0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SII9022ACNU

SII9022ACNU

  • 厂商:

    LATTICE(莱迪思半导体)

  • 封装:

    QFN-72_10X10MM-EP

  • 描述:

    SII9022ACNU

  • 数据手册
  • 价格&库存
SII9022ACNU 数据手册
SiI9022A/SiI9024A HDMI Transmitter Data Sheet SiI-DS-1076-E.01 August 2016 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Contents 1. 2. 3. 4. 5. General Description ......................................................................................................................................................7 Video Input ...........................................................................................................................................................7 HDMI Output ........................................................................................................................................................7 Control Capability .................................................................................................................................................7 Digital Audio Interface ..........................................................................................................................................7 Power Management .............................................................................................................................................7 Packaging ..............................................................................................................................................................7 Comparison of the SiI9022A/SiI9024A Device with Other HDMI Transmitters ....................................................8 Functional Description ..................................................................................................................................................9 Video Data Input and Conversion .......................................................................................................................10 Input Clock Multiplier/Divider ....................................................................................................................10 Video Data Capture .....................................................................................................................................10 Embedded Sync Decoding ...........................................................................................................................10 Data Enable Generator ...............................................................................................................................10 Color Space Converter ................................................................................................................................10 4:2:2 to 4:4:4 Upsampler ............................................................................................................................11 4:4:4 to 4:2:2 Downsampler .......................................................................................................................11 Dither 10 to 8 ..............................................................................................................................................11 Audio Data Capture Logic ...................................................................................................................................11 I2C Slave Interface ...............................................................................................................................................11 Control and Configuration ..................................................................................................................................11 DDC Master I2C Interface ....................................................................................................................................11 Interrupt Logic ....................................................................................................................................................11 Hot Plug Detection Logic .....................................................................................................................................12 HDCP Encryption Engine/XOR Mask (SiI9024A Device Only) ..............................................................................12 HDCP Key ROM (SiI9024A Device Only) ..............................................................................................................12 TMDS Digital Core ...........................................................................................................................................12 CEC Interface ...................................................................................................................................................12 Electrical Specifications ..............................................................................................................................................13 Absolute Maximum Conditions ..........................................................................................................................13 Normal Operating Conditions .............................................................................................................................13 IOVCC Supply Voltage Requirements ..........................................................................................................13 DC Specifications .................................................................................................................................................14 Digital I/O Specifications .............................................................................................................................14 DC Power Supply Specifications ..................................................................................................................16 AC Specifications .................................................................................................................................................17 TMDS AC Timing Specifications...................................................................................................................17 Audio AC Timing Specifications ...................................................................................................................18 Video Input AC Timing Specifications .........................................................................................................18 Control Signal Timing Specifications ...........................................................................................................20 Timing Diagrams .........................................................................................................................................................21 Input Timing Diagrams ........................................................................................................................................21 Audio Timing Diagrams .......................................................................................................................................23 Power Supply Sequencing ...................................................................................................................................24 Output Timing Diagrams .............................................................................................................................24 Minimum Horizontal Blanking Specification .......................................................................................................25 Ball and Pin Diagrams and Descriptions .....................................................................................................................26 Ball and Pin Diagrams .........................................................................................................................................26 81-Ball VFBGA Package ...............................................................................................................................26 49-Ball VFBGA Package ...............................................................................................................................27 72-Pin QFN Package ....................................................................................................................................28 Ball and Pin Descriptions.....................................................................................................................................29 © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 2 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Video Input ................................................................................................................................................. 29 Audio Input ................................................................................................................................................. 30 CEC .............................................................................................................................................................. 30 Configuration and Control .......................................................................................................................... 31 25BDDC Bus ...................................................................................................................................................... 32 Differential Data ......................................................................................................................................... 32 Power and Ground ...................................................................................................................................... 33 6. Feature Information ................................................................................................................................................... 34 RGB to YCbCr Color Space Converter.................................................................................................................. 34 YCbCr to RGB Color Space Converter.................................................................................................................. 34 3D Video Formats ............................................................................................................................................... 34 Limitations .................................................................................................................................................. 35 S/PDIF Audio Input.............................................................................................................................................. 35 I2S Audio Inputs................................................................................................................................................... 35 Supported Audio Sampling Rates ....................................................................................................................... 36 I2C Register Information ..................................................................................................................................... 37 DDC Support ....................................................................................................................................................... 37 DDC Stall Support ........................................................................................................................................ 38 Power Saving Modes and Wakeup Feature ........................................................................................................ 38 Wakeup Support in D3 Cold and D3 Hot Modes ......................................................................................... 38 Common Video Input Formats........................................................................................................................ 39 Data Bus Mappings ......................................................................................................................................... 40 Data Mappings for 81-ball and 72-pin Package .......................................................................................... 42 Data Mappings for 49-Ball Package ............................................................................................................ 58 7. Design Recommendations .......................................................................................................................................... 67 Power Supplies Decoupling ................................................................................................................................ 67 High-Speed TMDS Signals ................................................................................................................................... 67 Source Termination .................................................................................................................................... 67 ESD Protection ............................................................................................................................................ 68 Transmitter Layout Guidelines.................................................................................................................... 68 Hot Plug Signal Conditioning............................................................................................................................... 68 EMI Considerations ............................................................................................................................................. 68 Typical Circuits .................................................................................................................................................... 69 Power Supply Decoupling ........................................................................................................................... 69 HDMI Port Connections .............................................................................................................................. 70 Control Signal Connections ......................................................................................................................... 71 7BDigital Video Input Connections ................................................................................................................. 72 8. Packaging .................................................................................................................................................................... 73 49-Ball Package Dimensions ............................................................................................................................... 73 36B81-Ball Package Dimensions ............................................................................................................................... 74 72-Pin Package Dimensions ................................................................................................................................ 75 Marking Specification ......................................................................................................................................... 76 Ordering Information .......................................................................................................................................... 77 References .......................................................................................................................................................................... 78 Standards Documents..................................................................................................................................................... 78 Standards Groups ........................................................................................................................................................... 78 Lattice Semiconductor Documents ................................................................................................................................. 78 Technical Support ........................................................................................................................................................... 78 Revision History .................................................................................................................................................................. 79 © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 3 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Figures Figure 1.1. Typical Application (SiI9022A HDMI Transmitter Shown)...................................................................................7 Figure 2.1. Functional Block Diagram ...................................................................................................................................9 Figure 2.2. Transmitter Video Data Processing Path ..........................................................................................................10 Figure 4.1. IDCK Clock Cycle/High/Low Times ....................................................................................................................21 Figure 4.2. Control and Data Single-Edge Setup/Hold Times to IDCK .................................................................................21 Figure 4.3. Dual-Edge Setup/Hold Times to IDCK ...............................................................................................................21 Figure 4.4. VSYNC and HSYNC Delay Times from/to DE .....................................................................................................22 Figure 4.5. DE High/Low Times ...........................................................................................................................................22 Figure 4.6. Conditions for Use of RESET# ............................................................................................................................22 Figure 4.7. RESET# Minimum Timings.................................................................................................................................22 Figure 4.8. I2S Input Timings ...............................................................................................................................................23 Figure 4.9. S/PDIF Input Timings .........................................................................................................................................23 Figure 4.10. MCLK Timings ..................................................................................................................................................23 Figure 4.11. Power Supply Sequencing ...............................................................................................................................24 Figure 4.12. Differential Transition Times ..........................................................................................................................24 Figure 4.13. I2C Data Valid Delay (Driving Read Cycle Data) ...............................................................................................24 Figure 4.14. INT Output Signal Response to Interrupt Condition .......................................................................................24 Figure 5.1. 81-Ball Package Ball Diagram (Top View)..........................................................................................................26 Figure 5.2. 49-Ball Package Ball Diagram (Top View)..........................................................................................................27 Figure 5.3. 72-Pin Package Pin Diagram (Top View) ...........................................................................................................28 Figure 6.1. Simplified Host I2C Interface using Master DDC Port ........................................................................................37 Figure 6.2. Master I2C Supported Transactions ..................................................................................................................38 Figure 6.3. Parallel Input Video to HDMI Output Video Permutations ...............................................................................41 Figure 6.4. RGB/YCbCr 4:4:4 Separate Sync Timing (81-Ball and 72-Pin Package) ..............................................................42 Figure 6.5. 16-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .................................................................43 Figure 6.6. 20-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .................................................................44 Figure 6.7. 20-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) .................................................44 Figure 6.8. 24-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .................................................................45 Figure 6.9. 24-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) .................................................46 Figure 6.10. 16-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................47 Figure 6.11. 20-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................47 Figure 6.12. 20-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)............................................47 Figure 6.13. 24-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) ............................................................48 Figure 6.14. 24-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package)............................................49 Figure 6.15. 8-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .........................................................49 Figure 6.16. 10-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .......................................................50 Figure 6.17. 12-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) .......................................................50 Figure 6.18. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)......................................................51 Figure 6.19. 10-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)....................................................51 Figure 6.20. 12-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package)....................................................52 Figure 6.21. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Timing (81-Ball and 72-Pin Package)...........................................53 Figure 6.22. 12-Bit RGB 4:4:4 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ...........................................54 Figure 6.23. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-b all and 72-p in Package) ..............................................55 Figure 6.24. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ..............................................56 Figure 6.25. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) ..............................................57 Figure 6.26. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (81-Ball and 72-Pin Package)..............................57 Figure 6.27. 16-bit YC 4:2:2 Separate Sync Timing (49-Ball Package) .................................................................................58 Figure 6.28. 16-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) ..............................................................................59 Figure 6.29. 8-Bit YC Mux 4:2:2 Separate Sync Timing (49-Ball Package) ...........................................................................60 Figure 6.30. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (49-Ball Package) ........................................................................61 Figure 6.31. 12-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) ..............................................................................62 Figure 6.32. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Timing (49-Ball Package) ...................................................................63 © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 4 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Figure 6.33. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) .................................................................. 64 Figure 6.34. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) ................................................................ 65 Figure 6.35. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) ................................................................ 66 Figure 6.36. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (49-Ball Package) ................................................ 66 Figure 7.1. Decoupling and Bypass Schematic .................................................................................................................... 67 Figure 7.2. Decoupling and Bypass Capacitor Placement ................................................................................................... 67 Figure 7.3. Transmitter to HDMI Connector Routing – Top View ....................................................................................... 68 Figure 7.4. Power Supply Decoupling ................................................................................................................................. 69 Figure 7.5. HDMI Port Connection Schematic .................................................................................................................... 70 Figure 7.6. Controller Connections Schematic ................................................................................................................... 71 Figure 7.7. Digital Input Schematic ..................................................................................................................................... 72 Figure 8.1. 49-Ball VFBGA Package Diagram (SiI902nAYBT) ............................................................................................... 73 Figure 8.2. 81-Ball VFBGA Package Diagram (SiI902nARBT) ............................................................................................... 74 Figure 8.3. 72-Pin QFN Package Diagram (SiI902nACNU) ................................................................................................... 75 Figure 8.4. Marking Diagram (SiI902nARBT) ....................................................................................................................... 76 Figure 8.5. Marking Diagram (SiI902nAYBT) ....................................................................................................................... 76 Figure 8.6. Marking Diagram (SiI902nACNU) ...................................................................................................................... 77 © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 5 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Tables Table 1.1. Summary of Features ...........................................................................................................................................8 Table 3.1. Absolute Maximum Conditions ..........................................................................................................................13 Table 3.2. Normal Operating Conditions ............................................................................................................................13 Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V .......................................................................................................14 Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V .......................................................................................................15 Table 3.5. TMDS I/O Specifications .....................................................................................................................................16 Table 3.6. Low Power Standby Mode Power Consumption ...............................................................................................16 Table 3.7. Operating Mode Power Consumption ...............................................................................................................16 Table 3.8. Power Operating Modes ....................................................................................................................................17 Table 3.9. TMDS AC Specifications......................................................................................................................................17 Table 3.10. I2S Input Port Timings .......................................................................................................................................18 Table 3.11. S/PDIF Input Port Timings ................................................................................................................................18 Table 3.12. Video Input AC Specifications: 1.8 V IOVCC .....................................................................................................18 Table 3.13. Video Input AC Specifications: 3.3 V IOVCC .....................................................................................................19 Table 3.14. Control Signal Timing Specifications ................................................................................................................20 Table 4.1. Minimum Horizontal Blanking Calculations .......................................................................................................25 Table 6.1. RGB to YCbCr Conversion Formulas ...................................................................................................................34 Table 6.2. YCbCr-to-RGB Conversion Formulas ..................................................................................................................34 Table 6.3. Supported 3D Video Formats .............................................................................................................................35 Table 6.4. Supported MCLK Frequencies ............................................................................................................................36 Table 6.5. S/PDIF Audio Formats Supported for each Video Format .................................................................................36 Table 6.6. I2S Audio Formats Supported for each Video Format ........................................................................................36 Table 6.7. Control of I2C Address with CI2CA Signal ...........................................................................................................37 Table 6.8. D3 hot and D3 Cold Feature ...............................................................................................................................38 Table 6.9. Video Input Formats...........................................................................................................................................39 Table 6.10. Input Video Formats ........................................................................................................................................40 Table 6.11. RGB/YCbCr 4:4:4 Separate Sync Data Mapping (81-Ball and 72-Pin Package).................................................42 Table 6.12. 16-Bit and 20-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ..................................43 Table 6.13. 24-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ....................................................45 Table 6.14. 16-Bit and 20-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) ...............................46 Table 6.15. 24-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) .................................................48 Table 6.16. 8-, 10-, and 12-Bit YC Mux 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) ............................49 Table 6.17. 8-, 10-, and 12-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package).............................51 Table 6.18. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ................................53 Table 6.19. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) .....................54 Table 6.20. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) .....................................55 Table 6.21. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ...................................56 Table 6.22. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) ...................................57 Table 6.23. 16-Bit YC 4:2:2 Separate Sync Data Mapping (49-Ball Package) ......................................................................58 Table 6.24. 16-Bit YC 4:2:2 Embedded Sync Data Mapping (49-Ball Package) ...................................................................59 Table 6.25. 8-Bit YC Mux 4:2:2 Separate Sync Data Mapping (49-Ball Package) ................................................................60 Table 6.26. 8-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (49-Ball Package) .............................................................61 Table 6.27. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (49-Ball Package) ..................................................62 Table 6.28. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (49-Ball Package) .......................................63 Table 6.29. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) .......................................................64 Table 6.30. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) .....................................................65 Table 6.31. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) .....................................................66 © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 6 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 1. General Description Control Capability ® The Lattice Semiconductor SiI9022A/SiI9024A HDMI transmitter supports the High Definition Multimedia Interface (HDMI) Specification on a wide range of mobile products. High definition camcorders, digital still cameras, and personal mobile devices connect directly to a large installed base of HDMI TVs and DVI PC monitors by using the flexible audio and video interfaces provided by this ultra-low-power solution. S/PDIF or I2S inputs enable a pure digital audio connection to virtually any system audio processor or codec. This transmitter is the next generation of its family and is an enhanced replacement for the SiI9022/SiI9024 device, with lower power and enhanced features. The SiI9024A transmitter is pre-programmed with HDCP keys and has completely self-sequencing HDCP detection and authentication, including SHA-1 for repeaters. The device supports High-bandwidth Digital Content Protection (HDCP) for devices that require secure content delivery. Video Input     xvYCC metadata support BTA-T1004 video input format Integrated color space converter allows direct connection to all major MPEG decoders, including those that provide only an ITU-R.656 output Internal DE generator supports non-embedded sync formats     Digital Audio Interface        HDMI, HDCP, and DVI compatible TMDS™ core runs at 165 MHz Video resolutions up to 1080p and UXGA (72-pin QFN package supports 165 MHz dual-edge mode) 3D-capable at 720p/60, 1080i/60, and 1080p/24 frame-pack, side-by-side, L + D, and Top-and-Bottom modes HDMI Type A, Type-C, and micro-D connector support Four I2S inputs for Dolby Digital, DTS, or MPEG2 audio with programmable channel mapping (49-ball package supports one I2S input) DVD-Audio input (2 or up to 8 channels) MCLK is not required for I2S and S/PDIF S/PDIF input supports 2-channel PCM or compressed Dolby Digital and DTS digital 2:1 and 4:1 down-sampling to handle 96 kHz and 192 kHz audio streams Power Management   Flexible power management with hot-plug wakeup Ultra-low power requirement: less than 90 mW active, 150 W standby Packaging HDMI Output    Consumer Electronics Control (CEC) interface incorporates an HDMI-compliant CEC I/O with hardware protocol and arbitration logic, and requires no external calibration Monitor detection is supported through both Hot Plug and Receiver Sense circuits Single slave I2C from host, passing through to master I2C interface for DDC connection, simplifies board layout and lowers cost Defaults to SiI9020 transmitter register-compatible mode for operation with existing legacy software     81-ball VFBGA (4.0 × 4.0 mm) package 72-pin QFN (10 × 10 mm) package 49-ball VFBGA (4.0 × 4.0 mm) package Standard part covers extended (–20 °C to +85 °C) temperature range Figure 1.1. Typical Application (SiI9022A HDMI Transmitter Shown) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 7 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Comparison of the SiI9022A/SiI9024A Device with Other HDMI Transmitters Table 1.1 summarizes the differences among the previous Lattice Semiconductor HDMI transmitters and the SiI9022A/SiI9024A HDMI transmitters. Table 1.1. Summary of Features HDMI Transmitter SiI9030 SiI9020 SiI9022 SiI9022-6 SiI9024 SiI9024-6 70/30 70/30 70/30 70/30 SiI9022A SiI9024A SiI9022A VFBGA SiI9024A QFN Video Input Clock duty cycle 60/40 60/40 Max frequency 150 MHz 84 MHz 3.3 V 3.3 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 96 kHz 96 kHz 192 kHz 192 kHz 192 kHz 192 kHz 192 kHz 192 kHz 192 kHz 192 kHz I2S MCLK required? Yes Yes Optional Optional Optional Optional Optional Optional Optional Optional S/PDIF MCLK required? Yes Yes Optional Optional Optional Optional Optional Optional Optional Optional 5V 5V 5V 5V 5V 5V 5V 5V 5V 5V Encryption engine Yes No No No Yes Yes No Yes No Yes Auto authentication No No No No Yes Yes No Yes No Yes 1.8 V 1.8 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 1.2 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8 V 3.3 V or 1.8V 3.3 V or 1.8 V 3.3 V or 1.8V4 3.3 V or 1.8 V4 84-ball TFBGA 84-ball TFBGA or 81-ball VFBGA 84-ball TFBGA 72-pin QFN 72-pin QFN Input signal level2 70/30 70/30 70/30 70/30 82.5 MHz 165 MHz 82.5 MHz 165 MHz 165 MHz 165 MHz 165 MHz3 165 MHz3 Audio Input Max S/PDIF frequency DDC I2C Bus Voltage Tolerance1 HDCP Other Core power supply I/O power supply2 3.3 V 3.3 V 3.3 V or 1.8 V Package 80-pin TQFP 84-ball TFBGA 84-ball TFBGA or 81-ball VFBGA 81-ball 81-ball VFBGA or VFBGA or 49-ball 49-ball VFBGA VFBGA Notes: 1. The DDC pads of the SiI9022A/SiI9024A device are 5 V compliant with or without IOVCC power supply. For other devices listed above, the DDC pads are 5 V tolerant only when chip IOVCC is applied 2. The SiI9022A/SiI9024A 81-ball and 72-pin package supports both 1.8 V and 3.3 V threshold-compliant operation. The 49-ball package only supports 1.8 V compliant I/O. Both devices have 3.3 V tolerant I/O when IOVCC is 1.8 V. 3. Supports up to 165 MHz dual-edge and single-edge modes. 4. For dual-edge mode above 82.5 MHz, only 3.3 V ± 10% can be used for IOVCC. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 8 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 2. Functional Description The SiI9022A/SiI9024A HDMI transmitter provides a complete solution for transmitting HDMI-compliant digital audio and video. Specialized audio and video processing is available within the transmitter to easily and cost-effectively add HDMI capability to the consumer electronics devices. Figure 2.1 shows the functional block diagram of the chip. In the 49-ball package, DE and S/PDIF share the same pin. CSCL CSDA DDC Master I2C Interface I2C Slave Interface Control and Configuration Logic Block CI2CA (81-ball and 72-pin only) RESET# Interrupt Logic Hot Plug Detection Logic DSDA DSCL INT HPD SiI9024A Transmitter only HDCP Keys HDCP Encryption Engine/ XOR Mask IDCK 81-ball and 72-pin: D[23:0] 49-ball: D[15:0] HSYNC VSYNC DE Video Data Input and Conversion EXT_SWING TMDS Digital Core TXC± TX0± TX1± TX2± control signals (81-ball and 72-pin only) DE/SPDIF (49-ball only) SPDIF (81-ball and 72-pin only) MCLK SCK WS 81-ball and 72-pin: SD[3:0] 49-ball: SD0 control signals Audio Data Capture Logic Block audio data CEC Interface CEC Figure 2.1. Functional Block Diagram © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 9 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Video Data Input and Conversion Figure 2.2 shows the video data processing stages through the transmitter. Each of the processing blocks can be bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required, except in embedded sync modes. The DE input signal is optional, because it can be created with the DE generator using the HSYNC and VSYNC signals. IDCK Input Clock Multiplier/ Divider Complete set of signals required for TMDS encoding. Clock Data Embedded Sync Decoding D[23:0] / D[15:0]* Video Data Capture DE 4:2:2 to 4:4:4 Upsampler HS,VS DE bypass 422 HS,VS Data Enable Generator HSYNC VSYNC DE external DE DE can be explicit input, decoded from embedded syncs, or generated from Hsync and Vsync edges. 4:4:4 to 4:2:2 Downsampler YCbCr to RGB Color Space Converter RGB to YCbCr Color Space Converter Dither 10 to 8 bypass 444 bypass CSC bypass CSC bypass dither * For 49-ball VFBGA only To HDCP or TMDS Figure 2.2. Transmitter Video Data Processing Path Input Clock Multiplier/Divider The input pixel clock can be multiplied by 2 or 4, or divided by 2 (multiplied by 0.5). Video input formats which use a 2x clock (such as YC Mux mode) can then be transmitted across the HDMI link with a 1x clock. Similarly, 1x-to-2x, 1x-to-4x, and 2x-to-4x conversions are possible. Video Data Capture The video data capture block receives uncompressed digital video through an interface ranging from 8 to 16 bits in width for the 49-ball package and from 8 to 24 bits in width for the 81-ball and 72-pin package. These interfaces have two or three 8-bit data channels, which can be configured for the video formats shown in the RGB to YCbCr Color Space Converter section on page 34. It provides a direct connection to major MPEG decoders. Registers set the bus width (8/10/12/16/20/24-bit), format, and rising/falling edge latching according to the video format sent to the transmitter. This information is passed over the HDMI link in the CEA-861D Auxiliary Video Information (AVI) InfoFrame packets. Embedded Sync Decoding The transmitter can create DE, HSYNC, and VSYNC signals using the start of active video (SAV) and end of active video (EAV) codes within the ITU-R BT.656-format video stream. Data Enable Generator The transmitter includes logic to construct a Data Enable (DE) signal from the incoming HSYNC, VSYNC, and IDCK. This signal is used to correct timing from sync extraction to conform to CEA-861D timing specifications. By programming registers, the DE signal can define the size of the active display region. This feature is particularly useful when the transmitter connects to MPEG decoders that do not provide a specific DE output signal. Color Space Converter Two color space converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video formats supplied by AV processors and to provide full DVI 1.0 backward compatibility. The CSC can be adjusted to perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 10 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet registers. See the RGB to YCbCr Color Space Converter and YCbCr to RGB Color Space Converter sections starting on page 34 for more information. 4:2:2 to 4:4:4 Upsampler Chrominance upsampling and downsampling increase or decrease the number of chrominance samples in each line of video. Upsampling doubles the number of chrominance samples in each line, converting 4:2:2 sampled video to 4:4:4 sampled video. 4:4:4 to 4:2:2 Downsampler Downsampling reduces the number of chrominance samples in each line by half, converting 4:4:4 sampled video to 4:2:2 video. Dither 10 to 8 The dither block takes the internally processed data and reduces it down to 8 bits for output. Audio Data Capture Logic The SiI9022A/SiI9024A device in the 81-ball and 72-pin packages have individual S/PDIF and I2S (SD[3:0]) inputs for accepting digital audio input. The Feature Information section on page 34 provides more information about audio formats and available sampling frequencies. Due to the reduced lead count, the SiI9022A/SiI9024A transmitter in the 49-ball package has certain restrictions on the audio because ball G6 is shared by both the S/PDIF and DE inputs. When the device is configured to use S/PDIF, the video format must use either the DE generator mode or one of the YC 4:2:2 embedded sync formats. I2C Slave Interface The controller I2C interface on the transmitter (signals CSCL and CSDA) is a slave interface with an operating frequency from 40 kHz to 400 kHz and with an input tolerance of up to 4.0 V when all chip operating voltages are present. The host uses this interface to configure the transmitter by reading from and writing to appropriate registers. Control and Configuration The register/configuration logic block incorporates all the registers required for configuring and managing the transmitter. A separate logic block handles the configuration and operation of the CEC subsystem. DDC Master I2C Interface The transmitter has a master I2C port for direct connection to the HDMI cable. DDC read and write operations are executed by reading and writing registers in the transmitter. This feature simplifies the system design and helps to lower its cost. See the DDC Support section on page 37 for more information. Interrupt Logic The INT signal interrupts the host processor when certain conditions arise inside the transmitter. The INT output is programmable to be either active HIGH or active LOW; see the Configuration and Control Signals section. Conditions which create an interrupt include:  Monitor detect (either from the HPD input level, or from the Receiver Sense feature)  VSYNC (useful for synchronizing a host processor to the vertical timing interval)  HDCP event  CEC event  Audio interrupt. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 11 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Hot Plug Detection Logic The Hot Plug Detection Logic block determines if a receiver is connected to the SiI9022A/SiI9024A transmitter. When HIGH, the HPD signal indicates to the transmitter that the EDID of the connected receiver is readable. A HIGH voltage is at least 2.0 V, and a LOW voltage is less than 0.8 V. HDCP Encryption Engine/XOR Mask (SiI9024A Device Only) The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key Selector Value (KSV) stored in the on-board ROM to calculate a number that is then applied to an XOR mask. This process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle. HDCP Key ROM (SiI9024A Device Only) The SiI9024A transmitter comes pre-programmed with a set of production HDCP keys stored in an internal ROM. System manufacturers do not need to purchase key sets from the Digital Content Protection LLC. Lattice Semiconductor handles all purchasing, programming, and security for the HDCP keys. The pre-programmed HDCP keys provide the highest level of security because there is no way to read the keys once the devices are programmed. Customers must sign the HDCP license agreement (www.digital-cp.com) or be under a specific NDA with Lattice Semiconductor before receiving samples of the transmitter. TMDS Digital Core The TMDS Digital Core performs 8-bit to 10-bit TMDS encoding on the audio, video, and auxiliary data received from the Dither 10 to 8 block. This data is sent through three TMDS differential data lines along with a TMDS differential clock. A resistor connected to the EXT_SWING signal controls the TMDS swing amplitude. CEC Interface The Consumer Electronics Control (CEC) Interface block provides CEC- compliant signals between CEC devices and a CEC master. A CEC controller using the Lattice Semiconductor CEC Programming Interface (CPI) is included on the chip. This controller has a high-level register interface accessible through the I2C interface and is used to send and receive CEC commands. This controller makes CEC implementation very straightforward and removes the burden of managing bit transitions on the CEC bus from the host CPU. The SiI9022A/SiI9024A CEC logic is self-calibrating and does not require a calibration procedure as the previous generation devices did. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 12 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 3. Electrical Specifications Absolute Maximum Conditions Table 3.1. Absolute Maximum Conditions Symbol Parameter Min Typ Max Units Note IOVCC I/O supply voltage –0.3 — 4.0 V 1, 2, 3 AVCC12 TMDS analog supply voltage –0.3 — 1.5 V 1, 2 CVCC12 Digital core supply voltage –0.3 — 1.5 V 1, 2, 3 VI Input voltage –0.3 — 4 V 1, 2 VO Output voltage –0.3 — 4 V 1, 2 VI5V Input voltage, 5 volt tolerant I/O –0.3 — 5.5 V 1, 2, 4 VO5V Output voltage, 5 volt tolerant I/O –0.3 — 5.5 V 1, 2, 4 TJ Junction temperature — — 125 C — TSTG Storage temperature –65 — 150 C — 431H Notes: 1. Permanent device damage can occur if absolute maximum conditions are exceeded. 2. Functional operation should be restricted to the conditions described under Normal Operating Conditions. 3. Voltage undershoot or overshoot cannot exceed absolute maximum conditions. 4. HPD (input), DSCL (output), DSDA (input/output). Normal Operating Conditions Table 3.2. Normal Operating Conditions Symbol Parameter Min Typ Max Units Note I/O supply voltage: 1.8 V host 1.62 1.8 1.98 V 2 I/O supply voltage: 3.3 V host 3.0 3.3 3.6 V 2 AVCC12 TMDS analog supply voltage 1.08 1.2 1.32 V 1 CVCC12 Digital core supply voltage 1.08 1.2 1.32 V 1 VCCN Allowable noise on AVCC — — 50 mVP-P — TA Ambient temperature (with power applied) –20 25 85 C — — — 75.3 C/W 3, 6 — — 86.5 C/W 4, 6 — — 28.5 C/W 5, 6 — — 22.6 C/W 3, 6 — — 22.7 C/W 4, 6 — — 13.1 C/W 5, 6 IOVCC Θja Ambient thermal resistance (Theta JA) Θjc Ambient thermal resistance (Theta JC) Notes: 1. CVCC12 and AVCC12 can be derived from the same power source. 2. The 81-ball and 72-pin package supports 3.3 V or 1.8 V; the 49-ball package supports 1.8 V only. 3. 81-ball package 4. 49-ball package 5. 72-pin package 6. Values for Θja and Θjc are provided for a 4-layer PCB, Airflow at 0 m/s. See page 69 for schematics showing decoupling and power supply regulation. IOVCC Supply Voltage Requirements The 72-pin or 81-ball package SiI9022A/SiI9024A transmitter IOVCC supply can operate at either 3.3 V or 1.8 V, depending on the input level to the IO_SEL pin provided by the host. When IOVCC = 1.8 V, the I/O is 3.3 V tolerant. However, to ensure the input/output thresholds are within specifications, the IOVCC on the SiI9022A/SiI9024A transmitter should be the same as the © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 13 SiI9022A/SiI9024A HDMI Transmitter Data Sheet host IOVCC, and IO_SEL should be set to the correct value, as described for the signal in the Configuration and Control Signals section. The 49-ball package is hardwired to be used with IOVCC = 1.8 V only. DC Specifications Digital I/O Specifications Under normal operating conditions unless otherwise specified. Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V In the 81-ball and 72-pin package, IO_SEL is tied to 1.8 V. Symbol Parameter VIH Signal Name3 CEC_D CI2CA IO_SEL IDCK HS VS DE D[23:0] MCLK SCK SD[3:0] WS SPDIF Conditions Min Typ Max — 1.2 — — V — — — 0.60 V — — 0.68 V 1.25 — — V — — 0.45 V Schmitt HPD — Schmitt RESET# — Schmitt CSCL CSDA — Schmitt DSCL DSDA — Schmitt CEC_A — LVTTL INT — Open Drain — INT — Signal Type HIGH-level input voltage VIL LOW-level input voltage VTH- HIGH to LOW threshold VTH+ LOW to HIGH threshold VTH- HIGH to LOW threshold LVTTL Schmitt Schmitt VTH+ LOW to HIGH threshold VTH- HIGH to LOW threshold VTH+ LOW to HIGH threshold VTH- HIGH to LOW threshold VTH+ LOW to HIGH threshold VTHVTH+ VTH- HIGH to LOW threshold LOW to HIGH threshold HIGH to LOW threshold VTH+ VTH- LOW to HIGH threshold HIGH to LOW threshold VTH+ VOH VOL LOW to HIGH threshold HIGH-level output voltage LOW-level output voltage VOLOD VCINL LOW-level output voltage Input clamp voltage VCIPL IIL Input clamp voltage Input leakage current — — IOL Output drive current Open Drain IOL Output drive current Open Drain IOL Output drive current IOL IOL IOH Output drive current Output drive current Output drive current Units Notes — — — — — 1.20 — — V — — 0.65 V 1.9 — — V — — — 0.50 V 1.2 — — V — 1.32 — — — — 0.50 — 1.5 V V V 3.0 — — — — 0.51 V V 1.15 1.4 — — — — — — 0.3 V V V — ICL = –18 mA — — — — 0.3 GND – 0.8 V V 4 2, 5 — — DSCL DSDA CSCL CSDA ICL = 18 mA High impedance — –10 — — VCC + 0.8 10 V µA 2, 5 2, 9 VOUT = 0.4 V 3 — — mA 6, 8 VOUT = 0.4 V 4 — — mA 6, 8 Open Drain CEC_A VOUT = 0.4 V 3.5 — — mA Open Drain LVTTL LVTTL CEC_D INT INT VOUT = 0.4 V VOUT = 0.4 V VOUT = 1.4 V 2.0 4 4 — — — — — — mA mA mA — — — — 4 6 — Note: See notes under Table 3.4. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 14 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V In the 81-ball and 72-pin package, IO_SEL is connected to ground. Symbol Parameter VIH HIGH-level input voltage VIL LOW-level input voltage VTH- HIGH to LOW threshold Signal Name3 CEC_D CI2CA IO_SEL IDCK HS VS DE D[23:0] MCLK SCK SD[3:0] WS SPDIF Conditions Schmitt HPD — Schmitt RESET# — Schmitt CSCL CSDA — Schmitt DSCL DSDA — Schmitt CEC_A — LVTTL INT — Open Drain — INT — Signal Type LVTTL Schmitt VTH+ LOW to HIGH threshold VTH- HIGH to LOW threshold Schmitt VTH+ LOW to HIGH threshold VTH- HIGH to LOW threshold VTH+ VTH- LOW to HIGH threshold HIGH to LOW threshold VTH+ VTHVTH+ LOW to HIGH threshold HIGH to LOW threshold LOW to HIGH threshold VTHVTH+ HIGH to LOW threshold LOW to HIGH threshold VTHVTH+ VOH HIGH to LOW threshold LOW to HIGH threshold HIGH-level output voltage VOL VOLOD VCINL LOW-level output voltage LOW-level output voltage Input clamp voltage VCIPL IIL Input clamp voltage Input leakage current — — IOL Output drive current IOL IOL IOL — Min Typ Max Units Notes 2.0 — — V — — 0.80 V — — 1.25 V — — — 2.1 — — V — — 0.75 V — — 1.80 — — V — — 0.80 V 1.85 — — — — 0.85 V V 1.75 — 1.77 — — — — 0.70 — V V V — 3.0 — — 1.5 — V V — 1.83 2.4 — — — 0.8 — — V V V — ICL = –18 mA — — — — — — 0.4 0.4 GND – 0.8 V V V 4, 8 2, 5 — — ICL = 18 mA High impedance — –10 — — VCC + 0.8 10 V µA 2, 5 2, 9 Open Drain DSCL, DSDA VOUT = 0.4 V 3 — — mA 7, 8 Output drive current Open Drain CSCL, CSDA VOUT = 0.4 V 4 — — mA 7, 8 Output drive current Output drive current Open Drain Open Drain CEC_A CEC_D VOUT = 0.4 V VOUT = 0.4 V 3.5 2.0 — — — — mA mA — — — — — 4 IOL Output drive current LVTTL INT VOUT = 0.4 V 4 — — mA 7 IOH Output drive current LVTTL INT VOUT = 2.4 V 4 — — mA — Notes to Table 3.3 and Table 3.4: 1. Guaranteed by characterization unless otherwise noted. 2. These limits are guaranteed by design. 3. See the Ball and Pin Diagrams and Descriptions starting on page 26 for signal type designations for all package signals. 4. INT can be programmed as push-pull or open-drain. As a push-pull output, it drives VOL and VOH as defined here. 5. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions for a pulse of greater than 3 ns or for more than one third of the clock cycle, whichever is less. Exceeding the clamp current I CL listed in the Conditions column of the table can result in permanent damage to the chip. 6. Minimum output drive specified at ambient = 85 ºC and IOVCC = 1.7 V. Typical output drive specified at ambient = 25 ºC and IOVCC = 1.8 V. Maximum output drive specified at ambient = 0 ºC and IOVCC = 1.9 V. 7. Minimum output drive specified at ambient = 85 ºC and IOVCC = 3.0 V. Typical output drive specified at ambient = 25 ºC and IOVCC = 3.3 V. Maximum output drive specified at ambient = 0 ºC and IOVCC = 3.6 V. 8. Do not remove IOVCC from the SiI9022A/SiI9024A HDMI Transmitter unless the attached I2C bus is completely idle. 9. Current leakage for input pins including audio and video pins will not exceed this range. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 15 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 3.5. TMDS I/O Specifications Symbol VOD VDOH IDOS Parameter Differential outputs single-ended swing amplitude Differential HIGH level output voltage Differential output short circuit current Signal Type Conditions Min Typ Max Units Notes TMDS RLOAD = 50 Ω 400 500 600 mV 1, 2 TMDS — — 3.3 — V — TMDS VOUT = 0 V — — 5 μA — Note: 1. Limits are defined by the HDMI Specification. 2. REXT_SWING condition as defined in the Differential Data Signals section. DC Power Supply Specifications Table 3.6 and Table 3.7 list the power consumption in both power-down and active modes using different IOVCC supplies. See Table 3.8 for an explanation of the power operating modes. Table 3.6. Low Power Standby Mode Power Consumption Symbol Parameter IPDQ IPDQ IPDQ 3.3 V IOVCC Typ6 Max 1.8 V IOVCC Ty6p Max 1.2 V AVCC Typ6 Max 1.2 V CVCC Typ6 Max D3 Cold 0.15 0.20 0.018 0.022 0.05 0.066 0.02 0.025 mA 1, 5 D3 Hot 1.00 1.65 0.550 0.670 0.75 0.830 3.50 4.50 mA 1, 5 D2 1.10 1.90 0.580 0.700 0.82 1.15 4.20 5.20 mA 1, 5 Mode Complete power-down current Complete power-down current Quiet power-down current Units Notes Table 3.7. Operating Mode Power Consumption Symbol Parameter ICCT Transmitter supply current 3.3 V IOVCC 1.8 V IOVCC Typ6 Max Typ6 74.25 MHz 4.0 5.4 148.5 MHz 5.3 162 MHz 5.0 74.25 MHz 148.5 MHz 162 MHz Mode Frequency D0 SingleEdge Mode D0 DualEdge Mode 1.2 V AVCC 1.2 V CVCC Units Notes Max Typ6 Max Typ6 Max 1.0 2.4 7.5 11.8 18.0 26.7 mA 2, 3 8.9 1.7 3.4 15.4 19.9 32.0 43.4 mA 2, 3 8.7 1.5 3.2 16.5 20.9 33.0 45.6 mA 2, 3 4.2 5.4 1.3 2.4 9.5 11.8 20.0 26.7 mA 2, 3 7.3 10.0 2.0 3.9 18.0 20.9 34.0 44.0 mA 2, 3 7.0 9.6 1.8 3.8 18.2 22.8 36.0 46.4 mA 2, 3 Notes: 1. These values reflect the static device current with no IDCK clock applied. 2. Power is related to input clock (IDCK) frequency. 3. Maximum power limits measured with all power supplies at maximum normal operating conditions, minimum normal operating ambient temperature, REXT_SWING as defined in the Differential Data Signals section on page 32, and a video pattern of single-pixel vertical lines. 4. Power consumption was measured across all power rails at +10% VCC: IOVCC = 1.98 V or 3.6 V, CVCC12 = 1.32 V, and AVCC12 = 1.32 V. 5. IOVCC, CVCC12, and AVCC12 should not be removed in the low-power modes because input states and leakage current cannot be guaranteed without all power supplies present. 6. Typical power consumption is shown for reference and may vary based on typical pattern usage of system. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 16 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 3.8 describes the chip conditions for the various power consuming modes. Refer to the Programmer’s Reference for details about setting different power operating modes. Table 3.8. Power Operating Modes Mode Core Running Outputs Oscillator Inputs Description Powered Powered Switching Comment Can still wake up through HPD, but RSEN wake-up is disabled. Local I2C interface is disabled. Hardware reset is required to re-enable. Can still wake up through HPD and RSEN. Local I2C interface is disabled. Hardware reset is required to reenable. Complete Power Down No No No No Absolute Minimum power. D3 Hot1, 2 Complete Power Down Yes No No No Minimum power. D2 Quiet Power Down Yes No Yes No Slave I2C bus available for register access. Monitor events while minimizing transmitter power. D0 Full Power Yes Yes Yes Yes Full function. Functional mode. D3 Cold1, 2 Notes: 1. A full hardware reset is required to wake the system up from D3 Hot or D3 Cold mode. 2. HPD must be low or Cable must not be connected prior to entering D3 Hot/Cold mode for wake-up to be valid. AC Specifications TMDS AC Timing Specifications Under normal operating conditions unless otherwise specified. Table 3.9. TMDS AC Specifications Symbol Parameter TDDF TDDR VSYNC and HSYNC delay from DE falling edge VSYNC and HSYNC delay to DE rising edge THDE TLDE SLHT DE HIGH time DE LOW time Differential swing LOW-to-HIGH transition Time Conditions Min Typ Max Units Figure Note — — 1 1 — — — — TCIP TCIP Figure 4.4 Figure 4.4 1 1 — 138 75 — — — 8191 — — TCIP TCIP ps Figure 4.5 Figure 4.5 Figure 4.12 1 1, 3 2, 4, 5 — RLOAD = 50 Ω SHLT Differential swing HIGH-to-LOW transition Time 75 — — ps Figure 4.12 2, 4, 5 Notes: 1. Guaranteed by design. 2. Guaranteed by characterization. 3. TLDE (DE LOW time) minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138 pixel clocks of blanking to carry the audio packets. The minimum DE LOW time is 12 clocks for TMDS. For more details, see the Minimum Horizontal Blanking Specification section (page 25). Minimum vertical blanking time is three horizontal line times. 4. Limits are defined by the HDMI Specification. 5. With REXT_SWING condition as defined in the Differential Data Signals section on page 32. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 17 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Audio AC Timing Specifications See the notes below Table 3.11. Table 3.10. I2S Input Port Timings Symbol Parameter Conditions Min Typ Max Units Figure FS_I2S TSCKCYC TSCKHIGH Sample rate I2S cycle time1 I2S clock HIGH1 — CL = 10 pF CL = 10 pF 32 360 110 — 400 — 192 440 — kHz ns ns — Figure 4.8 — TSCKLOW TI2SSU I2S Clock LOW1 I2S setup time1 CL = 10 pF CL = 10 pF 110 60 — — — — ns ns — Figure 4.8 TI2SHD TMCLKCYC FMCLK I2S hold time1 MCLK cycle time MCLK frequency CL = 10 pF CL = 10 pF CL = 10 pF 0 13.3 — — — — — — 75 ns ns MHz Figure 4.8 Figure 4.10 — TMCLKDUTY MCLK duty cycle CL = 10 pF 40% — 60% TMCLKCYC Figure 4.10 Table 3.11. S/PDIF Input Port Timings Symbol Parameter Conditions Min Typ Max Units Figure FS_SPDIF TSPCYC TSPDUTY Sample rate S/PDIF cycle time1 S/PDIF duty cycle1 — CL = 10 pF CL = 10 pF 32 — 90% — — — 192 1.0 110% kHz UI UI — Figure 4.9 Figure 4.9 TAUDDLY Audio pipeline delay3 — — 30 70 μs Notes: 1. Refer to the I2S or S/PDIF specifications based on 2.5 MHz for I2S receiver. 2. Setup and hold minimum times are based on 13.388 MHz sampling, from Figure 3 of Philips I2S Specification. 3. Audio pipeline delay is measured from transmitter input signals to TMDS output. The video path delay is insignificant. 4. I2S and S/PDIF input timing is guaranteed by design to meet the listed specifications at default settings. — Video Input AC Timing Specifications Table 3.12 lists the video input AC timing specifications when IOVCC is 1.8 V, and covers both package types. Table 3.13 on the next page lists the timing when IOVCC is 3.3 V, and applies only to the 81-ball and 72-pin package. Data for both tables are given for normal operating conditions unless otherwise specified. Table 3.12. Video Input AC Specifications: 1.8 V IOVCC Symbol TCIP Parameter IDCK period, one pixel per clock Conditions — Min 6 Typ — Max 40 Units ns Figure Figure 4.2 Note 1 FCIP TCIP12 IDCK frequency, one pixel per clock IDCK period, dual-edge clock — — 25 12 — — 165 40 MHz ns — Figure 9 1 2 FCIP12 IDCK frequency, dual-edge clock IDCK duty cycle: 24-bit single-edge clocking IDCK duty cycle: 12-bit dual-edge clocking — — — 25 30% 40% — — — 82.5 70% 60% MHz — TCIP Figure 4.1 2 — — TIJIT TSIDF Worst case IDCK clock jitter Setup time to IDCK falling edge — — 0 — — 2.0 — ns ns — Figure 4.2 3, 4 5, 6 THIDF TSIDR THIDR Hold time to IDCK falling edge Setup time to IDCK rising edge Hold time to IDCK rising edge Single-edge clocking mode 1.8 0 2.0 — — — — — — ns ns ns Figure 4.2 Figure 4.2 Figure 4.2 6 5, 7 7 TSIDF THIDF TSIDR Setup time to IDCK falling edge Hold time to IDCK falling edge Setup time to IDCK rising edge 0 2.1 0 — — — — — — ns ns ns Figure 9 Figure 9 Figure 9 8 8 8 2.5 — — ns Figure 9 8 TDUTY THIDR Hold time to IDCK rising edge Note: See notes for Table 3.13. 12-bit dualedge clocking mode © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 18 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 3.13. Video Input AC Specifications: 3.3 V IOVCC 3.3 V IOVCC ± 10% unless otherwise noted. Symbol TCIP FCIP Parameter IDCK period, one pixel per clock IDCK frequency, one pixel per clock Conditions — — Min 6 25 Typ — — Max 40 165 Units ns MHz Figure Figure 4.2 — Note 1 1 TCIP12 FCIP12 IDCK period, dual-edge clock IDCK frequency, dual-edge clock — — 12 25 — — 40 82.5 ns MHz Figure 9 — 2 2 TCIP12A FCIP12A IDCK period, dual-edge clock IDCK frequency, dual-edge clock IDCK duty cycle: 24-bit single-edge clocking — — — 6 25 30% — — — 40 165 70% ns MHz Figure 9 — — 40% 3.6 2.4 — — — 60% — — Figure 4.1 TCH TCL IDCK duty cycle: 12-bit dual-edge clocking Clock HIGH time, dual-edge clocking Clock LOW time, dual-edge clocking TCIP 2 2 — ns ns Figure 4.1 — TIJIT TSIDF Worst case IDCK clock jitter Setup time to IDCK falling edge — — 0 — — 2.0 — ns ns — Figure 4.2 3, 4 5, 6 THIDF TSIDR THIDR Hold time to IDCK falling edge Setup time to IDCK rising edge Hold time to IDCK rising edge Single-edge clocking mode 1.8 0 2.0 — — — — — — ns ns ns Figure 4.2 Figure 4.2 Figure 4.2 6 7 7 TSIDF THIDF Setup time to IDCK falling edge Hold time to IDCK falling edge 0 1.9 — — — — ns ns Figure 9 Figure 9 8 8 TDUTY FCIP > 82.5 MHz 12-bit dualedge clocking mode — TSIDR Setup time to IDCK rising edge 0 — — ns Figure 9 8 THIDR Hold time to IDCK rising edge 2.4 — — ns Figure 9 8 Notes: 1. TCIP and FCIP apply in single-edge clocking modes. TCIP is the inverse of FCIP and is not a controlling specification. 2. TCIP12, TCIP12A, FCIP12, and FCIP12A apply in dual-edge mode. TCIP12 and TCIP12A are not controlling specifications. 3. Input clock jitter is estimated by triggering a digital scope at the rising edge of input clock, and measuring peak-to-peak time spread of the rising edge of the input clock 1 s after the triggering. 4. Actual jitter tolerance can be higher depending on the frequency of the jitter. 5. Setup and hold time specifications apply to D[23:0] (81-ball and 72-pin package) or D[15:0] (49-ball package), DE, VSYNC, and HSYNC input signals, relative to IDCK input clock. 6. Edge Select bit = 0. 7. Edge Select bit = 1. 8. Setup and hold limits are not affected by the Edge Select bit setting for 12-bit dual-edge clocking mode. (See the Programmer’s Reference for information about the Edge Select bit setting.) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 19 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Control Signal Timing Specifications Under normal operating conditions unless otherwise specified. Table 3.14. Control Signal Timing Specifications Symbol Parameter TRESET RESET# signal LOW time required for reset TI2CDVD SDA data valid delay from SCL falling edge on READ command THDDAT TINT I2C data hold time Response time for INT output signal from change in input condition (HPD, Receiver Sense, VSYNC change, etc.). Conditions Min Typ Max Units Figure Figure 4.6 Figure 4.7 Note — 100 — — µs CL = 400 pF — — 700 ns Figure 4.13 2, 4 40–400 kHz 2.0 — — ns — 3, 4 RESET# = HIGH — — 100 µs Figure 4.14 5 1 FDSCL Frequency on master DDC SCL signal — 40 70 100 kHz — 6 FCSCL Frequency on CSCL signal — 40 — 400 kHz — — Notes: 1. Reset on RESET# signal can be LOW as CVCC12 and IOVCC become stable, or be pulled LOW for at least TRESET. 2. All standard-mode (100 kHz) I2C timing requirements are guaranteed by design and comply with the I2C Specification. These timings apply to the slave I2C port (signals CSDA and CSCL) and to the master I2C port (signals DSDA and DSCL) with I2C stall disabled. 3. This minimum hold time is required by CSCL and CSDA signals as an I2C slave. The device does not include the 300 ns internal delay required by the I2C Specification (Version 2.1, Table 5, note 2). 4. Operation of I2C signals above 100 kHz is defined by LVTTL levels VIH, VIL, VOH, and VOL described on page 14. 5. During RESET# = LOW, the INT output signal shows whether there is an attached and powered-on TMDS receiver. See the description of the INT signal in the Configuration and Control Signals section on page 31. 6. The Master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I2C Standard Mode, or 100 kHz. Use of the Master DDC block does not require an active IDCK. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 20 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 4. Timing Diagrams Data signals D[23:0] shown are available on the 81-ball and 72-pin device. Substitute D[15:0] for the 49-ball device. Input Timing Diagrams TCIP TCIP12 TCIP12A TCL 80% 20% TDUTY TCH IDCK Figure 4.1. IDCK Clock Cycle/High/Low Times EDGE=1 TCIP IDCK 50 % TSIDR D[23:0] or D[15:0], DE, HSYNC,VSYNC EDGE=0 50 % THIDR no change allowed 50 % IDCK 50 % 50 % 50 % TSIDF D[23:0] or D[15:0], DE, HSYNC,VSYNC THIDF no change allowed 50 % 50 % Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications. D[23:0] are used in the 81-ball and 72-pin package; D[15:0] are used in the 49-ball package. Figure 4.2. Control and Data Single-Edge Setup/Hold Times to IDCK TCIP12 IDCK 50 % TSIDF D[11:0] or D[15:4], DE, HSYNC, VSYNC 50 % 50 % THIDF no change allowed TSIDR 50 % THIDR no change allowed 50 % Signals may change only in the unshaded portion of the waveform, to meet both the minimum setup and minimum hold time specifications. D[11:0] are used in the 81-ball and 72-pin package; D[15:4] are used in the 49-ball package. Figure 4.3. Dual-Edge Setup/Hold Times to IDCK © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 21 SiI9022A/SiI9024A HDMI Transmitter Data Sheet DE 50% 50% VSYNC, HSYNC TDDR TDDF 50% 50% Figure 4.4. VSYNC and HSYNC Delay Times from/to DE THDE TLDE VIH VIL DE Figure 4.5. DE High/Low Times VCCmax VCCmin VCC RESET# TRESET Figure 4.6. Conditions for Use of RESET# Note: VCC must be stable between its limits for Normal Operating Conditions for TRESET before RESET# goes HIGH. RESET# TRESET Figure 4.7. RESET# Minimum Timings Note: RESET# must be pulled LOW for TRESET before accessing registers. This can be done by holding RESET# LOW until T RESET after stable power (as shown in Figure 4.6), or by pulling RESET# LOW from a HIGH state (as shown in Figure 4.7) for at least TRESET. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 22 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Audio Timing Diagrams TSCKCYC TSCKDUTY TSCKDUTY 2.0 V SCK 0.8 V TI2SSU TI2SHD 2.0 V SD[3:0], WS 0.8 V Figure 4.8. I2S Input Timings TSPCYC TSPDUTY 90% 50% SPDIF 10% Figure 4.9. S/PDIF Input Timings TMCLKCYC MCLK 50% 50% TMCLKDUTY Figure 4.10. MCLK Timings © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 23 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Power Supply Sequencing Power sequencing is not usually required. Lattice Semiconductor recommends that all individual power supplies reach their nominal levels within 5 ms in normal operation. Once powered on, the IOVCC, CVCC, and AVCC power supplies should not be removed during any power mode including D0, D2, D3 Hot and D3 Cold. nominal 5 V nominal 3.3 V nominal 1.8 V nominal 1.2 V T < 5 ms 1.2 V 5V 1.8 V (CVCC, (DDC) 3.3 V (IOVCC) AVCC) (IOVCC, CEC) Figure 4.11. Power Supply Sequencing Output Timing Diagrams SLHT SHLT 80% VOD 20% VOD Figure 4.12. Differential Transition Times CSDA, DSDA TI2CDVD CSCL, DSCL Figure 4.13. I2C Data Valid Delay (Driving Read Cycle Data) Interrupt Condition TINT INT Output Figure 4.14. INT Output Signal Response to Interrupt Condition © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 24 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Minimum Horizontal Blanking Specification Several cases define the minimum blanking time requirements. Vertical blanking times are normally multiples of the horizontal line times and do not place a constraint on performance. (HDMI requires at least two line times in each vertical blanking interval.) The minimum horizontal blanking time depends on the mode. An HSYNC or VSYNC edge can occur in any clock cycle except when active video data is being transmitted. When HDMI is active, this includes the two clocks of leading guard band for the active video data. Table 4.1. Minimum Horizontal Blanking Calculations Mode Information Type Clock Count DVI Only Defined by transmitter data sheet. Total minimum horizontal blanking time 12 HDMI with No Data Islands Defined by HDMI Spec (Section 5.2.3.2, page 46; and Figure 5-3). Minimum control period Leading guard band 12 2 Total minimum horizontal blanking time 14 HDMI with One Data Island HDMI allows a minimum of one data island, which can contain one data packet. Minimum control period Leading guard band 12 2 Packet Trailing guard band Minimum control period 32 2 12 Leading guard band Total minimum horizontal blanking time 2 62 © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 25 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 5. Ball and Pin Diagrams and Descriptions Ball and Pin Diagrams 81-Ball VFBGA Package Figure 5.1 shows the ball diagram for the SiI9022A/SiI9024A transmitter in the 81-ball package. See the Ball and Pin Descriptions beginning on page 29 for a description of the ball functions. Balls are shaded using the grouping shown in Figure 5.3 on page 28. 1 2 3 4 5 6 7 8 9 A CEC_A RSVDHO AGND TX1+ TX0+ TXC+ TXC- AGND EXT_SWING B CI2CA VDDQ TX2+ TX2- TX1- TX0- CEC_D IO_SEL RSVDL C CSDA CSCL RESET# CVCC12 IOGND AVCC12 AVCC12 DSDA DSCL D CGND CGND CVCC12 IOGND IOVCC IOGND CVCC12 HPD INT E D23 D22 D21 D20 IOVCC SD1 CVCC12 IOVCC IOVCC F D19 D18 D17 D16 CVCC12 SD2 SCK WS SD0 G D15 D14 D9 D7 CGND CVCC12 SPDIF MCLK SD3 H D12 D11 IDCK D6 CGND D3 D1 D0 VSYNC J D13 D10 D8 D5 CGND D4 D2 DE HSYNC Figure 5.1. 81-Ball Package Ball Diagram (Top View) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 26 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 49-Ball VFBGA Package Figure 5.2 shows the ball diagram for the SiI9022A/SiI9024A transmitter in the 49-ball package. See the Ball and Pin Descriptions beginning on page 29 for a description of the ball functions. Balls are shaded using the grouping shown in Figure 5.3 on the next page. 1 2 3 4 5 6 7 A TX2+ TX1+ TX1- TX0+ TX0- TXC+ TXC- B CEC_A TX2- AGND AVCC12 DSDA RSVDL EXT_SWING C CSDA CSCL VDDQ CVCC12 RESET# INT DSCL D D15 D14 IOGND CGND HPD WS SD0 E D13 D12 IOVCC D6 SCK D0 MCLK F D11 D10 IDCK D5 D1 D2 VSYNC G D9 D8 D7 D4 D3 DE/SPDIF HSYNC Figure 5.2. 49-Ball Package Ball Diagram (Top View) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 27 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 72-Pin QFN Package CI2CA CEC_A VDDQ IO_SEL TX2+ TX2- AVCC12 TX1+ TX1- AGND TX0+ TX0- AVCC12 TXC+ TXC- IOGND EXT_SWING RSVDL 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 Figure 5.3 shows the pin diagram for the SiI9022A/SiI9024A transmitter in the 72-pin package. See the Ball and Pin Descriptions beginning on page 29 for a description of the pin functions. 10 45 SCK D17 11 Top View 44 WS CVCC12 12 43 CGND D16 13 42 CVCC12 D15 14 41 SD0 D14 15 40 SD1 D13 16 39 SD2 D12 17 38 MCLK D11 18 37 SD3 36 D18 SPDIF IOVCC 35 46 VSYNC 9 34 CVCC12 HSYNC 47 D19 SiI9022A SiI9024A 33 8 DE D20 32 DSDA D0 48 31 7 D1 D21 30 DSCL D2 49 29 6 D3 D22 28 CEC_D D4 50 27 5 D5 CVCC12 26 RESET# CVCC12 51 25 4 D6 D23 24 INT D7 52 23 3 D8 IOVCC 22 CVCC12 IDCK 53 21 2 IOVCC CSDA 20 HPD D9 54 19 1 D10 CSCL Ground Audio and video data input TMDS output Audio, video, and HDMI control I/O Chip configuration and control Power Reserved and not connected Figure 5.3. 72-Pin Package Pin Diagram (Top View) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 28 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Ball and Pin Descriptions Video Input The digital video input signals all operate from the IOVCC power plane and are tolerant up to the voltage supplied to that plane (1.8 V or 3.3 V). These balls or pins have internal weak pull-down resistors, and are high-impedance in D3 power-down mode. Name VFBGA QFN 49-Ball 81-Ball 72-Pin D0 E6 H8 32 D1 F5 H7 31 D2 F6 J7 30 D3 G5 H6 29 D4 G4 J6 28 D5 F4 J4 27 D6 E4 H4 25 D7 G3 G4 24 D8 G2 J3 23 D9 G1 G3 20 D10 F2 J2 19 D11 F1 H2 18 D12 E2 H1 17 D13 E1 J1 16 D14 D2 G2 15 D15 D1 G1 14 D16 NA F4 13 D17 NA F3 11 D18 NA F2 10 D19 NA F1 9 D20 NA E4 8 D21 NA E3 7 D22 NA E2 6 Description Type Dir Schmitt Input 12-bit Input Pixel Data Bus. These pins or balls are used in 12-bit dualedge mode and in 24-bit single-edge mode. Schmitt Input 12-bit Input Pixel Data Bus. These pins or balls are used only in 24-bit single-edge mode. In 12-bit dual-edge mode these signals should be left unconnected. 81-Ball / 72-Pin D23 NA E1 4 IDCK F3 H3 22 Schmitt Input Input Data Clock. 49-Ball 16-bit Input Pixel Data Bus. DE NA J8 33 Schmitt Input Data Enable input control signal. DE/SPDIF G6 NA NA Schmitt Input Input DE Control Signal or S/PDIF. HSYNC G7 J9 34 Schmitt Input Horizontal sync input control signal. VSYNC F7 H9 35 Schmitt Input Vertical sync input control signal. Note: Any unused video or control balls or pins listed in this section should be left not connected to conserve power. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 29 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Audio Input The digital audio input signals all operate from the IOVCC power plane, and are tolerant up to the voltage supplied to that plane (1.8 V or 3.3 V). These balls or pins have weak internal pull-up resistors, and are high-impedance in D3 power-down mode. VFBGA Name QFN Type Dir 45 Schmitt Input I2S Serial Clock. F8 44 Schmitt Input I2S Word Select. D7 F9 41 Schmitt Input I2S Serial Data 0. SD1 NA E6 40 Schmitt Input I2S Serial Data 1. SD2 NA F6 39 Schmitt Input I2S Serial Data 2. SD3 NA G9 37 Schmitt Input I2S Serial Data 3. MCLK E7 G8 38 Schmitt Input Audio Input Master Clock. SPDIF NA G7 36 Schmitt Input S/PDIF Audio Input. DE/SPDIF G6 NA NA Schmitt Input S/PDIF audio or DE control input. (Applies to 49-ball package only.) 49-Ball 81-Ball 72-Pin SCK E5 F7 WS D6 SD0 Description Note: Any unused audio balls or pins listed in this section should be left not connected to conserve power. All data, clock, and control inputs in this section have a weak internal pullup, which is switched off in D3 mode to reduce leakage current. CEC The CEC signals operate from an internally generated power plane, but are tolerant up to the 3.3 V power specified for CEC. Name CEC_A VFBGA QFN 49-Ball 81-Ball 72-Pin B1 A1 71 Type Dir CEC-compliant Input/ Output Description HDMI compliant CEC I/O to interface to CEC devices. CEC electrically compliant I/O. This ball or pin connects to the CEC signal of all HDMI connectors in the system. For IOVCC = 3.3 V: No external pullup resistor is required. For IOVCC = 1.8 V: A 51 kΩ pullup resistor in series with a Schottky diode to a 3.3 V source is required; see Figure 7.5 on page 70. As an input, the pad acts as a LVTTL Schmitt triggered input. As an output, the pad acts as an NMOS driver. CEC_D NA B7 50 LVTTL Input/ Output CEC interface to local system. This is an LVTTL I/O with a weak pull-up resistor. This ball or pin typically connects to the local CPU. The CEC_D output can be disabled with programming to allow the internal CEC logic to handle the CEC_A signal. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 30 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Configuration and Control The configuration and control input and output signals all operate from the IOVCC 1.8 V or 3.3 V power plane, and are tolerant up to and drive to the voltage supplied to that plane. The CSCL, CSDA, DSCL, and DSDA signals are not true open-drain buffers. When no VCC is applied to the chip, these signals can continue to draw a small current, and prevent the master IC from communicating with other devices on the I2C bus. Therefore, do not remove VCC from the SiI9022A/SiI9024A HDMI Transmitter unless the attached I2C bus is completely idle. Note that the level on the CI2CA signal is not latched internally and should not be changed during any active I2C operations. Name VFBGA QFN Type Dir 54 Schmitt 5 V tolerant Input Hot Plug Detect Input. An external 10 kΩ pulldown resistor to GND on the board is required. D9 52 LVTTL Output Interrupt Output. Configurable by a register setting to be either an active-HIGH (push-pull) output or an active-LOW (open-drain) output. In push-pull mode, the output drives to the corresponding level for the IOVCC power plane. In active-LOW (default) output, an external pull-up to 3.3 V is required. B1 72 LVTTL Input 49-Ball 81-Ball 72-Pin HPD D5 D8 INT C6 CI2CA NA Description I2C Device Address Select. For 49-ball package: Not available. Fixed LOW internally. For 81-ball and 72-pin package: A 4.7 kΩ external pull-down to GND or pull-up resistor to IO_SEL voltage level MUST be connected to this signal for proper operation. See the Control and Configuration section on page 11 for additional information Reset signal (active LOW). When RESET# is LOW, all input and output pins are not functional. RESET# C5 C3 51 Schmitt Input CSCL C2 C2 1 Schmitt Open-drain Input/ Output Local I2C Bus Clock. This bus accesses the compatible mode registers, the TPI registers, and the CPI registers. An external 4.7 kΩ pullup resistor on the board is required. CSDA C1 C1 2 Schmitt Open-drain Input/ Output Local I2C Bus Data. This accesses the compatible mode registers, the TPI registers, and the CPI registers.. An external 4.7 kΩ pullup resistor on the board is required. IO_SEL NA B8 69 LVTTL Input I/O Select. This input sets the I/O thresholds to the proper level to match the I/O supply voltage. LOW – Selects 3.3 V I/O thresholds. HIGH – Selects 1.8 V I/O thresholds. Connect IO_SEL to 1.8 V to select 1.8 V I/O threshold and to ground to select 3.3 V I/O threshold. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 31 SiI9022A/SiI9024A HDMI Transmitter Data Sheet DDC Bus 25B The DDC signals operate from an internally generated power plane, but are tolerant up to the 5 V power specified for DDC. Name VFBGA QFN Type Dir 49 Schmitt Open-drain 5 V tolerant Input/ Output DDC I2C Bus Clock. This bus accesses the EDID and HDCP data on an attached sink device. The DSCL signal is bi-directional, since the transmitter monitors the state of DSCL so that it can accommodate I2C clock stretching by the slave device. An external pullup resistor between 1.8 kΩ and 2.2 kΩ on the board is required. 48 Schmitt Open-drain 5 V tolerant Input/ Output DDC I2C Bus Data. This bus accesses the EDID and HDCP data on an attached sink device. An external pullup resistor between 1.8 kΩ and 2.2 kΩ on the board is required. Type Dir 49-Ball 81-Ball 72-Pin DSCL C7 C9 DSDA B5 C8 Description Differential Data Name VFBGA QFN 49-Ball 81-Ball 72-Pin TX0+ A4 A5 62 TMDS Output TX0- A5 B6 61 TMDS Output TX1+ A2 A4 65 TMDS Output TX1- A3 B5 64 TMDS Output TX2+ A1 B3 68 TMDS Output TX2- B2 B4 67 TMDS Output TXC+ A6 A6 59 TMDS Output TXC- A7 A7 58 TMDS Output EXT_SWING B7 A9 56 Analog Input Description TMDS output data pairs. TMDS output clock pair. Voltage Swing Adjust. A resistor (REXT_SWING ) is connected from this ball or pin to GROUND. This resistor determines the amplitude of the voltage swing. The recommended value is 4.3 kΩ ±1% with internal source termination enabled and 5.1 kΩ ±1% without internal source termination. The value of this resistor can be adjusted to optimize the signal swing in the specific design. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 32 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Power and Ground Name VFBGA QFN Type Description 5, 12, 26, 42, 47, 53 Power Digital Core VCC. Connect to 1.2 V supply. D1, D2, G5, H5, J5 43 Ground Digital Core GND. E3 D5, E5, E8, E9 3, 21, 46 Power I/O VCC. Connect to either the 1.8 V or 3.3 V supply. This ball must be connected to 1.8 V in the 49-ball package. IOGND D3 C5, D4, D6 57 Ground I/O GND. AVCC12 B4 C6, C7 60, 66 Power Analog VCC. Connect to 1.2 V supply. AGND B3 A3, A8 63 Ground Analog GND. RSVDH0 NA A2 NA No connect RSVDL B6 B9 55 LVTTL Input Reserved. Must be tied LOW. VDDQ C3 B2 70 LVTTL Input Reserved. Must be tied LOW. 49-Ball 81-Ball 72-Pin CVCC12 C4 C4, D3, D7, E7, F5, G6 CGND D4 IOVCC Reserved. This ball is not connected in the 81-ball package for downward compatibility with the SiI9022A/SiI9024A transmitter. It can be left open, or connected to ground or CVCC12 without adverse effect. Note: The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 33 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6. Feature Information RGB to YCbCr Color Space Converter The RGBYCbCr color space converter can convert from video data RGB to standard definition or to high definition YCbCr formats. Table 6.1 lists the conversion formulas that are used. The HDMI AVI packet defines the color space of the incoming video. Table 6.1. RGB to YCbCr Conversion Formulas Video Format Conversion 640 × 480 ITU-R BT.601 480i 576i ITU-R BT.601 ITU-R BT.601 480p 576p 240p ITU-R BT.601 ITU-R BT.601 ITU-R BT.601 288p 720p ITU-R BT.601 ITU-R BT.709 1080i 1080p ITU-R BT.709 ITU-R BT.709 Formulas CE Mode 16-235 RGB Y = 0.299R′ + 0.587G′ + 0.114B′ Cb = –0.172R′ – 0.339G′ + 0.511B′ + 128 Cr = 0.511R′ – 0.428G′ – 0.083B′ + 128 Y = 0.213R′ + 0.715G′ + 0.072B′ Cb = –0.117R′ – 0.394G′ + 0.511B′ + 128 Cr = 0.511R′ – 0.464G′ – 0.047B′ + 128 YCbCr to RGB Color Space Converter The YCbCrRGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. Refer to the detailed formulas in Table 6.2. Note the difference between RGB range for CE modes and PC modes. X Table 6.2. YCbCr-to-RGB Conversion Formulas Format change Conversion YCbCr 16-235 Input to RGB 16-235 Output YCbCr 16-235 Input to RGB 0-255 Output YCbCr Input Color Range 601* R′ = Y + 1.371(Cr – 128) G′ = Y – 0.698(Cr – 128) – 0.336(Cb – 128) B′ = Y + 1.732(Cb – 128) 7091 R′ = Y + 1.540(Cr – 128) G′ = Y – 0.459(Cr – 128) – 0.183(Cb – 128) B′ = Y + 1.816(Cb – 128) R′ = 1.164((Y-16) + 1.371(Cr – 128)) G′ = 1.164((Y-16) – 0.698(Cr – 128) – 0.336(Cb – 128)) B′ = 1.164((Y-16) + 1.732(Cb – 128)) R′ = 1.164((Y-16) + 1.540(Cr – 128)) G′ = 1.164((Y-16) – 0.459(Cr – 128) – 0.183(Cb – 128)) B′ = 1.164((Y-16) + 1.816(Cb – 128)) 601 709 *Note: No clipping can be done. 3D Video Formats The SiI9022A/SiI9024A transmitter supports the 3D video modes described in the HDMI 1.4a Specification. All modes support RGB 4:4:4, YCbCr 4:2:2, and YCbCr 4:4:4 color formats and 8-bit color depth. External separate HSYNC, VSYNC, and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV sequences in the video stream. Table 6.3 lists only the maximum possible resolution with a given frame rate; for example, Side-by-Side mode is defined for 1080p60, which implies that 720p60 and 480p60 are also supported. Furthermore, a frame rate of 24 Hz also means © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 34 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz also means a frame rate of 59.94 Hz and its associated pixel frequency is supported. Limitations Frame Packing format: The Frame packing format requires Vact_space which must have constant video data. Dithering should be disabled when transmitting the frame packing format. The 1080p 24 Hz video format has a total of 2250 lines. However, the VRES counter (TPI 0x6C, 0x6D) of the SiI9022A/SiI9024A device is only 11 bits, which provides for a maximum of 2047 lines. In this case, the VRES counter will overflow and show the value of 0. This does not affect the output of the transmitter. The DE generator is supported for all formats except 1080p 24 Hz. DE_LIN (TPI 0x68, 0x69) is only 11 bits (maximum 2047) while this value for 1080p 24 Hz should be 2205 lines. Side-by-Side format: L frame and R frame are concatenated without a border. Since 4:4:4 to 4:2:2 downsampling and 4:2:2 dithering and upsampling to 4:4:4 has a decimation filter and looks at some adjacent pixels, these three features should be avoided to prevent possible visible artifacts. L + Depth format: No video processing should be used. Top-and-Bottom format: There are no limitations. Table 6.3. Supported 3D Video Formats 3D Format Extended Definition — Frame Packing interlaced L + Depth — Full Side-by-Side Half Top-and-Bottom — Resolution Frame Rate (Hz) 1080p 24 720p 50 / 60 1080i 50 / 60 1080p 720p 1080i 24 50/60 50/60 720p 1080p 50/60 50/60 1080p 720p 1080i 50/60 24 50/60 60 1080p 720p 24 50/60 Input Pixel Clock (MHz) 148.5 74.25 S/PDIF Audio Input The S/PDIF stream carries 2-channel uncompressed PCM data (IEC 60958) or a compressed bit stream for multi-channel (IEC 61937) formats. The audio data capture logic described in the Audio Data Capture Logic section packetizes the audio data according to the HDMI specification. The S/PDIF input supports audio sampling rates from 32 to 192 kHz. No clock input is required for S/PDIF since the chip logic extracts the clock from the incoming S/PDIF data stream. Optionally, an external MCLK source can be used. I2S Audio Inputs The 81-ball and 72-pin packages support four I2S inputs, SD0 through SD3, which allow transmission of DVD-Audio and decoded Dolby Digital/DTS bit stream to A/V receivers and high-end displays. This interface supports 2-channel to 8channel audio with up to 192 kHz sampling rate. The input clock SCK is used to latch the incoming data; data must meet specified setup and hold time requirements with respect to SCK. The 49-ball package has only one I2S input, SD0, which supports only 2-channel audio up to 192 kHz sampling rate. A separate master clock signal that is coherent with the I2S inputs is required for HDMI time-stamping purposes. Coherent means that this clock signal and the I2S inputs must have been created from the same clock source. This clock © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 35 SiI9022A/SiI9024A HDMI Transmitter Data Sheet can be generated internally, using a PLL. As an option, the original MCLK signal used to strobe the I 2S signals out from the sourcing chip can be used. If the internal PLL is used, then an external MCLK input is not required. Supported Audio Sampling Rates The audio data can be down-sampled by one-half or one-fourth with register control. This feature allows the transmitter to share the audio bus with a high-sample-rate audio DAC, while down-sampling audio for an attached display that supports only lower rates. The transmitter supports conversions from 192 to 48 kHz, 176.4 to 44.1 kHz, 96 to 48 kHz, and 88.2 to 44.1 kHz. The appropriate registers must be configured to describe the format of audio provided to the transmitter. This information is passed over the HDMI link in the CEA-861D Audio Info (AI) packets. Table 6.4 lists the supported MCLK frequencies and audio sample rates. Table 6.4. Supported MCLK Frequencies Audio Sample Rate, Fs Multiple of Fs 128 32 kHz1, 2 4.096 MHz 44.1 kHz1, 2 5.645 MHz 48 kHz1, 2 6.144 MHz 88.2 kHz1, 2 11.290 MHz 96 kHz1, 2 12.288 MHz 176.4 kHz2 22.579 MHz 192 kHz2 24.576 MHz 192 256 384 6.144 MHz 8.192 MHz 12.288 MHz 8.467 MHz 11.290 MHz 16.934 MHz 9.216 MHz 12.288 MHz 18.432 MHz 16.934 MHz 22.579 MHz 33.869 MHz 18.432 MHz 24.576 MHz 36.864 MHz 33.869 MHz 45.158 MHz 67.738 MHz 36.864 MHz 49.152 MHz 73.728 MHz 512 768 1024 16.384 MHz 24.576 MHz 32.768 MHz 22.579 MHz 33.869 MHz 45.158 MHz 24.576 MHz 36.864 MHz 49.152 MHz 45.158 MHz 67.738 MHz 49.152 MHz 73.728 MHz 1152 36.864 MHz 50.803 MHz 55.296 MHz Notes: 1. 2-channel S/PDIF supported rate. 2. 2-channel and 8-channel I2S supported rate. Table 6.5. S/PDIF Audio Formats Supported for each Video Format Video Format 32 kHz 44.1 kHz 48 kHz 96 kHz 96 kHz48 kHz 192 kHz 2-ch 2-ch 2-ch 5.1-ch 2-ch 2-ch 2-ch VGA        480i        480p        576p        720p and above        Note:  = Supported, — = Not Supported Table 6.6. I2S Audio Formats Supported for each Video Format I2S Format Video Format 8-Channel Audio (81-Ball and 72-Pin package only) 2-Channel Audio 32 44.1 48 88.2 96 96→48 176.4 192 192→48 48 88.2 96 192                     — — —           — — — — — — 576p           — — — 480p 2x 720p and above                         — VGA 480i 480p  Note:  = Supported, — = Not Supported © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 36 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet I2C Register Information I2C registers monitor and control all functions of the transmitter. For devices in the 81-ball and 72-pin package, the device I2C addresses can be altered setting the CI2CA signal LOW or HIGH as listed in Table 6.7. An external pull-up or pull-down resistor (depending on the desired set of I 2C addresses) is used to set the level on the CI2CA signal. Note that the level on the CI2CA signal is not latched internally and should not be changed during any active I2C operations. The CI2CA signal is not externally accessible on the 49-ball package and is internally connected to ground. As a result, the device I2C addresses for devices in the 49-ball package cannot be changed and are fixed to the same addresses as when the CI2CA signal is LOW. Table 6.7. Control of I2C Address with CI2CA Signal Internal Function CI2CA = LOW CI2CA = HIGH 49-Ball / 81-Ball / 72-Pin 81-Ball / 72-Pin Transmitter Programming Interface (TPI) device address CEC Programming Interface (CPI) device address 0x72 0xC0 0x76 0xC4 SiI9020-compatible internal registers: first device address SiI9020-compatible internal registers: second device address 0x72 0x7A 0x76 0x7E Two separate sets of registers are available for the transmitter subsystem.  SiI9020-compatible registers are nearly identical to those used by previous generations of Lattice Semiconductor parts. These registers can run under the direct control of existing code on a host processor and are used to perform audio/video format processing, CEA-861D InfoFrame packet formatting, and power-down control. Refer to the SiI9020 HDMI PanelLink Transmitter Programmer’s Reference (listed in References section) for information about these registers.  Transmitter Programming Interface (TPI) registers represent a higher-level interface. Lattice Semiconductor recommends using the TPI registers instead of the SiI9020-compatible registers, because they automate in hardware many functions such as audio N-value calculation, HDCP local link authentication and integrity checking, and HDCP repeater authentication. The HDCP feature, which was not available on the SiI9020 transmitter, can only be used through the TPI register interface of the SiI9024A device. Refer to the Programmer’s Reference (listed in References section) for information on these registers. For the CEC subsystem, a set of CEC Programming Interface registers fully automates CEC handling. Refer to the CEC Programming Interface (CPI) Programmer’s Reference (listed in References section) for information on these registers. DDC Support Video SiI9022A Transmitter SiI9024A Transmitter Audio CEC Programming Interface registers I2C Transmitter Programming Interface registers MPEG Chip HDMI DDC HDMI Connnector The Master DDC block supports I2C transactions specified by VESA Enhanced Display Data Channel Standard (Section 3.1.2). The Master DDC block complies with the Standard Mode timing of the I2C specification, limited to 100 kHz by Section 8.4.1 of the HDMI specification, and supports slave clock stretching as required by E-DDC. Figure 6.1 below and Figure 7.6 on page 71 show the connection of the HDMI connector to the DDC ports of the transmitter. Figure 6.2 on the next page shows the supported I2C transactions. DDC Master access Figure 6.1. Simplified Host I2C Interface using Master DDC Port © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 37 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Current Read S slv addr + R As data 0 Am data 1 Am Am data n N/As P Sequential Read S slv addr + W As device offset As Sr slv addr + R As data 0 Am Am data n P N/As Enhanced DDC Read S 0x60 N/As segment N/As* Sr slv addr + W As device offset As Sr slv addr + R data n N/As As data 0 Am Am data n N/As P Sequential Write S slv addr + W As device offset As data 0 As As P S = start Sr = restart As = slave acknowledge Am = master acknowledge N = no ack P = stop * Don't care for segment 0, ACK for segment 1 and above Figure 6.2. Master I2C Supported Transactions DDC Stall Support Stall feature is also supported on the SiI9022A/SiI9024A device. Stall can be enabled after ACK or on every cycle. This feature can also reduce an incoming 400 kHz Local I2C speed to 100 kHz DDC. Lattice Semiconductor does not recommend enabling this feature when the incoming local I2C speed and DDC speed is set to 100 kHz since additional I2C bus free time is required. Additionally, if a sink device supports I2C speeds higher than 100 kHz, this feature should be disabled. Power Saving Modes and Wakeup Feature In addition to D2 mode, the SiI9022A/SiI9024A device supports 2 additional power saving modes which include the D3 Hot and D3 Cold mode. D3 Hot mode provides better power savings compared to D2 mode. D3 Cold mode offers the best power savings compared to D2 and D3 Hot. Once in D3 Hot or Cold modes, the I 2C registers are no longer accessible, and to regain full access to the internal registers, the transmitter must be hardware reset. The wakeup feature is an additional function to alert the host and re-enable the SiI9022A/SiI9024A device from D3 Cold or D3 Hot mode. The wakeup feature works by sending an INT# signal to the host when an active display sink is connected to the transmitter. The INT# signal is generated when either an active Receiver Sense or a Hotplug signal is detected by the transmitter. Wakeup Support in D3 Cold and D3 Hot Modes To enable the wakeup feature in either D3 Hot or D3 Cold mode, adhere to the following sequences; refer to the Programmer’s Reference for more details. Table 6.8 below summarizes the detection support of D3 Hot and Cold. Table 6.8. D3 hot and D3 Cold Feature Mode RSEN Detect Hotplug Detect Minimum Requirements Condition D3 Cold Complete Power Down No Yes HPD low or Cable Disconnected HPD only. Cable must be disconnected before entering D3 Cold. D3 Hot Complete Power Down Yes Yes RSEN disconnected Can be used with Display Sinks with multi input ports that disable input but keep HPD high. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 38 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.9.1.1. D3 Cold Wakeup The D3 Cold Wakeup feature sends an INT signal when connecting a cable produces a Hotplug signal. Lattice Semiconductor recommends disconnecting the cable to theSiI9022A/SiI9024A transmitter before entering D3 Cold mode. 1. 1. Disconnect the cable. 2. 2. Clear any pending interrupts. 3. 3. Perform a hardware reset of the transmitter. 4. 4. Program register 0xC7 to 0x00 to enter TPI mode. 5. 5. Set INT# source to Hotplug using register 0x3C. 6. 6. Clear any pending interrupts. 7. 7. Enter D3 Cold mode using register 0x1E. 6.9.1.2. D3 Hot Wakeup Unlike the D3 Cold mode, the D3 Hot mode also supports using RSEN for a wakeup event. This allows the D3 Hot mode to support a different usage model. In a situation where the sink may have additional input ports but may disable the inputs while keeping the Hotplug active or vice versa, a change in either the RSEN or Hotplug signal prompts an INT# signal from the transmitter. The INT# will trigger if there is any change in the HPD signal, such as a HIGH-to-LOW change. Since this is not the intended wakeup event required, the host can choose to re-enter the D3 Hot mode. 8. 1. Cable can be disconnected or left connected. 9. 2. Set INT# source to either RSEN or HPD. 10. 3. Clear any pending interrupts. 11. 4. Enable D3 Hot mode via register 0x1E. Common Video Input Formats Table 6.9 lists the bus interface formats available to support common video input resolutions. The format number in the left column of this table lists the input modes indicated in Table 6.10 on the next page that are required to support each format. Additional discrete CEA and VESA resolutions meeting the requirements listed in Table 3.14 on page 20 and Table 4.1 on page 25 may also be supported. Table 6.9. Video Input Formats Format Input Pixel Clock (MHz) Notes 480i1, 3 480p2 XGA 720p 1080i 1080p24 1080p UXGA 1 27 27 65 74.25 74.25 74.25 148.5 162 — 2 27 27 65 74.25 74.25 74.25 — — — 3 27 27 — 74.25 74.25 74.25 148.5 162 — 4 27 54 — 148.5 148.5 148.5 — — — 5 — 54 — — — — — — 4 40H 402H Notes: 1. 480i support also encompasses 576i support. 2. 480p support also encompasses 576p support. 3. 480i must be input at 27 MHz using pixel replication to be transmitted across the HDMI link. 4. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 39 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Data Bus Mappings The transmitter supports multiple input data mappings. Some have explicit control signals, and some have embedded control signals. The selection of data mapping mode should be consistent at the signals and in the corresponding register settings. Refer to the Programmer’s Reference for more details. All versions of this transmitter support up to a maximum of 8-bit color depth in any mode. Table 6.10. Input Video Formats Input Format Data Bus Width Clock Mode11 Sync Signals RGB 4:4:4 YCbCr 4:4:4 YC 4:2:2 Separate Syncs 1 2 3 24 24 16, 2010, 2410 1x 1x 1x Separate Separate Separate 42 42 43 — — 58 YC 4:2:2 Embedded Syncs 1 16, 2010, 2410 1x Embedded 46 59 2, 4 YC MUX 4:2:2 Separate Syncs YC MUX 4:2:2 Embedded Syncs 3 4 8, 1010, 1210 8, 1010, 1210 2x 2x Separate Embedded 49 51 60 61 2, 3, 4, 7 2, 3, 4, 5, 7 RGB 4:4:4 YCbCr 4:4:4 1 1 12 12 dual-edge dual-edge Separate Separate 54 54 63 63 8 1, 8 YC 4:2:2 Separate Syncs YC 4:2:2 Embedded Syncs 1 1 8, 10, 12 12 dual-edge dual-edge Separate Embedded 55 53 64 62 2, 4, 8 2, 4, 8 Input Mode Page 81-Ball/72-Pin 49-Ball Notes 6, 10 1, 6, 10 2 Notes: 1. 4:4:4 data contains one Cr, one Cb, and one Y value for every pixel. 2. 4:2:2 data contains one Cr and one Cb value for every two pixels, and one Y value for every pixel. 3. In YC MUX mode, data is input on one or two 8-bit channels. A 2x pixel clock is required. 4. Y and CbCr data can be input on 12 bits (as part of a 24-bit mode or as a 12-bit mode), but the two least-significant bits will be zero since the internal data path is 10 bits wide. 5. Embedded sync decoding extracts the syncs. A 2x pixel clock is required. Note that the DE generator may be needed to convert extracted sync timings to CEA-861D-compliant timings. 6. A 2x pixel clock can also be sent with 4:4:4 data. This is necessary when the receiver is required to reformat such a stream into 4:2:2 data or into a multiplexed YC MUX output format. 7. When sending a 2x pixel clock, the HDMI source must also send AVI InfoFrames with an accurate pixel replication field. Refer to the HDMI Specification, section 6.4. 8. Dual-edge clocking is allowed for these video mappings. Frequencies above 82.5 MHz dual-edge mode are only supported by the 72-pin QFN package and with IOVCC supplied at 3.3 V ± 10%. 9. The HDMI and the EIA/CEA-861D specifications require virtually every HDMI source to transmit an accurate AVI InfoFrame. Even in the rare cases where it is not absolutely required, Lattice Semiconductor strongly recommends that an AVI InfoFrame be transmitted during every vertical blanking interval. 10. Supported only in the 81-ball and 72-pin package. 11. Latching edge is programmable in single-edge clocking. The transmitter can provide video across the HDMI link in various formats. Figure 6.3 on the next page shows an overview of the processing blocks needed for some of the available format transformations from video input to HDMI output. The TMDS encoding step is not shown in this figure. See also Figure 2.1 on page 9. The mapping tables and timing diagrams beginning on page 42 are divided into two sections. The first is for the 81-ball and 72-pin package, and begins on page 42; the second is for the 49-ball package, and begins on page 58. In these tables, the term Swap indicates that the Y and the Cb/Cr pin assignments are reversed, meaning the Y signals of the Swap mapping appear on the Cb/Cr signals of the standard mapping. The term Non-broken (NB) indicates that the signal assignments of Y, Cb, and Cr signals are contiguous. For example, signals Y0 through Y9 appear on consecutive data pins D[2:11], whereas in the standard mapping they may be broken by NC or Cb/Cr signals. In the timing diagrams which follow, data bits labeled val do not convey pixel information and will contain values defined by the relevant specification. In the diagrams showing embedded sync, the SAV and EAV sequence FF, 00, 00, XY is specified by ITU-R BT.656. Unused inputs should be left unconnected. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 40 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Clock Data HS,VS HSYNC VSYNC Dither10To8 DE DE Generator DE YCbCrToRGB CSC bypass 422 bypass CSC external DE Dithering is required whenever processing pixels in 10-bit internal path, and outputting 8-bit values. All signals required for TMDS formatting. RGB or YCbCr 4:4:4 RGB or YCbCr 4:4:4 IDCK D[23:0] Explicit syncs, with or without DE. Data 422to444 Upsampler HS,VS HSYNC VSYNC bypass CSC external DE Up-sample to 4:4:4 for link IDCK YCbCr 4:2:2 with syncs Dither10To8 DE DE Generator DE YCbCrToRGB CSC RGB or YCbCr 4:4:4 Clock D[23:0] / D[15:0]* Convert to RGB or allow YCbCr, depending on EDID Clock D[23:0] / D[15:0]* Data bypass 422 HS,VS HSYNC VSYNC Explicit syncs, with or without DE. DE bypass CSC bypass dither DE DE Generator Transmit 4:2:2 YCbCr 4:2:2 YCbCr 4:2:2 with syncs IDCK Transmit YCbCr external DE Clock DeMux656 DE Dither10To8 bypass CSC Up-sample to 4:4:4 for link IDCK Convert to RGB or allow YCbCr, depending on EDID DeMux656 Data HS,VS DE bypass CSC bypass 422 All signals required for TMDS formatting. bypass dither YCbCr 4:2:2 Clock D[23:0] / D[15:0]* D[15:0] / D[7:0] YCbCrToRGB CSC Transmit 4:2:2 Transmit YCbCr Clock Data DeMux YC HSYNC VSYNC bypass CSC bypass 422 HS,VS DE All signals required for TMDS formatting. DE bypass dither YCbCr 4:2:2 YCMux 4:2:2 with syncs 422to444 Upsampler Embedded syncs with no explicit DE 2x IDCK YCMux 4:2:2 emb. syncs Data HS,VS RGB or YCbCr 4:4:4 IDCK D[23:0] / D[15:0]* Transmit 4:2:2 Transmit YCbCr Embedded syncs with no explicit DE 2x IDCK D[15:0] / D[7:0]* Clock DeMux YC DeMux656 Data HS,VS DE bypass 422 bypass CSC bypass dither YCbCr 4:2:2 YCbCr 4:2:2 emb. syncs YCbCr 4:2:2 emb. syncs All signals required for TMDS formatting. * 49-ball VFBGA only Figure 6.3. Parallel Input Video to HDMI Output Video Permutations © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 41 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Data Mappings for 81-ball and 72-pin Package 6.11.1.1. RGB and YCbCr 4:4:4 Separate Sync Formats The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. Each column in Table 6.11 lists the first pixel of n + 1 pixels in the line of video. The figure below the table shows RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Table 6.11. RGB/YCbCr 4:4:4 Separate Sync Data Mapping (81-Ball and 72-Pin Package) 24-bit Data Bus Pin Name D0 RGB B0[0] YCbCr Cb0[0] D1 D2 D3 B0[1] B0[2] B0[3] Cb0[1] Cb0[2] Cb0[3] D4 D5 D6 B0[4] B0[5] B0[6] Cb0[4] Cb0[5] Cb0[6] D7 D8 B0[7] G0[0] Cb0[7] Y0[0] D9 D10 D11 G0[1] G0[2] G0[3] Y0[1] Y0[2] Y0[3] D12 D13 G0[4] G0[5] Y0[4] Y0[5] D14 D15 D16 G0[6] G0[7] R0[0] Y0[6] Y0[7] Cr0[0] D17 D18 R0[1] R0[2] Cr0[1] Cr0[2] D19 D20 D21 R0[3] R0[4] R0[5] Cr0[3] Cr0[4] Cr0[5] D22 D23 R0[6] R0[7] Cr0[6] Cr0[7] HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC DE DE DE blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[23:16] val R0[7:0] {Cr0[7:0]} R1[7:0] {Cr1[7:0]} R2[7:0] {Cr2[7:0]} R3[7:0] {Cr3[7:0]} Rn-1[7:0] {Crn-1[7:0]} Rn[7:0] {Crn[7:0]} val val val D[15:8] val G0[7:0] {Y0[7:0]} G1[7:0] {Y1[7:0]} G2[7:0] {Y2[7:0]} G3[7:0] {Y3[7:0]} Gn-1[7:0] {Yn-1[7:0]} Gn[7:0] {Yn[7:0]} val val val D[7:0] val B0[7:0] {Cb0[7:0]} B1[7:0] {Cb1[7:0]} B2[7:0] {Cb2[7:0]} B3[7:0] {Cb3[7:0]} Bn-1[7:0] {Cbn-1[7:0]} Bn[7:0] {Cbn[7:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.4. RGB/YCbCr 4:4:4 Separate Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 42 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.1.2. YC 4:2:2 Separate Sync Formats The YC 4:2:2 formats receive one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the chroma values (Cb and Cr) change only every second pixel. The data bus can be 16-bit, 20-bit, or 24-bit. HSYNC and VSYNC are driven explicitly on their own pins. Each pair of columns in Table 6.12 and Table 6.13 list the first and second pixel of n + 1 pixels in the line of video. In the figures of this section, values in braces {} show the Swap mode. The DE HIGH time must contain an even number of pixel clocks. Table 6.12. 16-Bit and 20-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) Pin Name 16-bit Data Bus Swap 16-bit Data Bus 20-bit Data Bus 20-bit Data Bus NB 20-bit Data Bus Swap Pixel #0 Pixel #1 Pixel #0 Pixel #1 Pixel #0 Pixel #1 Pixel #0 Pixel #1 Pixel #0 Pixel #1 D[1:0] D2 D3 NC NC NC NC NC NC NC NC NC NC NC NC NC Y0[0] Y0[1] NC Y1[0] Y1[1] NC Y0[0] Y0[1] NC Y1[0] Y1[1] NC Cb0[0] Cb0[1] NC Cr0[0] Cr0[1] D4 D5 D6 NC NC NC NC NC NC NC NC NC NC NC NC NC NC Cb0[0] NC NC Cr0[0] Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] NC NC Y0[0] NC NC Y1[0] D7 D8 NC Y0[0] NC Y1[0] NC Cb0[0] NC Cr0[0] Cb0[1] Y0[2] Cr0[1] Y1[2] Y0[5] Y0[6] Y1[5] Y1[6] Y0[1] Cb0[2] Y1[1] Cr0[2] D9 D10 D11 Y0[1] Y0[2] Y0[3] Y1[1] Y1[2] Y1[3] Cb0[1] Cb0[2] Cb0[3] Cr0[1] Cr0[2] Cr0[3] Y0[3] Y0[4] Y0[5] Y1[3] Y1[4] Y1[5] Y0[7] Y0[8] Y0[9] Y1[7] Y1[8] Y1[9] Cb0[3] Cb0[4] Cb0[5] Cr0[3] Cr0[4] Cr0[5] D12 D13 Y0[4] Y0[5] Y1[4] Y1[5] Cb0[4] Cb0[5] Cr0[4] Cr0[5] Y0[6] Y0[7] Y1[6] Y1[7] NC NC NC NC Cb0[6] Cb0[7] Cr0[6] Cr0[7] D14 D15 D16 Y0[6] Y0[7] Cb0[0] Y1[6] Y1[7] Cr0[0] Cb0[6] Cb0[7] Y0[0] Cr0[6] Cr0[7] Y1[0] Y0[8] Y0[9] Cb0[2] Y1[8] Y1[9] Cr0[2] Cb0[0] Cb0[1] Cb0[2] Cr0[0] Cr0[1] Cr0[2] Cb0[8] Cb0[9] Y0[2] Cr0[8] Cr0[9] Y1[2] D17 D18 D19 Cb0[1] Cb0[2] Cb0[3] Cr0[1] Cr0[2] Cr0[3] Y0[1] Y0[2] Y0[3] Y1[1] Y1[2] Y1[3] Cb0[3] Cb0[4] Cb0[5] Cr0[3] Cr0[4] Cr0[5] Cb0[3] Cb0[4] Cb0[5] Cr0[3] Cr0[4] Cr0[5] Y0[3] Y0[4] Y0[5] Y1[3] Y1[4] Y1[5] D20 D21 Cb0[4] Cb0[5] Cr0[4] Cr0[5] Y0[4] Y0[5] Y1[4] Y1[5] Cb0[6] Cb0[7] Cr0[6] Cr0[7] Cb0[6] Cb0[7] Cr0[6] Cr0[7] Y0[6] Y0[7] Y1[6] Y1[7] D22 D23 Cb0[6] Cb0[7] Cr0[6] Cr0[7] Y0[6] Y0[7] Y1[6] Y1[7] Cb0[8] Cb0[9] Cr0[8] Cr0[9] Cb0[8] Cb0[9] Cr0[8] Cr0[9] Y0[8] Y0[9] Y1[8] Y1[9] HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC DE DE DE DE DE DE DE DE DE DE DE blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[23:16] val Cb0[7:0] {Y0[7:0]} Cr0[7:0] {Y1[7:0]} Cb2[7:0] {Y2[7:0]} Cr2[7:0] {Y3[7:0]} Cbn-1[7:0] {Yn-1[7:0]} Crn-1[7:0] {Yn[7:0]} val val val D[15:8] val Y0[7:0] {Cb0[7:0]} Y1[7:0] {Cr0[7:0]} Y2[7:0] {Cb2[7:0]} Y3[7:0] {Cr2[7:0]} Yn -1[7:0] Yn [7:0] {Cbn-1[7:0]} {Crn-1[7:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.5. 16-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 43 SiI9022A/SiI9024A HDMI Transmitter Data Sheet blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[23:16] val Cb0[9:2] {Y0[9:2]} Cr0[9:2] {Y1[9:2]} Cb2[9:2] {Y2[9:2]} Cr2[9:2] {Y3[9:2]} Cbn-1[9:2] {Y-1[9:2]} Crn-1[9:2] {Yn[9:2]} val val val D[15:8] val Y0[9:2] {Cb0[9:2]} Y1[9:2] {Cr0[9:2]} Y2[9:2] {Cb2[9:2]} Y3[9:2] {Cr2[9:2]} Y n -1[9:2] Y n [9:2] {Cbn-1[9:2]} {Crn-1[9:2]} val val val D[7:6] val Cb0[1:0] {Y0[1:0]} Cr0[1:0] {Y1[1:0]} Cb2[1:0] {Y2[1:0]} Cr2[1:0] {Y3[1:0]} Cbn-1[1:0] Crn-1[1:0] {Yn-1[1:0]} {Yn[1:0]} val val val D[3:2] val Y0[1:0] {Cb0[1:0]} Y1[1:0] {Cr0[1:0]} Y2[1:0] {Cb2[1:0]} Y3[1:0] {Cr2[1:0]} Y n -1[1:0] Y n [1:0] {Cbn-1[1:0]} {Crn-1[1:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.6. 20-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[23:14] val Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] Crn-1[9:0] val val val D[11:2] val Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Y n -1[9:0] Y n [9:0] val val val IDCK DE HSYNC, VSYNC Figure 6.7. 20-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 44 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 6.13. 24-Bit YC 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) 24-bit Data Bus Pin Name 24-bit Data Bus NB 24-bit Data Bus Swap D0 D1 Pixel #0 Y0[0] Y0[1] Pixel #1 Y1[0] Y1[1] Pixel #0 Y0[0] Y0[1] Pixel #1 Y1[0] Y1[1] Pixel #0 Cb0[0] Cb0[1] Pixel #1 Cr0[0] Cr0[1] D2 D3 Y0[2] Y0[3] Y1[2] Y1[3] Y0[2] Y0[3] Y1[2] Y1[3] Cb0[2] Cb0[3] Cr0[2] Cr0[3] D4 D5 D6 Cb0[0] Cb0[1] Cb0[2] Cr0[0] Cr0[1] Cr0[2] Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Y0[0] Y0[1] Y0[2] Y1[0] Y1[1] Y1[2] D7 D8 D9 Cb0[3] Y0[4] Y0[5] Cr0[3] Y1[4] Y1[5] Y0[7] Y0[8] Y0[9] Y1[7] Y1[8] Y1[9] Y0[3] Cb0[4] Cb0[5] Y1[3] Cr0[4] Cr0[5] D10 D11 Y0[6] Y0[7] Y1[6] Y1[7] Y0[10] Y0[11] Y1[10] Y1[11] Cb0[6] Cb0[7] Cr0[6] Cr0[7] D12 D13 D14 Y0[8] Y0[9] Y0[10] Y1[8] Y1[9] Y1[10] Cb0[0] Cb0[1] Cb0[2] Cr0[0] Cr0[1] Cr0[2] Cb0[8] Cb0[9] Cb0[10] Cr0[8] Cr0[9] Cr0[10] D15 D16 Y0[11] Cb0[4] Y1[11] Cr0[4] Cb0[3] Cb0[4] Cr0[3] Cr0[4] Cb0[11] Y0[4] Cr0[11] Y1[4] D17 D18 D19 Cb0[5] Cb0[6] Cb0[7] Cr0[5] Cr0[6] Cr0[7] Cb0[5] Cb0[6] Cb0[7] Cr0[5] Cr0[6] Cr0[7] Y0[5] Y0[6] Y0[7] Y1[5] Y1[6] Y1[7] D20 D21 D22 Cb0[8] Cb0[9] Cb0[10] Cr0[8] Cr0[9] Cr0[10] Cb0[8] Cb0[9] Cb0[10] Cr0[8] Cr0[9] Cr0[10] Y0[8] Y0[9] Y0[10] Y1[8] Y1[9] Y1[10] D23 Cb0[11] Cr0[11] Cb0[11] Cr0[11] Y0[11] Y1[11] HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC DE DE DE DE DE DE DE blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[23:16] val Cb0[11:4] {Y0[11:4]} Cr0[11:4] {Y1[11:4]} Cb2[11:4] {Y2[11:4]} Cr2[11:4] {Y3[11:4]} Cbn-1[11:4] {Yn-1[11:4]} Crn-1[11:4] {Yn[11:4]} val val val D[15:8] val Y0[11:4] {Cb0[11:4]} Y1[11:4] {Cr0[11:4]} Y2[11:4] {Cb2[11:4]} Y3[11:4] {Cr2[11:4]} Yn-1[11:4] Yn[11:4] {Cbn-1[11:4]} {Crn-1[11:4]} val val val D[7:4] val Cb0[3:0] {Y0[3:0]} Cr0[3:0] {Y1[3:0]} Cb2[3:0] {Y2[3:0]} Cr2[3:0] {Y3[3:0]} Cbn-1[3:0] {Yn-1[3:0]} Crn-1[3:0] {Yn[3:0]} val val val D[3:0] val Y0[3:0] {Cb0[3:0]} Y1[3:0] {Cr0[3:0]} Y2[3:0] {Cb2[3:0]} Y3[3:0] {Cr2[3:0]} Yn-1[3:0] {Cbn-1[3:0]} Yn[3:0] {Crn-1[3:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.8. 24-Bit YC 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 45 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Pixeln - 1 Pixel n blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 D[23:12] val Cb0[11:0] Cr0[11:0] Cb2[11:0] Cr2[11:0] Cbn-1[11:0] Crn-1[11:0] D[11:0] val Y0[11:0] Y1[11:0] Y2[11:0] Y3[11:0] Yn-1[11:0] blank blank blank val val val val val val Yn[11:0] IDCK DE . HSYNC, VSYNC Figure 6.9. 24-Bit YC 4:2:2 Separate Sync NB Mode Timing (81-Ball and 72-Pin Package) 6.11.1.3. YC 4:2:2 Embedded Sync Formats The Embedded Sync format is identical to the YC 4:2:2 Formats with Separate Syncs format, except that the syncs are embedded and not explicit. The data bus can be 16-bit, 20-bit, or 24-bit. Each pair of columns in Table 6.14 and Table 6.15 list the first and second pixel of n + 1 pixels in the line of video. In the figures of this section, values in braces {} show the Swap mode. Table 6.14. 16-Bit and 20-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) Pin Name 16-bit Data Bus 16-bit Data Bus Swap 20-bit Data Bus 20-bit Data Bus Swap 20-bit Data Bus NB D[1:0] Pixel #0 NC Pixel #1 NC Pixel #0 NC Pixel #1 NC Pixel #0 NC Pixel #1 NC Pixel #0 NC Pixel #1 NC Pixel #0 NC Pixel #1 NC D2 D3 D4 NC NC NC NC NC NC NC NC NC NC NC NC Y0[0] Y0[1] NC Y1[0] Y1[1] NC Cb0[0] Cb0[1] NC Cr0[0] Cr0[1] NC Y0[0] Y0[1] Y0[2] Y1[0] Y1[1] Y1[2] D5 D6 D7 NC NC NC NC NC NC NC NC NC NC NC NC NC Cb0[0] Cb0[1] NC Cr0[0] Cr0[1] NC Y0[0] Y0[1] NC Y1[0] Y1[1] Y0[3] Y0[4] Y0[5] Y1[3] Y1[4] Y1[5] D8 D9 Y0[0] Y0[1] Y1[0] Y1[1] Cb0[0] Cb0[1] Cr0[0] Cr0[1] Y0[2] Y0[3] Y1[2] Y1[3] Cb0[2] Cb0[3] Cr0[2] Cr0[3] Y0[6] Y0[7] Y1[6] Y1[7] D10 D11 D12 Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] Cb0[2] Cb0[3] Cb0[4] Cr0[2] Cr0[3] Cr0[4] Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] Y0[8] Y0[9] NC Y1[8] Y1[9] NC D13 D14 Y0[5] Y0[6] Y1[5] Y1[6] Cb0[5] Cb0[6] Cr0[5] Cr0[6] Y0[7] Y0[8] Y1[7] Y1[8] Cb0[7] Cb0[8] Cr0[7] Cr0[8] NC Cb0[0] NC Cr0[0] D15 D16 D17 Y0[7] Cb0[0] Cb0[1] Y1[7] Cr0[0] Cr0[1] Cb0[7] Y0[0] Y0[1] Cr0[7] Y1[0] Y1[1] Y0[9] Cb0[2] Cb0[3] Y1[9] Cr0[2] Cr0[3] Cb0[9] Y0[2] Y0[3] Cr0[9] Y1[2] Y1[3] Cb0[1] Cb0[2] Cb0[3] Cr0[1] Cr0[2] Cr0[3] D18 D19 D20 Cb0[2] Cb0[3] Cb0[4] Cr0[2] Cr0[3] Cr0[4] Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] Y0[4] Y0[5] Y0[6] Y1[4] Y1[5] Y1[6] Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] D21 D22 Cb0[5] Cb0[6] Cr0[5] Cr0[6] Y0[5] Y0[6] Y1[5] Y1[6] Cb0[7] Cb0[8] Cr0[7] Cr0[8] Y0[7] Y0[8] Y1[7] Y1[8] Cb0[7] Cb0[8] Cr0[7] Cr0[8] D23 Cb0[7] Cr0[7] Y0[7] Y1[7] Cb0[9] Cr0[9] Y0[9] Y1[9] Cb0[9] Cr0[9] HSYNC VSYNC DE NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 46 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n D[23:16] nc nc nc nc Cb0[7:0] {Y0[7:0]} Cr0[7:0] {Y1[7:0]} Cb2[7:0] {Y2[7:0]} Cr2[7:0] {Y3[7:0]} Cb n-1[7:0] {Yn-1[7:0]} D[15:8] FF 00 00 XY Y0[7:0] {Cb0[7:0]} Y1[7:0] {Cr0[7:0]} Y2[7:0] {Cb2[7:0]} Y3[7:0] {Cr2[7:0]} EAV Cr n-1[7:0] {Yn[7:0]} nc nc Yn -1[7:0] Yn [7:0] {Cbn-1[7:0]} {Crn-1[7:0]} FF 00 nc nc 00 XY IDCK Active video Figure 6.10. 16-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n Cr0[9:2] {Y1[9:2]} Cb2[9:2] {Y2[9:2]} Cr2[9:2] {Y3[9:2]} Cbn-1[9:2] {Y-1[9:2]} D[23:16] nc nc nc nc Cb0[9:2] {Y0[9:2]} D[15:8] FF 00 00 XY Y0[9:2] {Cb0[9:2]} Y1[9:2] {Cr0[9:2]} Y2[9:2] {Cb2[9:2]} Y3[9:2] {Cr2[9:2]} D[7:6] FF 00 00 XY Cb0[1:0] {Y0[1:0]} Cr0[1:0] {Y1[1:0]} Cb2[1:0] {Y2[1:0]} D[3:2] FF 00 00 XY Y0[1:0] {Cb0[1:0]} Y1[1:0] {Cr0[1:0]} Y2[1:0] {Cb2[1:0]} Cr n-1[9:2] {Yn[9:2]} EAV nc nc nc nc Y n -1[9:2] Y n [9:2] {Cbn-1[9:2]} {Crn-1[9:2]} FF 00 00 XY Cr2[1:0] {Y3[1:0]} Cbn-1[1:0] {Yn-1[1:0]} Cr n-1[1:0] {Yn[1:0]} FF 00 00 XY Y3[1:0] {Cr2[1:0]} Y n -1[1:0] Y n [1:0] {Cbn-1[1:0]} {Cr n-1[1:0]} FF 00 00 XY IDCK Active video Figure 6.11. 20-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 EAV Pixel n - 1 Pixel n D[23:14] nc nc nc nc Cb0[9:0] Cr0[9:0] Cb2[9:0] Cr2[9:0] Cbn-1[9:0] Crn-1[9:0] nc D[11:2] FF 00 00 XY Y0[9:0] Y1[9:0] Y2[9:0] Y3[9:0] Y n -1[9:0] Y n [9:0] FF nc 00 nc 00 nc XY IDCK Active video Figure 6.12. 20-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 47 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 6.15. 24-Bit YC 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) 24-bitData Bus Swap 24-bitData Bus Pin Name 24-bitData Bus NB Pixel #0 Pixel #1 Pixel #0 Pixel #1 Pixel #0 Pixel #1 D0 D1 Y0[0] Y0[1] Y1[0] Y1[1] Cb0[0] Cb0[1] Cr0[0] Cr0[1] Y0[0] Y0[1] Y1[0] Y1[1] D2 D3 D4 Y0[2] Y0[3] Cb0[0] Y1[2] Y1[3] Cr0[0] Cb0[2] Cb0[3] Y0[0] Cr0[2] Cr0[3] Y1[0] Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] D5 D6 D7 Cb0[1] Cb0[2] Cb0[3] Cr0[1] Cr0[2] Cr0[3] Y0[1] Y0[2] Y0[3] Y1[1] Y1[2] Y1[3] Y0[5] Y0[6] Y0[7] Y1[5] Y1[6] Y1[7] D8 D9 Y0[4] Y0[5] Y1[4] Y1[5] Cb0[4] Cb0[5] Cr0[4] Cr0[5] Y0[8] Y0[9] Y1[8] Y1[9] D10 D11 D12 Y0[6] Y0[7] Y0[8] Y1[6] Y1[7] Y1[8] Cb0[6] Cb0[7] Cb0[8] Cr0[6] Cr0[7] Cr0[8] Y0[10] Y0[11] Cb0[0] Y1[10] Y1[11] Cr0[0] D13 D14 Y0[9] Y0[10] Y1[9] Y1[10] Cb0[9] Cb0[10] Cr0[9] Cr0[10] Cb0[1] Cb0[2] Cr0[1] Cr0[2] D15 D16 D17 Y0[11] Cb0[4] Cb0[5] Y1[11] Cr0[4] Cr0[5] Cb0[11] Y0[4] Y0[5] Cr0[11] Y1[4] Y1[5] Cb0[3] Cb0[4] Cb0[5] Cr0[3] Cr0[4] Cr0[5] D18 D19 D20 Cb0[6] Cb0[7] Cb0[8] Cr0[6] Cr0[7] Cr0[8] Y0[6] Y0[7] Y0[8] Y1[6] Y1[7] Y1[8] Cb0[6] Cb0[7] Cb0[8] Cr0[6] Cr0[7] Cr0[8] D21 D22 Cb0[9] Cb0[10] Cr0[9] Cr0[10] Y0[9] Y0[10] Y1[9] Y1[10] Cb0[9] Cb0[10] Cr0[9] Cr0[10] D23 Cb0[11] Cr0[11] Y0[11] Y1[11] Cb0[11] Cr0[11] HSYNC VSYNC DE NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC SAV EAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n Cr0[11:4] {Y1[11:4]} Cb2[11:4] {Y2[11:4]} Cr2[11:4] {Y3[11:4]} Cbn-1[11:4] Crn-1[11:4] {Yn-1[11:4]} {Yn[11:4]} nc nc nc nc Y2[11:4] {Cb2[11:4]} Y3[11:4] {Cr2[11:4]} Yn[11:4] Yn-1[11:4] Cbn-1[11:4]} {Crn-1[11:4]} nc nc nc nc D[23:16] nc nc nc nc Cb0[11:4] {Y0[11:4]} D[15:8] nc nc nc nc Y0[11:4] Y1[11:4] {Cb0[11:4]} {Cr0[11:4]} D[7:4] FF 00 00 XY Cb0[3:0] {Y0[3:0]} Cr0[3:0] {Y1[3:0]} Cb2[3:0] {Y2[3:0]} Cr2[3:0] {Y3[3:0]} Cbn-1[3:0] {Yn-1[3:0]} Crn-1[3:0] {Yn[3:0]} FF 00 00 XY D[3:0] FF 00 00 XY Y0[3:0] {Cb0[3:0]} Y1[3:0] {Cr0[3:0]} Y2[3:0] {Cb2[3:0]} Y3[3:0] {Cr2[3:0]} Yn-1[3:0] Yn[3:0] {Cbn-1[3:0]} {Crn-1[3:0]} FF 00 00 XY IDCK Active video Figure 6.13. 24-Bit YC 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 48 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet SAV D[23:12] nc nc nc nc D[11:0] FF 00 00 XY Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Cb0[11:0] Cr0[11:0] Cb2[11:0] Cr2[11:0] Cbn-1[11:0] Crn-1[11:0] Y0[11:0] Y1[11:0] Y2[11:0] Y3[11:0] Yn-1[11:0] EAV Pixel n Yn[11:0] nc nc FF 00 nc nc 00 XY IDCK Active video Figure 6.14. 24-Bit YC 4:2:2 Embedded Sync NB Mode Timing (81-Ball and 72-Pin Package) 6.11.1.4. YC Mux 4:2:2 Separate Sync Formats The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on page 43. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.16 lists the four clock cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the rest of the pixels in a video line of n + 1 pixels. Table 6.16. 8-, 10-, and 12-Bit YC Mux 4:2:2 Separate Sync Data Mapping (81-Ball and 72-Pin Package) Pin Name 8-bit Data Bus Clock cycle Second Third First D0 D1 NC NC D2 D3 D[7:4] NC NC NC Fourth First 10-bit Data Bus Clock cycle Second Third Fourth First NC NC Cb0[0] Cb0[1] Y0[0] Y0[1] Cr0[0] Cr0[1] Y1[0] Y1[1] 12-bit Data Bus Clock cycle Second Third Fourth Cb0[0] Cb0[1] Y0[0] Y0[1] Cr0[0] Cr0[1] Y1[0] Y1[1] Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] NC NC D8 D9 D10 Cb0[0] Cb0[1] Cb0[2] Y0[0] Y0[1] Y0[2] Cr0[0] Cr0[1] Cr0[2] Y1[0] Y1[1] Y1[2] Cb0[2] Cb0[3] Cb0[4] Y0[2] Y0[3] Y0[4] Cr0[2] Cr0[3] Cr0[4] Y1[2] Y1[3] Y1[4] Cb0[4] Cb0[5] Cb0[6] Y0[4] Y0[5] Y0[6] Cr0[4] Cr0[5] Cr0[6]] Y1[4] Y1[5] Y1[6] D11 D12 Cb0[3] Cb0[4] Y0[3] Y0[4] Cr0[3] Cr0[4] Y1[3] Y1[4] Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6]] Y1[5] Y1[6] Cb0[7] Cb0[8] Y0[7] Y0[8] Cr0[7] Cr0[8] Y1[7] Y1[8] D13 D14 D15 Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Cr0[5] Cr0[6]] Cr0[7] Y1[5] Y1[6] Y1[7] Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] Cb0[9] Cb0[10] Cb0[11] Y0[9] Y0[10] Y0[11] Cr0[9] Cr0[10] Cr0[11] Y1[9] Y1[10] Y1[11] D[23:16] NC NC NC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC HSYNC VSYNC DE DE DE DE Pixel 0 D[15:8] val Cb0[7:0] Y0[7:0] Pixel 1 Cr0[7:0] Y1[7:0] Pixel 2 Cb2[7:0] Y2[7:0] Pixel 3 Cr2[7:0] Y3[7:0] Pixel n - 1 Cbn-1[7:0] Yn-1[7:0] Pixel n Crn-1[7:0] Yn[7:0] val IDCK DE HSYNC VSYNC Figure 6.15. 8-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 49 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n D[15:8] val Cb0[9:2] Y0[9:2] Cr0[9:2] Y1[9:2] Cb2[9:2] Y2[9:2] Cr2[9:2] Y3[9:2] Cbn-1[9:2] Yn-1[9:2] Crn-1[9:2] Yn[9:2] val D[3:2] val Cb0[1:0] Y0[1:0] Cr0[1:0] Y1[1:0] Cb2[1:0] Y2[1:0] Cr2[1:0] Y3[1:0] Cbn-1[1:0] Yn-1[1:0] Crn-1[1:0] Yn[1:0] val IDCK DE HSYNC VSYNC Figure 6.16. 10-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n D[15:8] val Cb0[11:4] Y0[11:4] Cr0[11:4] Y1[11:4] Cb2[11:4] Y2[11:4] Cr2[11:4] Y3[11:4] Cbn-1[11:4] Yn-1[11:4] Crn-1[11:4] Yn[11:4] val D[3:0] val Cb0[3:0] Y0[3:0] Cr0[3:0] Y1[3:0] Cb2[3:0] Y2[3:0] Cr2[3:0] Y3[3:0] Cbn-1[3:0] Yn-1[3:0] Crn-1[3:0] Yn[3:0] val IDCK DE HSYNC VSYNC Figure 6.17. 12-Bit YC Mux 4:2:2 Separate Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 50 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.1.5. YC Mux 4:2:2 Embedded Sync Formats This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Formats section on page 49, except the syncs are embedded. Normally this mode is used only for 480i, 480p, 576i and 576p modes. It is similar to SMTPE 293 in embedding the syncs. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. The input clock rate is twice the pixel clock rate. Each group of four columns in Table 6.17 lists the four clock cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figures following this table show only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but the remaining pixels are similar to those shown in the figures of the previous section. 480p, 54 MHz input can be achieved if the input clock is 54 MHz. The DE generator may be needed to convert extracted sync timings to CEA-861D timings. See the ITU-R BT.656 Specification. Table 6.17. 8-, 10-, and 12-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (81-Ball and 72-Pin Package) 8-bit Data Bus Pin Name 10-bit Data Bus 12-bit Data Bus D0 Clock cycle Second Third NC D1 D2 NC NC D3 D[7:4] D8 NC NC Cb0[0] Y0[0] Cr0[0] Y1[0] Cb0[2] Y0[2] Cr0[2] Y1[2] Cb0[4] D9 D10 D11 Cb0[1] Cb0[2] Cb0[3] Y0[1] Y0[2] Y0[3] Cr0[1] Cr0[2] Cr0[3] Y1[1] Y1[2] Y1[3] Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D12 D13 Cb0[4] Cb0[5] Y0[4] Y0[5] Cr0[4] Cr0[5] Y1[4] Y1[5] Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6]] Cr0[7] D14 D15 D[23:16] Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6]] Cr0[7] NC Y1[6] Y1[7] Cb0[8] Cb0[9] Y0[8] Y0[9] Cr0[8] Cr0[9] First HSYNC VSYNC DE First Clock cycle Second Third NC Cb0[0] Y0[0] Cb0[1] Y0[1] 00 Pixel 0 00 First Cb0[0] Clock cycle Second Third Y0[0] Cr0[0] Cr0[0] Y1[0] Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Y1[1] Cb0[3] Y0[3] Y1[1] Y1[2] Cr0[3] Y1[3] Y0[4] Cr0[4] Y1[4] Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Cr0[5] Cr0[6]] Cr0[7] Y1[5] Y1[6] Y1[7] Y1[6] Y1[7] Cb0[8] Cb0[9] Y0[8] Y0[9] Cr0[8] Cr0[9] Y1[8] Y1[9] Y1[8] Y1[9] Cb0[10] Cb0[11] Y0[10] Y0[11] Cr0[10] Cr0[11] Y1[10] Y1[11] XY Cb0[7:0] Y0[7:0] Cr0[7:0] NC NC NC NC NC NC NC NC NC Pixel 1 Y1[7:0] Fourth Y1[0] Cr0[1] Cr0[2] NC NC NC NC FF Fourth NC SAV D[15:8] Fourth EAV Pixel n Crn-1[7:0] Yn[7:0] FF 00 00 XY IDCK Active video Figure 6.18. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) SAV Pixel 0 Pixel 1 EAV Pixel n D[15:8] FF 00 00 XY Cb0[9:2] Y0[9:2] Cr0[9:2] Y1[9:2] Crn-1[9:2] Yn[9:2] FF 00 00 XY D[3:2] FF 00 00 XY Cb0[1:0] Y0[1:0] Cr0[1:0] Y1[1:0] Crn-1[1:0] Yn[1:0] FF 00 00 XY IDCK Active video Figure 6.19. 10-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 51 SiI9022A/SiI9024A HDMI Transmitter Data Sheet SAV Pixel 0 Pixel 1 EAV Pixel n D[15:8] FF 00 00 XY Cb0[11:4] Y0[11:4] Cr0[11:4] Y1[11:4] Crn-1[11:4] Yn[11:4] FF 00 00 XY D[3:0] FF 00 00 XY Cb0[3:0] Y0[3:0] Cr0[3:0] Y1[3:0] Crn-1[3:0] Yn[3:0] FF 00 00 XY IDCK Active video Figure 6.20. 12-Bit YC Mux 4:2:2 Embedded Sync Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 52 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.1.6. YC 4:2:2 Embedded Sync Dual Edge Format The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock. One clock edge latches in half the pixel data on 12 pins. The opposite clock edge latches in the remaining half of the pixel data on the same 12 pins. Data signals (Dx]) must change state to meet the setup and hold times, specified for the 12-bit dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. See Table 3.12 on page 18 or Table 3.13 on page 19. The syncs are embedded and not explicit. Figure 6.21 lists IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). Table 6.18. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) 12-bit Data Bus Pin Name Pixel #0 Pixel #1 D0 First Edge Y0[0] Second Edge Y0[8] First Edge Y1[0] Second Edge Y1[8] D1 D2 Y0[1] Y0[2] Y0[9] Y0[10] Y1[1] Y1[2] Y1[9] Y1[10] D3 D4 D5 Y0[3] Cb0[0] Cb0[1] Y0[11] Cb0[4] Cb0[5] Y13] Cr0[0] Cr0[1] Y1[11] Cr0[4] Cr0[5] D6 D7 Cb0[2] Cb0[3] Cb0[6] Cb0[7] Cr0[2] Cr0[3] Cr0[6] Cr0[7] D8 D9 D10 Y0[4] Y0[5] Y0[6] Cb0[8] Cb0[9] Cb0[10] Y1[4] Y1[5] Y1[6] Cr0[8] Cr0[9] Cr0[10] D11 D[23:12] Y0[7] NC Cb0[11] NC Y1[7] NC Cr0[11] NC HSYNC VSYNC NC NC — — NC NC — — DE NC — NC — Pixel 0 SAV D[11:8] nc nc D[7:4] FF nc 00 nc 00 nc D[3:0] FF nc 00 nc 00 nc nc nc nc nc Pixel 1 nc Y0[7:4] Cb0[11:8] Y1[7:4] Cr0[11:8] XY nc Cb0[3:0] Cb0[7:4] Cr0[3:0] Cr0[7:4] XY nc Y0[3:0] Y0[11:8] Y1[3:0] Y1[11:8] nc IDCK Active video Pixel n - 1 EAV Pixel n D[11:8] Yn-1[7:4] Cbn-1[11:8] Yn[7:4] Crn-1[11:8] nc nc D[7:4] Cbn-1[3:0] Cbn-1[7:4] Crn-1[3:0] Crn-1[7:4] FF nc D[3:0] Yn-1[3:0] Yn-1[11:8] Yn[3:0] Yn[11:8] FF nc nc nc nc 00 nc 00 nc XY nc 00 nc 00 nc XY nc nc nc nc IDCK Active video Figure 6.21. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 53 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.1.7. RGB and YCbCr 4:4:4 Dual Edge Formats The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.19 lists the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). See Table 3.12 on page 18 or Table 3.13 on page 19 for the required timing relationships. Table 6.19. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) 12-bit Data Bus Pin Name RGB YCbCr D0 First Edge B0[0] Second Edge G0[4] First Edge Cb0[0] Second Edge Y0[4] D1 D2 D3 B0[1] B0[2] B0[3] G0[5] G0[6] G0[7] Cb0[1] Cb0[2] Cb0[3] Y0[5] Y0[6] Y0[7] D4 D5 D6 B0[4] B0[5] B0[6] R0[0] R0[1] R0[2] Cb0[4] Cb0[5] Cb0[6] Cr0[0] Cr0[1] Cr0[2] D7 D8 B0[7] G0[0] R0[3] R0[4] Cb0[7] Y0[0] Cr0[3] Cr0[4] D9 D10 D11 G0[1] G0[2] G0[3] R0[5] R0[6] R0[7] Y0[1] Y0[2] Y0[3] Cr0[5] Cr0[6] Cr0[7] D[23:12] NC NC NC NC HSYNC VSYNC DE HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — Note: Unused inputs should be left not connected. Figure 6.22 shows IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 blank Pixel n blank D[11:8] val G0[3:0] {Y0[3:0]} R0[7:4] {Cr0[7:4]} G1[3:0] {Y1[3:0]} R1[7:4] {Cr1[7:4]} G2[3:0] {Y2[3:0]} R2[7:4] {Cr2[7:4]} Gn-1[3:0] {Yn-1[3:0]} Rn-1[7:4] {Crn-1[7:4]} Gn[3:0] {Yn[3:0]} Rn[7:4] {Crn[7:4]} val val val val D[7:4] val B0[7:4] {Cb0[7:4]} R0[3:0] {Cr0[3:0]} B1[7:4] {Cb1[7:4]} R1[3:0] {Cr1[3:0]} B2[7:4] {Cb2[7:4]} R0[3:0] {Cr2[3:0]} Bn-1[7:4] {Cbn-1[7:4]} Rn-1[3:0] {Crn-1[3:0]} Bn[7:4] {Cbn[7:4]} Rn[3:0] {Crn[3:0]} val val val val val B0[3:0] {Cb0[3:0]} G0[7:4] {Y0[7:4]} B1[3:0] {Cb1[3:0]} G1[7:4] {Y1[7:4]} B2[3:0] {Cb2[3:0]} G0[7:4] {Y2[7:4]} Bn-1[3:0] {Cbn-1[3:0]} Gn-1[7:4] {Yn-1[7:4]} Bn[3:0] {Cbn[3:0} Gn[7:4] {Yn[7:4]} val val val val D[3:0] IDCK DE HSYNC, VSYNC Figure 6.22. 12-Bit RGB 4:4:4 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 54 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.1.8. YC 4:2:2 Separate Sync Dual Edge Formats The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. Each group of 4 columns in the tables of this section lists the first two pixels of n + 1 pixels in the line of video. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). See Table 3.12 on page 18 or Table 3.13 on page 19 for the required timing relationships. Pixel values within braces {} in the figures show the values in Swap mode. Table 6.20. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) 8-bit Data Bus Pixel #0 Pin Name Pixel #1 8-bit Data Bus Swap Pixel #0 Pixel #1 Second Second First Edge First Edge Edge Edge First Edge Second Edge First Edge Second Edge D[3:0] NC NC NC NC NC NC NC NC D4 Y0[0] Cb0[0] Y1[0] Cr0[0] Cb0[0] Y0[0] Cr0[0] Y1[0] D5 D6 Y0[1] Y0[2] Cb0[1] Cb0[2] Y1[1] Y1[2] Cr0[1] Cr0[2] Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D7 D8 D9 Y0[3] Y0[4] Y0[5] Cb0[3] Cb0[4] Cb0[5] Y1[3] Y1[4] Y1[5] Cr0[3] Cr0[4] Cr0[5] Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D10 D11 Y0[6] Y0[7] Cb0[6] Cb0[7] Y1[6] Y1[7] Cr0[6] Cr0[7] Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] D[23:12] NC NC NC NC NC NC NC NC HSYNC HSYNC — HSYNC — HSYNC — HSYNC — VSYNC DE VSYNC DE — — VSYNC DE — — VSYNC DE — — VSYNC DE — — blank D[11:4] val Pixel 0 Y0[7:0] {Cb0[7:0]} Cb0[7:0] {Y0[7:0]} Pixel 1 Y1[7:0] {Cr0[7:0]} Cr0[7:0] {Y1[7:0]} Pixel 2 Y2[7:0] {Cb2[7:0]} Cb2[7:0] {Y2[7:0]} Pixel n - 1 blank Pixel n Yn-1[7:0] Cbn-1[7:0] Yn[7:0] Crn-1[7:0] {Cbn-1[7:0]} {Yn-1[7:0]} {Crn-1[7:0]} {Yn[7:0]} val blank val val val IDCK DE HSYNC, VSYNC Figure 6.23. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-b all and 72-p in Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 55 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 6.21. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) 10-bit Data Bus Pin Name Pixel #0 First Edge Second Edge 10-bit Data Bus Swap Pixel #1 First Edge Second Edge Pixel #0 First Edge Second Edge Pixel #1 First Edge Second Edge D[1:0] D2 D3 NC Y0[0] Y0[1] NC Cb0[0] Cb0[1] NC Y1[0] Y1[1] NC Cr0[0] Cr0[1] NC Cb0[0] Cb0[1] NC Y0[0] Y0[1] NC Cr0[0] Cr0[1] NC Y1[0] Y1[1] D4 D5 Y0[2] Y0[3] Cb0[2] Cb0[3] Y1[2] Y1[3] Cr0[2] Cr0[3] Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] D6 D7 D8 Y0[4] Y0[5] Y0[6] Cb0[4] Cb0[5] Cb0[6] Y1[4] Y1[5] Y1[6] Cr0[4] Cr0[5] Cr0[6] Cb0[4] Cb0[5] Cb0[6] Y0[4] Y0[5] Y0[6] Cr0[4] Cr0[5] Cr0[6] Y1[4] Y1[5] Y1[6] D9 D10 D11 Y0[7] Y0[8] Y0[9] Cb0[7] Cb0[8] Cb0[9] Y1[7] Y1[8] Y1[9] Cr0[7] Cr0[8] Cr0[9] Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] D[23:12] NC NC NC NC NC NC NC NC HSYNC VSYNC HSYNC VSYNC — — HSYNC VSYNC — — HSYNC VSYNC — — HSYNC VSYNC — — DE DE — DE — DE — DE — blank D[11:2] val Pixel 0 Y0[9:0] {Cb0[9:0]} Cb0[9:0] {Y0[9:0]} Pixel 1 Y1[9:0] {Cr0[9:0]} Cr0[9:0] {Y1[9:0]} Pixel 2 Y2[9:0] {Cb2[9:0]} Cb2[9:0] {Y2[9:0]} Pixel n - 1 blank Pixel n Yn-1[9:0] Cbn-1[9:0] Yn[9:0] Crn-1[9:0] {Cbn-1[9:0]} {Yn-1[9:0]} {Crn-1[9:0]} {Yn[9:0]} val blank val val val IDCK DE HSYNC, VSYNC Figure 6.24. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 56 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 6.22. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (81-Ball and 72-Pin Package) 12-bit Data Bus 12-bit Data Bus NB 12-bit Data Bus NB Swap Pixel #0 First Second Edge Edge Pixel #1 First Second Edge Edge Pixel #0 First Second Edge Edge Pixel #1 First Second Edge Edge D0 D1 Y0[0] Y0[1] Y0[8] Y0[9] Y1[0] Y1[1] Y1[8] Y1[9] Y0[0] Y0[1] Cb0[0] Cb0[1] Y1[0] Y1[1] Cr0[0] Cr0[1] Cb0[0] Cb0[1] Y0[0] Y0[1] Cr0[0] Cr0[1] Y1[0] Y1[1] D2 D3 D4 Y0[2] Y0[3] Cb0[0] Y0[10] Y0[11] Cb0[4] Y1[2] Y1[3] Cr0[0] Y1[10] Y1[11] Cr0[4] Y0[2] Y0[3] Y0[4] Cb0[2] Cb0[3] Cb0[4] Y1[2] Y1[3] Y1[4] Cr0[2] Cr0[3] Cr0[4] Cb0[2] Cb0[3] Cb0[4] Y0[2] Y0[3] Y0[4] Cr0[2] Cr0[3] Cr0[4] Y1[2] Y1[3] Y1[4] D5 D6 Cb0[1] Cb0[2] Cb0[5] Cb0[6] Cr0[1] Cr0[2] Cr0[5] Cr0[6] Y0[5] Y0[6] Cb0[5] Cb0[6] Y1[5] Y1[6] Cr0[5] Cr0[6] Cb0[5] Cb0[6] Y0[5] Y0[6] Cr0[5] Cr0[6] Y1[5] Y1[6] D7 D8 D9 Cb0[3] Y0[4] Y0[5] Cb0[7] Cb0[8] Cb0[9] Cr0[3] Y1[4] Y1[5] Cr0[7] Cr0[8] Cr0[9] Y0[7] Y0[8] Y0[9] Cb0[7] Cb0[8] Cb0[9] Y1[7] Y1[8] Y1[9] Cr0[7] Cr0[8] Cr0[9] Cb0[7] Cb0[8] Cb0[9] Y0[7] Y0[8] Y0[9] Cr0[7] Cr0[8] Cr0[9] Y1[7] Y1[8] Y1[9] D10 D11 Y0[6] Y0[7] Cb0[10] Cb0[11] Y1[6] Y1[7] Cr0[10] Cr0[11] Y0[10] Y0[11] Cb0[10] Cb0[11] Y1[10] Y1[11] Cr0[10] Cr0[11] Cb0[10] Cb0[11] Y0[10] Y0[11] Cr0[10] Cr0[11] Y1[10] Y1[11] D[23:12] NC NC NC NC NC NC NC NC NC NC NC NC HSYNC VSYNC DE HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — Pin Name blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 Pixel #0 First Second Edge Edge Pixel #1 First Second Edge Edge blank Pixel n blank D[11:8] val Y0[7:4] Cb0[11:8] Y1[7:4] Cr0[11:8] Y2[7:4] Cb2[11:8] Yn-1[7:4] Cbn-1[11:8] Yn[7:4] Crn-1[11:8] val val val val D[7:4] val Cb0[3:0] Cb0[7:4] Cr0[3:0] Cr0[7:4] Cb2[3:0] Cb2[7:4] Cbn-1[3:0] Cbn-1[7:4] Crn-1[3:0] Crn-1[7:4] val val val val val Y0[3:0] Y0[11:8] Y1[3:0] Y1[11:8] Y2[3:0] Y2[11:8] Yn-1[3:0] Yn-1[11:8 Yn[3:0] Yn[11:8 val val val val D[3:0] IDCK DE HSYNC, VSYNC Figure 6.25. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (81-Ball and 72-Pin Package) blank D[11:0] val Pixel 0 Y0[11:0] {Cb0[11:0]} Cb0[11:0] {Y0[11:0]} Pixel 1 Y1[11:0] {Cr0[11:0]} Cr0[11:0] {Y1[11:0]} Pixel 2 Y2[11:0] {Cb2[11:0]} Cb2[11:0] {Y2[11:0]} Pixel n - 1 Pixel n Yn-1[11:0] Cbn-1[11:0] {Cbn-1[11:0]} {Yn-1[11:0]} Yn[11:0] Crn-1[11:0] {Crn-1[11:0]} {Yn[11:0]} blank val blank val val val IDCK DE HSYNC, VSYNC Figure 6.26. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (81-Ball and 72-Pin Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 57 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Data Mappings for 49-Ball Package 6.11.2.1. YC 4:2:2 Separate Sync Formats The YC 4:2:2 format receives one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the chroma values (Cb and Cr) change only every second pixel. The data bus can only be 16-bits. HSYNC and VSYNC are driven explicitly on their own pins. Each pair of columns in Table 6.23 lists the first and second pixel of n + 1 pixels in the line of video. Pixel values within braces {} in the figures show the values in Swap mode. The DE HIGH time must contain an even number of pixel clocks. Table 6.23. 16-Bit YC 4:2:2 Separate Sync Data Mapping (49-Ball Package) 16-bit Data Bus 16-bit Data Bus Swap Pixel #0 Pixel #1 Pin Name Pixel #0 Pixel #1 D0 D1 D2 Y0[0] Y0[1] Y0[2] Y1[0] Y1[1] Y1[2] Cb0[0] Cb0[1] Cb0[2] Cr0[0] Cr0[1] Cr0[2] D3 D4 Y0[3] Y0[4] Y1[3] Y1[4] Cb0[3] Cb0[4] Cr0[3] Cr0[4] D5 D6 D7 Y0[5] Y0[6] Y0[7] Y1[5] Y1[6] Y1[7] Cb0[5] Cb0[6] Cb0[7] Cr0[5] Cr0[6] Cr0[7] D8 D9 D10 Cb0[0] Cb0[1] Cb0[2] Cr0[0] Cr0[1] Cr0[2] Y0[0] Y0[1] Y0[2] Y1[0] Y1[1] Y1[2] D11 D12 Cb0[3] Cb0[4] Cr0[3] Cr0[4] Y0[3] Y0[4] Y1[3] Y1[4] D13 D14 D15 Cb0[5] Cb0[6] Cb0[7] Cr0[5] Cr0[6] Cr0[7] Y0[5] Y0[6] Y0[7] Y1[5] Y1[6] Y1[7] HSYNC HSYNC HSYNC HSYNC HSYNC VSYNC DE VSYNC DE VSYNC DE VSYNC DE VSYNC DE blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixeln - 1 Pixel n blank blank blank D[15:8] val Cb0[7:0] {Y0[7:0]} Cr0[7:0] {Y1[7:0]} Cb2[7:0] {Y2[7:0]} Cr2[7:0] {Y3[7:0]} Cbn-1[7:0] {Yn-1[7:0]} Crn-1[7:0] {Yn[7:0]} val val val D[7:0] val Y0[7:0] {Cb0[7:0]} Y1[7:0] {Cr0[7:0]} Y2[7:0] {Cb2[7:0]} Y3[7:0] {Cr2[7:0]} Yn -1[7:0] Yn [7:0] {Cbn-1[7:0]} {Crn-1[7:0]} val val val IDCK DE HSYNC, VSYNC Figure 6.27. 16-bit YC 4:2:2 Separate Sync Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 58 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.2.2. YC 4:2:2 Embedded Sync Format The Embedded Sync format is identical to the YC 4:2:2 Format with Separate Syncs, except that the syncs are embedded and not explicit. The data bus can be 16-bit, 20-bit, or 24-bit. Each pair of columns in Table 6.24 lists the first and second pixel of n + 1 pixels in the line of video. Table 6.24. 16-Bit YC 4:2:2 Embedded Sync Data Mapping (49-Ball Package) 16-bit Data Bus Pin Name D0 D1 Pixel #0 Y0[0] Y0[1] Pixel #1 Y1[0] Y1[1] D2 D3 D4 Y0[2] Y0[3] Y0[4] Y1[2] Y1[3] Y1[4] D5 D6 Y0[5] Y0[6] Y1[5] Y1[6] D7 D8 D9 Y0[7] Cb0[0] Cb0[1] Y1[7] Cr0[0] Cr0[1] D10 D11 Cb0[2] Cb0[3] Cr0[2] Cr0[3] D12 D13 D14 Cb0[4] Cb0[5] Cb0[6] Cr0[4] Cr0[5] Cr0[6] D15 Cb0[7] Cr0[7] HSYNC VSYNC DE NC NC NC NC NC NC SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n EAV D[15:8] nc nc nc nc Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0] Cbn-1[7:0] Cr n-1[7:0] nc nc D[7:0] FF 00 00 XY Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0] Yn -1[7:0] Yn [7:0] FF 00 nc 00 nc XY IDCK Active video Figure 6.28. 16-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 59 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.2.3. YC Mux 4:2:2 Separate Sync Format The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on page 58. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. Each group of four columns in Table 6.25 lists the four clock cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figure below the table shows how this pattern is extended for the rest of the pixels in a video line of n + 1 pixels. Table 6.25. 8-Bit YC Mux 4:2:2 Separate Sync Data Mapping (49-Ball Package) 8-bit Data Bus Pin Name Clock cycle D0 First Cb0[0] Second Y0[0] Third Cr0[0] Fourth Y1[0] D1 D2 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D3 D4 D5 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D6 D7 D[15:8] Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] NC HSYNC VSYNC DE HSYNC VSYNC DE Pixel 0 D[7:0] val Cb0[7:0] Y0[7:0] Pixel 1 Cr0[7:0] Y1[7:0] Pixel 2 Cb2[7:0] Y2[7:0] Pixel 3 Cr2[7:0] Y3[7:0] Pixel n - 1 Cbn-1[7:0] Yn-1[7:0] Pixel n Crn-1[7:0] Yn[7:0] val IDCK DE HSYNC VSYNC Figure 6.29. 8-Bit YC Mux 4:2:2 Separate Sync Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 60 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.2.4. YC Mux 4:2:2 Embedded Sync Format This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Format section on page 60, except the syncs are embedded. Normally this mode is used only for 480i, 480p, 576i and 576p modes. It is similar to SMTPE 293 in embedding the syncs. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive pixels. The input clock rate is twice the pixel clock rate. Each group of four columns in Table 6.17 lists the four clock cycles for the first two pixels of the line. Pixel values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent with the second pixel (next two clock cycles). The figure following this table shows only the first two pixels and last pixel of the line to make room to show the SAV and EAV sequences, but the remaining pixels are similar to those shown in the figure of the previous section. 480p, 54 MHz input can be achieved if the input clock is 54 MHz. The DE generator may be needed to convert extracted sync timings to CEA-861D timings. See the ITU-R BT.656 Specification. Table 6.26. 8-Bit YC Mux 4:2:2 Embedded Sync Data Mapping (49-Ball Package) 8-bit Data Bus Pin Name Clock cycle D0 First Cb0[0] Second Y0[0] Third Cr0[0] Fourth Y1[0] D1 D2 Cb0[1] Cb0[2] Y0[1] Y0[2] Cr0[1] Cr0[2] Y1[1] Y1[2] D3 D4 D5 Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D6 D7 D[15:8] Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] NC HSYNC VSYNC DE NC NC NC SAV D[7:0] FF 00 Pixel 0 00 XY Cb0[7:0] Y0[7:0] Pixel 1 Cr0[7:0] Y1[7:0] EAV Pixel n Crn-1[7:0] Yn[7:0] FF 00 00 XY IDCK Active video Figure 6.30. 8-Bit YC Mux 4:2:2 Embedded Sync Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 61 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.2.5. YC 4:2:2 Embedded Sync Dual Edge Format The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock. One clock edge latches in half the pixel data on 12 pins. The opposite clock edge latches in the remaining half of the pixel data on the same 12 pins. Data signals (Dx) must change state to meet the setup and hold times, specified for the 12-bit dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit. See Table 3.12 on page 18. The syncs are embedded and not explicit. Figure 6.31 shows IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). Table 6.27. 12-Bit YC 4:2:2 Embedded Sync Dual Edge Data Mapping (49-Ball Package) 12-bit Data Bus Pin Name Pixel #0 Pixel #1 First Edge Second Edge First Edge Second Edge D[3:0] D4 D5 NC Y0[0] Y0[1] NC Y0[8] Y0[9] NC Y1[0] Y1[1] NC Y1[8] Y1[9] D6 D7 Y0[2] Y0[3] Y0[10] Y0[11] Y1[2] Y1[3] Y1[10] Y1[11] D8 D9 D10 Cb0[0] Cb0[1] Cb0[2] Cb0[4] Cb0[5] Cb0[6] Cr0[0] Cr0[1] Cr0[2] Cr0[4] Cr0[5] Cr0[6] D11 D12 Cb0[3] Y0[4] Cb0[7] Cb0[8] Cr0[3] Y1[4] Cr0[7] Cr0[8] D13 D14 D15 Y0[5] Y0[6] Y0[7] Cb0[9] Cb0[10] Cb0[11] Y1[5] Y1[6] Y1[7] Cr0[9] Cr0[10] Cr0[11] HSYNC NC — NC — VSYNC DE NC NC — — NC NC — — Pixel 0 SAV D[15:12] nc nc D[11:8] FF nc 00 nc 00 nc D[7:4] FF nc 00 nc 00 nc nc nc nc nc nc Pixel 1 Y0[7:4] Cb0[11:8] Y1[7:4] Cr0[11:8] nc Cb0[3:0] Cb0[7:4] Cr0[3:0] Cr0[7:4] nc Y0[3:0] Y0[11:8] Y1[3:0] Y1[11:8] nc XY XY IDCK Active video Pixel n - 1 EAV Pixel n D[15:12] Yn-1[7:4] Cbn-1[11:8] Yn[7:4] Crn-1[11:8] nc nc D[11:8] Cbn-1[3:0] Cbn-1[7:4] Crn-1[3:0] Crn-1[7:4] FF nc D[7:4] Yn-1[3:0] Yn-1[11:8] Yn[3:0] Yn[11:8] FF nc nc nc nc 00 nc 00 nc XY nc 00 nc 00 nc XY nc nc nc nc IDCK Active video Figure 6.31. 12-Bit YC 4:2:2 Embedded Sync Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 62 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.2.6. RGB and YCbCr 4:4:4 Dual Edge Formats The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.28 lists the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given in braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). See Table 3.12 on page 18 for the required timing relationships. Table 6.28. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Dual Edge Data Mapping (49-Ball Package) 12-bit Data Bus Pin Name RGB YCbCr D[3-0] D4 First Edge NC B0[0] Second Edge NC G0[4] First Edge NC Cb0[0] Second Edge NC Y0[4] D5 D6 D7 B0[1] B0[2] B0[3] G0[5] G0[6] G0[7] Cb0[1] Cb0[2] Cb0[3] Y0[5] Y0[6] Y0[7] D8 D9 B0[4] B0[5] R0[0] R0[1] Cb0[4] Cb0[5] Cr0[0] Cr0[1] D10 D11 D12 B0[6] B0[7] G0[0] R0[2] R0[3] R0[4] Cb0[6] Cb0[7] Y0[0] Cr0[2] Cr0[3] Cr0[4] D13 D14 G0[1] G0[2] R0[5] R0[6] Y0[1] Y0[2] Cr0[5] Cr0[6] D15 G0[3] R0[7] Y0[3] Cr0[7] HSYNC VSYNC DE HSYNC VSYNC DE — — — HSYNC VSYNC DE — — — blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 blank Pixel n blank D[15:12] val G0[3:0] {Y0[3:0]} R0[7:4] {Cr0[7:4]} G1[3:0] {Y1[3:0]} R1[7:4] {Cr1[7:4]} G2[3:0] {Y2[3:0]} R2[7:4] {Cr2[7:4]} Gn-1[3:0] {Yn-1[3:0]} Rn-1[7:4] {Crn-1[7:4]} Gn[3:0] {Yn[3:0]} Rn[7:4] {Crn[7:4]} val val val val D[11:8] val B0[7:4] {Cb0[7:4]} R0[3:0] {Cr0[3:0]} B1[7:4] {Cb1[7:4]} R1[3:0] {Cr1[3:0]} B2[7:4] {Cb2[7:4]} R0[3:0] {Cr2[3:0]} Bn-1[7:4] {Cbn-1[7:4]} Rn-1[3:0] {Crn-1[3:0]} Bn[7:4] {Cbn[7:4]} Rn[3:0] {Crn[3:0]} val val val val D[7:4] val B0[3:0] {Cb0[3:0]} G0[7:4] {Y0[7:4]} B1[3:0] {Cb1[3:0]} G1[7:4] {Y1[7:4]} B2[3:0] {Cb2[3:0]} G0[7:4] {Y2[7:4]} Bn-1[3:0] {Cbn-1[3:0]} Gn-1[7:4] {Yn-1[7:4]} Bn[3:0] {Cbn[3:0} Gn[7:4] {Yn[7:4]} val val val val IDCK DE HSYNC, VSYNC Figure 6.32. 12-Bit RGB/YCbCr 4:4:4 Separate Sync Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 63 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 6.11.2.7. YC 4:2:2 Separate Sync Dual Edge Formats The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same pins. Each group of 4 columns in the tables of this section lists the first two pixels of n + 1 pixels in the line of video. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit (see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first edge is the rising edge). See Table 3.12 on page 18 for the required timing relationships. Pixel values within braces {} in the figures show the values in Swap mode. Table 6.29. 8-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) 8-bit Data Bus Pin Name Pixel #0 8-bit Data Bus Swap Pixel #1 Pixel #0 Pixel #1 D[7:0] First Edge NC Second Edge NC First Edge NC Second Edge NC First Edge NC Second Edge NC First Edge NC Second Edge NC D8 D9 D10 Y0[0] Y0[1] Y0[2] Cb0[0] Cb0[1] Cb0[2] Y1[0] Y1[1] Y1[2] Cr0[0] Cr0[1] Cr0[2] Cb0[0] Cb0[1] Cb0[2] Y0[0] Y0[1] Y0[2] Cr0[0] Cr0[1] Cr0[2] Y1[0] Y1[1] Y1[2] D11 D12 D13 Y0[3] Y0[4] Y0[5] Cb0[3] Cb0[4] Cb0[5] Y1[3] Y1[4] Y1[5] Cr0[3] Cr0[4] Cr0[5] Cb0[3] Cb0[4] Cb0[5] Y0[3] Y0[4] Y0[5] Cr0[3] Cr0[4] Cr0[5] Y1[3] Y1[4] Y1[5] D14 D15 Y0[6] Y0[7] Cb0[6] Cb0[7] Y1[6] Y1[7] Cr0[6] Cr0[7] Cb0[6] Cb0[7] Y0[6] Y0[7] Cr0[6] Cr0[7] Y1[6] Y1[7] HSYNC HSYNC — HSYNC — HSYNC — HSYNC — VSYNC DE VSYNC DE — — VSYNC DE — — VSYNC DE — — VSYNC DE — — blank D[15:8] val Pixel 0 Y0[7:0] {Cb0[7:0]} Cb0[7:0] {Y0[7:0]} Pixel 1 Y1[7:0] {Cr0[7:0]} Cr0[7:0] {Y1[7:0]} Pixel 2 Y2[7:0] {Cb2[7:0]} Cb2[7:0] {Y2[7:0]} Pixel n - 1 blank Pixel n Yn-1[7:0] Cbn-1[7:0] Yn[7:0] Crn-1[7:0] {Cbn-1[7:0]} {Yn-1[7:0]} {Crn-1[7:0]} {Yn[7:0]} val blank val val val IDCK DE HSYNC, VSYNC Figure 6.33. 8-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 64 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 6.30. 10-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) 10-bit Data Bus Pin Name Pixel #0 First Edge Second Edge NC NC D[5:0] 10-bit Data Bus Swap Pixel #1 First Edge Second Edge NC NC Pixel #0 First Edge Second Edge NC NC Pixel #1 First Edge Second Edge NC NC D6 D7 Y0[0] Y0[1] Cb0[0] Cb0[1] Y1[0] Y1[1] Cr0[0] Cr0[1] Cb0[0] Cb0[1] Y0[0] Y0[1] Cr0[0] Cr0[1] Y1[0] Y1[1] D8 D9 D10 Y0[2] Y0[3] Y0[4] Cb0[2] Cb0[3] Cb0[4] Y1[2] Y1[3] Y1[4] Cr0[2] Cr0[3] Cr0[4] Cb0[2] Cb0[3] Cb0[4] Y0[2] Y0[3] Y0[4] Cr0[2] Cr0[3] Cr0[4] Y1[2] Y1[3] Y1[4] D11 D12 D13 Y0[5] Y0[6] Y0[7] Cb0[5] Cb0[6] Cb0[7] Y1[5] Y1[6] Y1[7] Cr0[5] Cr0[6] Cr0[7] Cb0[5] Cb0[6] Cb0[7] Y0[5] Y0[6] Y0[7] Cr0[5] Cr0[6] Cr0[7] Y1[5] Y1[6] Y1[7] D14 D15 Y0[8] Y0[9] Cb0[8] Cb0[9] Y1[8] Y1[9] Cr0[8] Cr0[9] Cb0[8] Cb0[9] Y0[8] Y0[9] Cr0[8] Cr0[9] Y1[8] Y1[9] HSYNC HSYNC — HSYNC — HSYNC — HSYNC — VSYNC DE VSYNC DE — — VSYNC DE — — VSYNC DE — — VSYNC DE — — blank D[15:6] val Pixel 0 Y0[9:0] {Cb0[9:0]} Cb0[9:0] {Y0[9:0]} Pixel 1 Y1[9:0] {Cr0[9:0]} Cr0[9:0] {Y1[9:0]} Pixel 2 Y2[9:0] {Cb2[9:0]} Cb2[9:0] {Y2[9:0]} Pixel n - 1 blank Pixel n Yn-1[9:0] Cbn-1[9:0] Yn[9:0] Crn-1[9:0] {Cbn-1[9:0]} {Yn-1[9:0]} {Crn-1[9:0]} {Yn[9:0]} val blank val val val IDCK DE HSYNC, VSYNC Figure 6.34. 10-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 65 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Table 6.31. 12-Bit YC 4:2:2 Separate Sync Dual Edge Data Mapping (49-Ball Package) 12-bit Data Bus NB 12-bit Data Bus Pin Name 12-bit Data Bus NB Swap Pixel #0 First Second Edge Edge Pixel #1 First Second Edge Edge Pixel #0 First Second Edge Edge Pixel #1 First Second Edge Edge D[3:0] D4 D5 NC Y0[0] Y0[1] NC Y0[8] Y0[9] NC Y1[0] Y1[1] NC Y1[8] Y1[9] NC Y0[0] Y0[1] NC Cb0[0] Cb0[1] NC Y1[0] Y1[1] NC Cr0[0] Cr0[1] NC Cb0[0] Cb0[1] NC Y0[0] Y0[1] NC Cr0[0] Cr0[1] NC Y1[0] Y1[1] D6 D7 Y0[2] Y0[3] Y0[10] Y0[11] Y1[2] Y1[3] Y1[10] Y1[11] Y0[2] Y0[3] Cb0[2] Cb0[3] Y1[2] Y1[3] Cr0[2] Cr0[3] Cb0[2] Cb0[3] Y0[2] Y0[3] Cr0[2] Cr0[3] Y1[2] Y1[3] D8 D9 D10 Cb0[0] Cb0[1] Cb0[2] Cb0[4] Cb0[5] Cb0[6] Cr0[0] Cr0[1] Cr0[2] Cr0[4] Cr0[5] Cr0[6] Y0[4] Y0[5] Y0[6] Cb0[4] Cb0[5] Cb0[6] Y1[4] Y1[5] Y1[6] Cr0[4] Cr0[5] Cr0[6] Cb0[4] Cb0[5] Cb0[6] Y0[4] Y0[5] Y0[6] Cr0[4] Cr0[5] Cr0[6] Y1[4] Y1[5] Y1[6] D11 D12 Cb0[3] Y0[4] Cb0[7] Cb0[8] Cr0[3] Y1[4] Cr0[7] Cr0[8] Y0[7] Y0[8] Cb0[7] Cb0[8] Y1[7] Y1[8] Cr0[7] Cr0[8] Cb0[7] Cb0[8] Y0[7] Y0[8] Cr0[7] Cr0[8] Y1[7] Y1[8] D13 D14 D15 Y0[5] Y0[6] Y0[7] Cb0[9] Cb0[10] Cb0[11] Y1[5] Y1[6] Y1[7] Cr0[9] Cr0[10] Cr0[11] Y0[9] Y0[10] Y0[11] Cb0[9] Cb0[10] Cb0[11] Y1[9] Y1[10] Y1[11] Cr0[9] Cr0[10] Cr0[11] Cb0[9] Cb0[10] Cb0[11] Y0[9] Y0[10] Y0[11] Cr0[9] Cr0[10] Cr0[11] Y1[9] Y1[10] Y1[11] HSYNC HSYNC — HSYNC — HSYNC — HSYNC — HSYNC — HSYNC — VSYNC DE VSYNC DE — — VSYNC DE — — VSYNC DE — — VSYNC DE — — VSYNC DE — — VSYNC DE — — blank Pixel 0 Pixel 1 Pixel 2 Pixel n - 1 Pixel #0 First Second Edge Edge Pixel #1 First Second Edge Edge blank Pixel n blank D[15:12] val Y0[7:4] Cb0[11:8] Y1[7:4] Cr0[11:8] Y2[7:4] Cb2[11:8] Yn-1[7:4] Cbn-1[11:8] Yn[7:4] Crn-1[11:8] val val val val D[11:8] val Cb0[3:0] Cb0[7:4] Cr0[3:0] Cr0[7:4] Cb2[3:0] Cb2[7:4] Cbn-1[3:0] Cbn-1[7:4] Crn-1[3:0] Crn-1[7:4] val val val val D[7:4] val Y0[3:0] Y0[11:8] Y1[3:0] Y1[11:8] Y2[3:0] Y2[11:8] Yn-1[3:0] Yn-1[11:8 Yn[3:0] Yn[11:8 val val val val IDCK DE HSYNC, VSYNC Figure 6.35. 12-Bit YC 4:2:2 Separate Sync Dual Edge Timing (49-Ball Package) blank D[15:4] val Pixel 0 Y0[11:0] {Cb0[11:0]} Cb0[11:0] {Y0[11:0]} Pixel 1 Y1[11:0] {Cr0[11:0]} Cr0[11:0] {Y1[11:0]} Pixel 2 Y2[11:0] {Cb2[11:0]} Cb2[11:0] {Y2[11:0]} Pixel n - 1 Pixel n Yn-1[11:0] Cbn-1[11:0] {Cbn-1[11:0]} {Yn-1[11:0]} Yn[11:0] Crn-1[11:0] {Crn-1[11:0]} {Yn[11:0]} blank val blank val val val IDCK DE HSYNC, VSYNC Figure 6.36. 12-Bit YC 4:2:2 Separate Sync NB Mode Dual Edge Timing (49-Ball Package) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 66 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 7. Design Recommendations Power Supplies Decoupling Designers should include adequate decoupling capacitors and a ferrite for each power supply, and an additional capacitor at each power ball or pin in the layout. These are shown schematically in Figure 7.1. Place these components as close as possible to the transmitter device balls or pins, and avoid routing through vias if possible, as shown in Figure 7.2, which represents a typical power connection on the transmitter. Connections in one group (such as AVCC12) can share C2, the ferrite, and C3, with each ball or pin having a separate C1 placed as close to the package as possible. Figure 7.2 shows one of the VFBGA packages; the same information applies to the 72-pin package. Because of the low noise requirements of AVCC12, particular care must be taken to ensure the noise at the pin is less than 50 mV. +1.2 V L1 VCC Ball C1 C2 C3 GND Figure 7.1. Decoupling and Bypass Schematic VCC VCC GND C1 C2 L1 Ferrite C3 Via to GND Figure 7.2. Decoupling and Bypass Capacitor Placement High-Speed TMDS Signals Source Termination Source termination suppresses signal reflection and overshoot, and at the same time allows the transmitter to provide strong drive to support longer cables. The SiI9022A/SiI9024A transmitter supports internal source termination, which is disabled by default and can be enabled by programming. Lattice Semiconductor strongly recommends the use of internal source termination for applications running over 100 MHz. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 67 SiI9022A/SiI9024A HDMI Transmitter Data Sheet ESD Protection The transmitter chip is designed to withstand electrostatic discharge during manufacturing handling. In applications where higher protection levels are required in the finished product, ESD-limiting components should be placed on all of the device pins connecting to an external interface. Special care should be taken on the TMDS signals to use lowcapacitance ESD devices to minimize signal degradation. In no case should the capacitance value exceed 3 pF. Transmitter Layout Guidelines Place the transmitter chip as closely as possible to the output connector that carries the TMDS signals, and place the ESD diodes as close as possible to the HDMI connector. Route the differential signal lines together and as directly as possible from transmitter to connector. Lattice Semiconductor TMDS devices are tolerant of skews between differential pairs, so spiral skew compensation for path length differences is not required. Avoid passing the TMDS lines through vias unless absolutely necessary when using the HDMI Type-D micro connector. The distance separating the two traces of the differential pair should be designed for 100- differential impedance. An example of routing for the 49-ball package is shown in Figure 7.3. For additional ball grid array layout guidelines, refer to Designing with BGA Packages (listed in References section). ESD Diodes TX2+ TX2- SiI9022A/ 9024A HDMI Connector TX1+ TX1TX0+ TX0- TXC+ TXC- Figure 7.3. Transmitter to HDMI Connector Routing – Top View Hot Plug Signal Conditioning The HDMI interface provides a hot plug signal back to the host side from the display. This signal is generated by routing a 5 V source, in the host, through the cable to the display and back. The specification defines the minimum HIGH level for the hot plug as 2.0 V at the connector pin. The HPD signal is 5 V tolerant and can be connected to the HPD signal directly. However, an external pull down resistor of 10 k is required, as shown in the circuit in Figure 7.5 on page 70, to guarantee that this CMOS input is not floating. EMI Considerations Electromagnetic interference is a function of board layout, shielding, receiver component operating voltage, frequency of operation, and additional factors. To control emissions, it is important not to place any passive components on the differential signal lines, except for the essential ESD protection described earlier. The differential signaling used in HDMI is inherently low in EMI, as long as the routing recommendations noted in the Transmitter Layout Guidelines section are followed. The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as possible, with all ground signals of the chip using a common ground. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 68 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Typical Circuits Representative circuits for using the transmitter chip are shown in Figure 7.4 through Figure 7.7. For a detailed review of your intended circuit implementation, contact your Lattice Semiconductor representative. Power Supply Decoupling Excessive noise on AVCC12 can cause improper PLL operation as the PLL tries to stay locked to the incoming video clock. Keep AVCC12 noise below the maximum allowable value VCCN as specified in Table 3.2. If the ripple is higher than allowed for in the specifications, Lattice Semiconductor recommends using a separate power source to supply the AVCC12 inputs. The other power planes are relatively insensitive to ripple. Lattice Semiconductor recommends using low ESR capacitors. The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board. Place a 0.1 F ceramic capacitor close to each VCC pin +1.2 V Ferrite AVCC12 (81-ball: C6, C7) (49-ball: B4) (72-pin: 60, 66) F 10 F 0.1 F 0.1 F AGND (81-ball: CA3, A8) (49-ball: B3) (72-pin: 63) +1.8 V or +3.3 V Ferrite IOVCC (81-ball: D5, E5, E8, E9) (49-ball: E3) (72-pin: 3, 21, 46) 0.1 F 10 F 0.1 F 0.1 F 0.1 F IOGND (81-ball: C5, D4, D6) (49-ball: D3) (72-pin: 57) Provide a minimum of one 0.1 F decoupling capacitor for each VCC connection in the 81-ball and 72-pin package. +1.2 V Ferrite CVCC12 (81-ball: C4, D3, D7, E7, F5, G6) (49-ball: C4) (72-pin: 5, 12, 26, 42, 47, 53) 10 F 0.1 F 0.1 F 0.1 F 0.1 F 0.1 F CGND (81-ball: D1, D2, G5, H5, J5) (49-ball: D4) (72-pin: 43) Figure 7.4. Power Supply Decoupling Note: The 72-pin QFN package has an e-Pad which must be connected to the ground plane of the board. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 69 SiI9022A/SiI9024A HDMI Transmitter Data Sheet HDMI Port Connections The suggested value for REXT_SWING is specified in the Differential Data Signals section on page 32. The Hot Plug Detect signal (HPD) is 5 V tolerant, so it is connected directly to the HDMI connector with a 10 kΩ pull-down resistor. No levelshifting circuit is needed for HPD. +5 V EXT_SWING Voltage swing adjust resistor 2.2 k (typ) 4.3 k or 5.1 k SiI9022A SiI9024A 2.2 k (typ) HDMI Connector DDC SDA DSDA DDC SCL DSCL HPD HTPG 3.3 V 10 k Pullup resistor and diode required only if IOVCC = 1.8 V. 51 k CEC_A CEC TX2- TX2- TX2+ TX2+ RClamp0514M or equivalent 4 1 8 3 6 9 ESD Clamps TX1- TX1- TX1+ TX1+ TX0- TX0- TX0+ TX0+ RClamp0514M or equivalent 4 1 8 3 6 9 TXC+ TXC+ TXC- TXC- Figure 7.5. HDMI Port Connection Schematic © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 70 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Control Signal Connections The general bus interconnection between the host processor and the transmitter is shown in Figure 7.6. The INT output can be connected as an interrupt to the processor, or the processor can poll a register to determine if any of the enabled interrupts have occurred. IOVCC MPEG Chip Host processor IOVCC 4.7 k 4.7 k Stuff only one of two 4.7 kresistors to set chip I2C address (Required for 81-ball VFBGA and 72-pin QFN) 4.7 k SiI9022A/9024A Transmitter C_SCL CSCL C_SDA CSDA IOVCC = 1.8 V or 3.3 V CI2CA (For 81-ball and 72-pin packages only) RSVDL 4.7 k 1.8 V Connect IO_SEL to 1.8 V for 1.8-volt IOVCC. Connect to ground for 3.3-volt IOVCC. (Required for 81-ball VFBGA and 72-pin QFN) IO_SEL (For 81-ball and 72-pin packages only) RESET# GPIO C_CEC CEC_D (For 81-ball and 72-pin packages only) INT GPIO Figure 7.6. Controller Connections Schematic © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 71 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Digital Video Input Connections 7B DE HSYNC VSYNC 33 IDCK D0 D1 D2 D3 33 D4 D5 D6 33 D7 D8 D9 D10 (For 49-ball package only) D11 33 D12 D13 D14 33 D15 D16 D17 D18 D19 D20 33 D21 D22 33 D23 MCLK SPDIF SCK (For 81-ball and 72-pin packages only) WS 33 SD0 SD1 SD2 SD3 33 (For 81-ball and 72-pin packages only) Note: Some system designs may require series resistors to reduce reflections on the parallel input bus. Figure 7.7. Digital Input Schematic © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 72 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 8. Packaging 49-Ball Package Dimensions These drawings are not to scale. 0.10 0.10 B Top View 0.15 0.05 C AB C Bottom View 0.10 C 0.08 C Detail B Detail A JEDEC Package Code MO-225 Item A A1 A2 Description Thickness Stand-off Substrate thickness + Mold thickness Min Typ Max — 0.13 — 0.18 0.80 0.23 0.446 0.508 0.560 D E D1 Body size Body size Footprint 3.90 3.90 — 4.00 4.00 3.00 4.10 4.10 — E1 b Footprint Ball width — 0.20 3.00 0.25 — 0.30 — 0.50 — e Ball pitch All dimensions are in millimeters. Figure 8.1. 49-Ball VFBGA Package Diagram (SiI902nAYBT) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 73 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 81-Ball Package Dimensions 36B These drawings are not to scale. 0.10 J H 0.10 8 B Top View 0.15 0.05 C AB C 9 Bottom View 0.10 C 0.08 C Detail B Detail A JEDEC Package Code MO-225 Item A Description Thickness A1 Stand-off Substrate thickness + Mold thickness A2 Min Typ Max — — 0.80 0.13 0.18 0.23 0.446 0.508 0.560 D Body size 3.90 4.00 4.10 E D1 E1 Body size Footprint Footprint 3.90 — — 4.00 3.20 3.20 4.10 — — 0.20 — 0.25 0.40 0.30 — b Ball width e Ball pitch All dimensions are in millimeters. Figure 8.2. 81-Ball VFBGA Package Diagram (SiI902nARBT) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 74 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet 72-Pin Package Dimensions These drawings are not to scale. 0.15 C A B D D1 0.10 M C A B D2 72 72 1 1 2 2 3 3 0.10 M C A B E2 E1 E A L 0.15 C e Top View Bottom View  A2 Side View A1 A3 K // 0.10 C A 0.10 M C A B 0.05 M C 0.08 C b Seating Plane R 0.6 max 0.6 max Detail A JEDEC Package Code MO-220 Item Description Min Typ Max Item Description Min Typ Max A A1 A2 Thickness Stand-off Body thickness 0.80 0.00 0.60 0.85 0.02 0.65 0.90 0.05 0.70 D2 E2 b ePad size ePad size Plated lead width 4.55 4.55 0.18 4.70 4.70 0.23 4.85 4.85 0.28 A3 D Footprint 0.20 REF 10.00 BSC e K Lead pitch ePad-to-pin clearance 0.20 0.50 BSC — — E D1 E1 Footprint Body size Body size 10.00 BSC 9.75 BSC 9.75 BSC L R Lead foot length Lead radius Lead foot angle 0.30 0.09 0° 0.40 — — 0.50 — 14°  All dimensions are in millimeters. Figure 8.3. 72-Pin QFN Package Diagram (SiI902nACNU) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 75 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Marking Specification Marking drawings are not to scale. Ball A1 location Logo 902nARBT LLLLL.LL-L XXXXXYWW Silicon Image Part Number Lot # (= Job#) Trace code and Date code Figure 8.4. Marking Diagram (SiI902nARBT) Ball A1 location Logo 902nAYBT LLLLL.LL-L XXXXXYWW Silicon Image Part Number Lot # (= Job#) Trace code and Date code Figure 8.5. Marking Diagram (SiI902nAYBT) © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 76 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Pin 1 location Logo SiI902nACNU LLLLLL.LL-L YYWW XXXXXXX Silicon Image Part Number Lot # (= Job#) Date code Trace code SiInnnnrppp Product Designation Revision Package Type Figure 8.6. Marking Diagram (SiI902nACNU) Ordering Information Part Numbers SiI9022ARBT Package Type 81-ball 4 × 4 mm VFBGA Pixel Clock Range 25 MHz –165 MHz Security — Temperature Grade Extended (–20 °C to +85 °C) SiI9022AYBT SiI9022ACNU 49-ball 4 × 4 mm VFBGA 72-pin 10 × 10 mm QFN 25 MHz –165 MHz 25 MHz –165 MHz — — Extended (–20 °C to +85 °C) Extended (–20 °C to +85 °C) SiI9024ARBT SiI9024AYBT SiI9024ACNU 81-ball 4 × 4 mm VFBGA 49-ball 4 × 4 mm VFBGA 72-pin 10 × 10 mm QFN 25 MHz –165 MHz 25 MHz –165 MHz 25 MHz –165 MHz HDCP HDCP HDCP Extended (–20 °C to +85 °C) Extended (–20 °C to +85 °C) Extended (–20 °C to +85 °C) The universal package can be used in both lead-free and ordinary process lines. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 77 SiI9022A/SiI9024A HDMI Transmitter Data Sheet References Standards Documents This is a list of the standards abbreviations appearing in this document. Abbreviation HDMI HCTS Standards publication, organization, and date High Definition Multimedia Interface, Revision 1.4a, HDMI Consortium; March 2010 HDMI Compliance Test Specification, Revision 1.4a, HDMI Consortium; March 2010 HDCP E-EDID High-bandwidth Digital Content Protection, Revision 1.3, Digital Content Protection, LLC; December 2006 Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000 E-EDID IG CEA-861-E EDDC VESA EDID Implementation Guide, Version 1.0, VESA; June 2001 A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA; March 2008 Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004 Standards Groups For information on the specifications that apply to this document, contact the responsible standards groups appearing on this list. Standards Group ANSI/EIA/CEA VESA Web URL http://global.ihs.com http://www.vesa.org DVI HDCP http://www.ddwg.org http://www.digital-cp.com HDMI http://www.hdmi.org Lattice Semiconductor Documents This is a list of the related documents that are available from your Lattice Semiconductor sales representative. The Programmer’s Reference requires an NDA with Lattice Semiconductor. Document SiI-PR-1032 Title Transmitter Programming Interface (TPI) Programmer’s Reference SiI-PR-0020 SiI-PR-0041 SiI-AN-1016 SiI9020 HDMI PanelLink Transmitter Programmer’s Reference CEC Programming Interface (CPI) Programmer’s Reference Designing with BGA Packages SiI-AN-1029 SiI-UG-1043 Layout Guidelines and Results for Using HDMI Type-D Micro-Connector with SiI902nA Devices CP9022AR/CP9024AR/CP9022AY/CP9024AY HDMI Transmitter Starter Kit User Guide Technical Support For assistance, submit a technical support case at www.latticesemi.com/techsupport. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 78 SiI-DS-1076-E.01 SiI9022A/SiI9024A HDMI Transmitter Data Sheet Revision History Revision E.01, August 2016 Formatted to latest template. No content has been changed. Revision E, October 2015 Updated description of CSCL item in the Configuration and Control Signals section. Updated copyright information and legal disclaimers. Revision D.01, January 2011 Updated Table 3.3. DC Digital I/O Specifications: IOVCC = 1.8 V, Table 3.4. DC Digital I/O Specifications: IOVCC = 3.3 V, Table 3.10. I2S Input Port Timings; corrected 1080p 24 Hz 3D lines. Revision C.01, September 2010 Removed Patent information from DB, rolled the revision for DS. Revision C, July 2010 Added information about L + D, and Top-and-Bottom modes; added Limitations section. Revision B.01, April 2010 Update with new features; minor corrections and changes. Revision B, December 2009 Updated to add 81-ball and 72-pin information; added Pixel Number to Data Mapping tables. Revision A.01, November 2009 Update specification tables; minor corrections throughout. Revision A, November 2009 First production release. © 2009-2016 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. SiI-DS-1076-E.01 79 7th Floor, 111 SW 5th Avenue Portland, OR 97204, USA T 503.268.8000 www.latticesemi.com
SII9022ACNU 价格&库存

很抱歉,暂时无法提供与“SII9022ACNU”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SII9022ACNU
    •  国内价格
    • 1+10.75813

    库存:0