VCC connection in the 81-ball
and 72-pin package.
+1.2 V
Ferrite
CVCC12
(81-ball: C4, D3, D7, E7, F5, G6)
(49-ball: C4)
(72-pin: 5, 12, 26, 42, 47, 53)
10 F
0.1 F
0.1 F
0.1 F
0.1 F
0.1 F
CGND
(81-ball: D1, D2, G5, H5, J5)
(49-ball: D4)
(72-pin: 43)
Figure 7.4. Power Supply Decoupling
Note: The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
69
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
HDMI Port Connections
The suggested value for REXT_SWING is specified in the Differential Data Signals section on page 32. The Hot Plug Detect
signal (HPD) is 5 V tolerant, so it is connected directly to the HDMI connector with a 10 kΩ pull-down resistor. No levelshifting circuit is needed for HPD.
+5 V
EXT_SWING
Voltage swing
adjust resistor
2.2 k
(typ)
4.3 k or
5.1 k
SiI9022A
SiI9024A
2.2 k
(typ)
HDMI
Connector
DDC SDA
DSDA
DDC SCL
DSCL
HPD
HTPG
3.3 V
10 k
Pullup resistor and diode
required only if IOVCC =
1.8 V.
51 k
CEC_A
CEC
TX2-
TX2-
TX2+
TX2+
RClamp0514M or equivalent
4
1
8
3
6
9
ESD Clamps
TX1-
TX1-
TX1+
TX1+
TX0-
TX0-
TX0+
TX0+
RClamp0514M or equivalent
4
1
8
3
6
9
TXC+
TXC+
TXC-
TXC-
Figure 7.5. HDMI Port Connection Schematic
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
70
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Control Signal Connections
The general bus interconnection between the host processor and the transmitter is shown in Figure 7.6. The INT output
can be connected as an interrupt to the processor, or the processor can poll a register to determine if any of the
enabled interrupts have occurred.
IOVCC
MPEG Chip
Host processor
IOVCC
4.7 k
4.7 k
Stuff only one of two 4.7 kresistors
to set chip I2C address (Required for
81-ball VFBGA and 72-pin QFN)
4.7 k
SiI9022A/9024A
Transmitter
C_SCL
CSCL
C_SDA
CSDA
IOVCC =
1.8 V or 3.3 V
CI2CA
(For 81-ball and 72-pin packages only)
RSVDL
4.7 k
1.8 V
Connect IO_SEL to 1.8 V for
1.8-volt IOVCC. Connect to
ground for 3.3-volt IOVCC.
(Required for 81-ball VFBGA
and 72-pin QFN)
IO_SEL
(For 81-ball and 72-pin packages only)
RESET#
GPIO
C_CEC
CEC_D
(For 81-ball and 72-pin packages only)
INT
GPIO
Figure 7.6. Controller Connections Schematic
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
71
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Digital Video Input Connections
7B
DE
HSYNC
VSYNC
33
IDCK
D0
D1
D2
D3
33
D4
D5
D6
33
D7
D8
D9
D10
(For 49-ball package
only)
D11
33
D12
D13
D14
33
D15
D16
D17
D18
D19
D20
33
D21
D22
33
D23
MCLK
SPDIF
SCK
(For 81-ball and 72-pin
packages only)
WS
33
SD0
SD1
SD2
SD3
33
(For 81-ball and 72-pin
packages only)
Note: Some system designs
may require series resistors
to reduce reflections on the
parallel input bus.
Figure 7.7. Digital Input Schematic
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
72
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
8. Packaging
49-Ball Package Dimensions
These drawings are not to scale.
0.10
0.10
B
Top View
0.15
0.05
C AB
C
Bottom View
0.10 C
0.08 C
Detail B
Detail A
JEDEC Package Code MO-225
Item
A
A1
A2
Description
Thickness
Stand-off
Substrate thickness +
Mold thickness
Min
Typ
Max
—
0.13
—
0.18
0.80
0.23
0.446
0.508
0.560
D
E
D1
Body size
Body size
Footprint
3.90
3.90
—
4.00
4.00
3.00
4.10
4.10
—
E1
b
Footprint
Ball width
—
0.20
3.00
0.25
—
0.30
—
0.50
—
e
Ball pitch
All dimensions are in millimeters.
Figure 8.1. 49-Ball VFBGA Package Diagram (SiI902nAYBT)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
73
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
81-Ball Package Dimensions
36B
These drawings are not to scale.
0.10
J
H
0.10
8
B
Top View
0.15
0.05
C AB
C
9
Bottom View
0.10 C
0.08 C
Detail B
Detail A
JEDEC Package Code MO-225
Item
A
Description
Thickness
A1
Stand-off
Substrate thickness +
Mold thickness
A2
Min
Typ
Max
—
—
0.80
0.13
0.18
0.23
0.446
0.508
0.560
D
Body size
3.90
4.00
4.10
E
D1
E1
Body size
Footprint
Footprint
3.90
—
—
4.00
3.20
3.20
4.10
—
—
0.20
—
0.25
0.40
0.30
—
b
Ball width
e
Ball pitch
All dimensions are in millimeters.
Figure 8.2. 81-Ball VFBGA Package Diagram (SiI902nARBT)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
74
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
72-Pin Package Dimensions
These drawings are not to scale.
0.15 C
A
B
D
D1
0.10 M C A B
D2
72
72
1
1
2
2
3
3
0.10 M C A B
E2
E1 E
A
L
0.15 C
e
Top View
Bottom View
A2
Side View
A1 A3
K
// 0.10 C
A
0.10 M C A B
0.05 M C
0.08 C
b
Seating Plane
R
0.6 max
0.6 max
Detail A
JEDEC Package Code MO-220
Item
Description
Min
Typ
Max
Item
Description
Min
Typ
Max
A
A1
A2
Thickness
Stand-off
Body thickness
0.80
0.00
0.60
0.85
0.02
0.65
0.90
0.05
0.70
D2
E2
b
ePad size
ePad size
Plated lead width
4.55
4.55
0.18
4.70
4.70
0.23
4.85
4.85
0.28
A3
D
Footprint
0.20 REF
10.00 BSC
e
K
Lead pitch
ePad-to-pin clearance
0.20
0.50 BSC
—
—
E
D1
E1
Footprint
Body size
Body size
10.00 BSC
9.75 BSC
9.75 BSC
L
R
Lead foot length
Lead radius
Lead foot angle
0.30
0.09
0°
0.40
—
—
0.50
—
14°
All dimensions are in millimeters.
Figure 8.3. 72-Pin QFN Package Diagram (SiI902nACNU)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
75
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Marking Specification
Marking drawings are not to scale.
Ball A1 location
Logo
902nARBT
LLLLL.LL-L
XXXXXYWW
Silicon Image Part Number
Lot # (= Job#)
Trace code and Date code
Figure 8.4. Marking Diagram (SiI902nARBT)
Ball A1 location
Logo
902nAYBT
LLLLL.LL-L
XXXXXYWW
Silicon Image Part Number
Lot # (= Job#)
Trace code and Date code
Figure 8.5. Marking Diagram (SiI902nAYBT)
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
76
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Pin 1 location
Logo
SiI902nACNU
LLLLLL.LL-L
YYWW
XXXXXXX
Silicon Image Part Number
Lot # (= Job#)
Date code
Trace code
SiInnnnrppp
Product
Designation
Revision
Package Type
Figure 8.6. Marking Diagram (SiI902nACNU)
Ordering Information
Part Numbers
SiI9022ARBT
Package Type
81-ball 4 × 4 mm VFBGA
Pixel Clock Range
25 MHz –165 MHz
Security
—
Temperature Grade
Extended (–20 °C to +85 °C)
SiI9022AYBT
SiI9022ACNU
49-ball 4 × 4 mm VFBGA
72-pin 10 × 10 mm QFN
25 MHz –165 MHz
25 MHz –165 MHz
—
—
Extended (–20 °C to +85 °C)
Extended (–20 °C to +85 °C)
SiI9024ARBT
SiI9024AYBT
SiI9024ACNU
81-ball 4 × 4 mm VFBGA
49-ball 4 × 4 mm VFBGA
72-pin 10 × 10 mm QFN
25 MHz –165 MHz
25 MHz –165 MHz
25 MHz –165 MHz
HDCP
HDCP
HDCP
Extended (–20 °C to +85 °C)
Extended (–20 °C to +85 °C)
Extended (–20 °C to +85 °C)
The universal package can be used in both lead-free and ordinary process lines.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
77
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
References
Standards Documents
This is a list of the standards abbreviations appearing in this document.
Abbreviation
HDMI
HCTS
Standards publication, organization, and date
High Definition Multimedia Interface, Revision 1.4a, HDMI Consortium; March 2010
HDMI Compliance Test Specification, Revision 1.4a, HDMI Consortium; March 2010
HDCP
E-EDID
High-bandwidth Digital Content Protection, Revision 1.3, Digital Content Protection, LLC; December 2006
Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000
E-EDID IG
CEA-861-E
EDDC
VESA EDID Implementation Guide, Version 1.0, VESA; June 2001
A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA; March 2008
Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004
Standards Groups
For information on the specifications that apply to this document, contact the responsible standards groups appearing
on this list.
Standards Group
ANSI/EIA/CEA
VESA
Web URL
http://global.ihs.com
http://www.vesa.org
DVI
HDCP
http://www.ddwg.org
http://www.digital-cp.com
HDMI
http://www.hdmi.org
Lattice Semiconductor Documents
This is a list of the related documents that are available from your Lattice Semiconductor sales representative.
The Programmer’s Reference requires an NDA with Lattice Semiconductor.
Document
SiI-PR-1032
Title
Transmitter Programming Interface (TPI) Programmer’s Reference
SiI-PR-0020
SiI-PR-0041
SiI-AN-1016
SiI9020 HDMI PanelLink Transmitter Programmer’s Reference
CEC Programming Interface (CPI) Programmer’s Reference
Designing with BGA Packages
SiI-AN-1029
SiI-UG-1043
Layout Guidelines and Results for Using HDMI Type-D Micro-Connector with SiI902nA Devices
CP9022AR/CP9024AR/CP9022AY/CP9024AY HDMI Transmitter Starter Kit User Guide
Technical Support
For assistance, submit a technical support case at www.latticesemi.com/techsupport.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
78
SiI-DS-1076-E.01
SiI9022A/SiI9024A HDMI Transmitter
Data Sheet
Revision History
Revision E.01, August 2016
Formatted to latest template. No content has been changed.
Revision E, October 2015
Updated description of CSCL item in the Configuration and Control Signals section. Updated copyright information and
legal disclaimers.
Revision D.01, January 2011
Updated Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V, Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V,
Table 3.10. I2S Input Port Timings; corrected 1080p 24 Hz 3D lines.
Revision C.01, September 2010
Removed Patent information from DB, rolled the revision for DS.
Revision C, July 2010
Added information about L + D, and Top-and-Bottom modes; added Limitations section.
Revision B.01, April 2010
Update with new features; minor corrections and changes.
Revision B, December 2009
Updated to add 81-ball and 72-pin information; added Pixel Number to Data Mapping tables.
Revision A.01, November 2009
Update specification tables; minor corrections throughout.
Revision A, November 2009
First production release.
© 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1076-E.01
79
7th Floor, 111 SW 5th Avenue
Portland, OR 97204, USA
T 503.268.8000
www.latticesemi.com