0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LT1112MJ8

LT1112MJ8

  • 厂商:

    LINEAR(凌力尔特)

  • 封装:

  • 描述:

    LT1112MJ8 - Dual/Quad Low Power Precision, Picoamp Input Op Amps - Linear Integrated Systems

  • 数据手册
  • 价格&库存
LT1112MJ8 数据手册
LT1112/LT1114 Dual/Quad Low Power Precision, Picoamp Input Op Amps FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ DESCRIPTIO Offset Voltage – Prime Grade: 60µV Max Offset Voltage – Low Cost Grade (Including Surface Mount Dual/Quad): 75µV Max Offset Voltage Drift: 0.5µV/°C Max Input Bias Current: 250pA Max 0.1Hz to 10Hz Noise: 0.3µVP-P, 2.2pAP-P Supply Current per Amplifier: 400µA Max CMRR: 120dB Min Voltage Gain: 1 Million Min Guaranteed Specs with ± 1.0V Supplies Guaranteed Matching Specifications SO-8 Package – Standard Pinout LT1114 in Narrow Surface Mount Package The LT®1112 dual and LT1114 quad op amps achieve a new standard in combining low cost and outstanding precision specifications. The performance of the selected prime grades matches or exceeds competitive devices. In the design of the LT1112/ LT1114 however, particular emphasis has been placed on optimizing performance in the low cost plastic and SO packages. For example, the 75µV maximum offset voltage in these low cost packages is the lowest on any dual or quad non-chopper op amp. The LT1112/LT1114 also provide a full set of matching specifications, facilitating their use in such matching dependent applications as two and three op amp instrumentation amplifiers. Another set of specifications is furnished at ± 1V supplies. This, combined with the low 320µA supply current per amplifier, allows the LT1112/LT1114 to be powered by two nearly discharged AA cells. , LT, LTC and LTM are registered trademarks of Linear Technology Corporation. Protected by U.S. Patents 4,575,685; 4,775,884 and 4,837,496 APPLICATIO S ■ ■ ■ ■ ■ ■ Picoampere/Microvolt Instrumentation Two and Three Op Amp Instrumentation Amplifers Thermocouple and Bridge Amplifiers Low Frequency Active Filters Photo Current Amplifiers Battery-Powered Systems TYPICAL APPLICATIO Dual Output, Buffered Reference (On Single 3V Supply) TOTAL SUPPLY CURRENT = 700µA 2V REFERENCE: SOURCES 1.7mA, SINKS 5mA RX OPTIONAL RX = 300Ω INCREASES SOURCE CURRENT TO 5mA 0.765V REFERENCE: SOURCES 5mA, SINKS 0.5mA TEMPERATURE COEFFICIENT LIMITED BY REFERENCE = 20ppm/°C 2.000V MINIMUM SUPPLY = 2.7V 3V 30 25 15k PERCENT OF UNITS 75k 0.1% LT1004-1.2 46.4k 0.1% + 5 – 6 + 3 – 2 20 15 10 5 8 1 1/2 LT1112 1/2 LT1112 4 7 0.765V 0 –70 –50 LT1112/14 • TA01 U Distribution of Input Offset Voltage (In All Packages) VS = ±15V TA = 25°C 50 30 –30 –10 10 INPUT OFFSET VOLTAGE (µV) 70 LT1112/14 • TA02 U U 111214fb 1 LT1112/LT1114 ABSOLUTE AXI U RATI GS Supply Voltage ..................................................... ± 20V Differential Input Current (Note 2) ..................... ±10mA Input Voltage (Equal to Supply Voltage) ............... ± 20V Output Short-Circuit Duration ......................... Indefinite Storage Temperature Range ................ – 65°C to 150°C Lead Temperature (Soldering, 10 sec)................ 300°C Operating Temperature Range (Note 11) LT1112AM/LT1112M LT1114AM/LT1114M (OBSOLETE) ... – 55°C to 125°C LT1112AC/LT1112C/LT1112S8 LT1114AC/LT1114C/LT1114S .......... – 40°C to 85°C LT1112I/LT1114I .............................. – 40°C to 85°C LT1112MPS8 ................................... –55°C to 125°C PACKAGE/ORDER I FOR ATIO TOP VIEW OUT A 1 –IN A 2 +IN A 3 V– 4 B 5 N8 PACKAGE 8-LEAD PDIP TJMAX = 150°C, θJA = 130°C/W J8 PACKAGE 8-LEAD CERDIP TJMAX = 160°C, θJA = 100°C/W 8 A 7 6 V+ OUT B –IN B +IN B ORDER PART NUMBER TOP VIEW LT1112ACN8 LT1112CN8 LT1112IN8 LT1112AMJ8 LT1112MJ8 ORDER PART NUMBER LT1114ACN LT1114CN LT1114IN OBSOLETE PACKAGE Consider the N8 Package for Alternate Source TOP VIEW OUT A –IN A +IN A V+ +IN B –IN B OUT B 1 2 3 4 5 6 7 N PACKAGE 14-LEAD PDIP TJMAX = 150°C, θJA = 110°C/W J PACKAGE 14-LEAD CERDIP TJMAX = 160°C, θJA = 80°C/W (J) 14 OUT D A 13 –IN D D 12 +IN D 11 V – B C 10 +IN C 9 8 –IN C OUT C OBSOLETE PACKAGE Consider the N Package for Alternate Source LT1114AMJ LT1114MJ Consult LTC Marketing for parts specified with wider operating temperature ranges. 111214fb 2 U U W WW U W (Note 1) Specified Temperature Range (Note 12) LT1112AM/LT1112M LT1114AM/LT1114M (OBSOLETE) ... – 55°C to 125°C LT1112AC/LT1112C/LT1112S8 LT1114AC/LT1114C/LT1114S .......... – 40°C to 85°C LT1112I/LT1114I .............................. – 40°C to 85°C LT1112MPS8 ................................... –55°C to 125°C ORDER PART NUMBER 8 V+ OUT B –IN B +IN B OUT A 1 –IN A 2 +IN A 3 V– B 4 S8 PACKAGE 8-LEAD PLASTIC SO A 7 6 5 LT1112S8 LT1112IS8 LT1112MPS8 S8 PART MARKING 1112 1112I 1112MP ORDER PART NUMBER TJMAX = 150°C, θJA = 190°C/W TOP VIEW OUT A 1 –IN A 2 +IN A 3 V+ 4 +IN B 5 –IN B 6 OUT B 7 NC 8 B C A D 16 OUT D 15 –IN D 14 +IN D 13 V – 12 +IN C 11 –IN C 10 OUT C 9 NC LT1114S LT1114IS S PACKAGE 16-LEAD PLASTIC SO (NARROW) TJMAX = 150°C, θJA = 150°C/W LT1112/LT1114 ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER VOS ∆VOS ∆Time IOS IB en Input Offset Voltage Long Term Input Offset Voltage Stability Input Offset Current LT1114S/LT1114IS Input Bias Current LT1114S/LT1114IS Input Noise Voltage Input Noise Voltage Density in Input Noise Current Input Noise Current Density VCM CMRR PSRR RIN Input Voltage Range Common Mode Rejection Ratio Power Supply Rejection Ratio Minimum Supply Voltage Input Resistance Differential Mode Common Mode Large-Signal Voltage Gain Output Voltage Swing Slew Rate Gain-Bandwidth Product Supply Current per Amplifier VS = ±1.0V Channel Separation ∆VOS ∆IB+ ∆CMRR ∆PSRR Offset Voltage Match Noninverting Bias Current Match (Notes 6, 7) Common Mode Rejection Match Power Supply Rejection Match fO = 10Hz (Note 6) LT1114S/LT1114IS (Notes 6, 8) (Notes 6, 8) fO = 10kHz VCM = ± 13.5V VS = ±1.0V to ± 20V (Note 5) (Note 4) VS = ±15V, VCM = 0V, TA = 25°C, unless otherwise noted. LT1112AM/AC LT1114AM/AC MIN TYP MAX 20 40 0.3 50 ± 70 180 ± 250 0.9 28 18 60 110 CONDITIONS (Note 3) VS = ± 1.0V LT1112M/C/I LT1114M/C/I MIN TYP MAX 25 45 0.3 60 75 ± 80 ± 100 0.3 16 14 2.2 0.030 0.008 ± 13.5 115 114 ± 1.0 ± 14.3 136 126 230 330 ± 280 ± 450 0.9 28 18 75 130 UNITS µV µV µV/Mo pA pA pA pA µVP-P nV/√Hz nV/√Hz pAP-P pA/√Hz pA/√Hz V dB dB V 0.1Hz to 10Hz (Note 10) fO = 10Hz (Note 10) fO = 1000Hz (Note 10) 0.1Hz to 10Hz fO = 10Hz fO = 1000Hz ± 13.5 120 116 ± 1.0 20 1000 800 ± 13.0 ± 11.0 0.16 450 0.3 16 14 2.2 0.030 0.008 ± 14.3 136 126 50 800 5000 1500 ± 14.0 ± 12.4 0.30 750 350 320 150 35 100 100 450 400 370 15 800 600 ± 13.0 ± 11.0 0.16 450 40 700 5000 1300 ± 14.0 ± 12.4 0.30 750 350 320 150 40 100 120 130 500 680 450 420 MΩ GΩ V/mV V/mV V V V/µs kHz µA µA dB µV pA pA dB dB AVOL VOUT SR GBW IS VO = ±12V, RL = 10kΩ VO = ±10V, RL = 2kΩ RL = 10kΩ RL = 2kΩ 117 114 136 130 113 112 136 130 111214fb 3 LT1112/LT1114 ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER VOS ∆VOS ∆Temp IOS IB VCM CMRR PSRR AVOL VOUT SR IS ∆VOS Input Offset Voltage LT1112MPS8 VS = ±1.2V Average Input Offset Voltage Drift Input Offset Current Input Bias Current Input Voltage Range Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Slew Rate Supply Current per Amplifier Offset Voltage Match (Note 6) LT1112MPS8 Offset Voltage Match Drift (Notes 6, 9) ∆IB+ ∆CMRR ∆PSRR Noninverting Bias Current Match Common Mode Rejection Ratio Power Supply Rejection Ratio LT1112MPS8 (Notes 6, 7) (Notes 6, 8) (Notes 6, 8) VCM = ± 13.5V (Note 9) LT1112MPS8 The ● denotes the specifications which apply over the full operating temperature range of – 55°C ≤ TA ≤ 125°C, otherwise specifications are at TA = 25°C. VS = ±15V, unless otherwise noted. LT1112AMJ8 LT1114AMJ MIN TYP MAX ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● CONDITIONS (Note 3) LT1112MJ8/MPS8 LT1114MJ MIN TYP MAX 45 45 70 0.20 0.4 100 ± 170 ± 13.5 111 110 400 170 0.12 ± 14.1 130 124 2500 500 0.22 380 70 70 0.3 0.5 170 106 106 130 126 530 240 270 1.0 1.9 850 150 160 260 0.75 1.3 500 ± 700 UNITS µV µV µV µV/°C µV/°C pA pA V dB dB V/mV V/mV V V/µs µA µV µV µV/°C µV/°C pA dB dB 35 60 0.15 80 ± 150 ± 13.5 116 112 500 200 0.12 ± 14.1 130 124 2500 600 0.22 380 55 0.2 150 112 109 130 126 120 220 0.5 400 ± 600 VS = ± 1.2V to ± 20V VO = ± 12V, RL = 10kΩ VO = ± 10V, RL = 2kΩ RL = 10kΩ ± 13.0 ± 13.85 460 200 0.7 750 ± 13.0 ± 13.85 The ● denotes the specifications which apply over the full operating temperature range of 0°C ≤ TA ≤ 70°C, otherwise specifications are at TA = 25°C. VS = ±15V, unless otherwise noted. LT1112ACN8 LT1114ACN MIN TYP MAX ● ● ● ● ● ● ● ● ● ● SYMBOL PARAMETER VOS ∆VOS ∆Temp IOS IB VCM CMRR PSRR AVOL VOUT SR Input Offset Voltage CONDITIONS (Note 3) LT1112CN8 LT1112S8, LT1114CN/S VS = ± 1.2V LT1112CN8 LT1112S8, LT1114CN/S LT1114S LT1112CN8/S8/IS8 LT1114CN/S/IS MIN TYP MAX 30 45 65 0.2 0.4 70 90 ± 90 ± 115 ± 13.5 113 112 650 400 ± 13.0 0.14 ± 14.2 133 125 4000 1000 ± 13.9 0.27 125 150 210 0.75 1.3 290 420 ± 350 ± 550 UNITS µV µV µV µV/°C µV/°C pA pA pA pA V dB dB V/mV V/mV V V/µs 111214fb 27 35 50 0.15 0.3 60 ± 80 ± 13.5 118 114 800 500 ± 13.0 0.14 ± 14.2 133 125 4000 1300 ± 13.9 0.27 100 125 175 0.5 1.1 220 ± 300 Average Input Offset Voltage Drift (Note 9) Input Offset Current Input Bias Current LT1114S Input Voltage Range Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Slew Rate VCM = ± 13.5V VS = ± 1.2V to ± 20V VO = ± 12V, RL = 10kΩ VO = ± 10V, RL = 2kΩ RL = 10kΩ ● ● ● ● ● ● 4 LT1112/LT1114 ELECTRICAL CHARACTERISTICS SYMBOL PARAMETER IS ∆VOS Supply Current per Amplifier Offset Voltage Match (Note 6) Offset Voltage Match Drift (Notes 6, 9) ∆IB+ ∆CMRR ∆PSRR Noninverting Bias Current Match (Notes 6, 7) Common Mode Rejection Ratio Power Supply Rejection Ratio The ● denotes the specifications which apply over the full operating temperature range of 0°C ≤ TA ≤ 70°C, otherwise specifications are at TA = 25°C. VS = ±15V, unless otherwise noted. LT1112ACN8 LT1114ACN MIN TYP MAX ● CONDITIONS (Note 3) LT1112CN8 LT1112S8, LT1114CN/S LT1112N8 LT1112S8, LT1114CN/S LT1114S (Notes 6, 8) (Notes 6, 8) ● ● ● ● ● ● ● ● LT1112CN8/S8/IS8 LT1114CN/S/IS MIN TYP MAX 370 55 70 0.3 0.5 135 160 109 108 134 128 500 210 270 1.0 1.9 620 880 UNITS µA µV µV µV/°C µV/°C pA pA dB dB 370 45 55 0.2 0.4 120 114 110 134 128 440 170 220 0.7 1.6 530 The ● denotes the specifications which apply over the full operating temperature range of –40°C ≤ TA ≤ 85°C, otherwise specifications are at TA = 25°C. VS = ±15V, unless otherwise noted. (Note 12) LT1112ACN8 LT1112CN8/IN8/S8/IS8 LT1114ACN LT1114CN/S/IS MIN TYP MAX MIN TYP MAX ● ● ● ● ● ● ● ● ● ● SYMBOL PARAMETER VOS ∆VOS ∆Temp IOS IB VCM CMRR PSRR AVOL VOUT SR IS ∆VOS Input Offset Voltage CONDITIONS (Note 3) LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS VS = ± 1.2V LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS LT1114S/IS UNITS µV µV µV µV/°C µV/°C pA pA pA pA V dB dB V/mV V/mV V V/µs 30 40 55 0.15 0.30 70 ± 110 ± 13.5 117 113 700 400 0.13 ± 14.1 132 125 3300 1100 0.24 370 50 60 0.2 0.4 140 113 110 133 127 110 135 200 0.50 1.10 330 ± 500 ± 13.5 112 111 600 300 0.13 450 180 230 0.7 1.6 660 109 107 35 45 60 0.20 0.40 85 110 ± 120 ± 150 ± 14.1 132 125 3300 900 0.24 370 60 70 0.3 0.5 155 190 133 127 135 160 240 0.75 1.30 400 600 ± 550 ± 800 Average Input Offset Voltage Drift Input Offset Current Input Bias Current LT1114S/IS Input Voltage Range Common Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Output Voltage Swing Slew Rate Supply Current per Amplifier Offset Voltage Match (Note 6) Offset Voltage Match Drift (Notes 6) ∆IB+ ∆CMRR ∆PSRR Noninverting Bias Current Match (Notes 6, 7) Common Mode Rejection Ratio Power Supply Rejection Ratio LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS LT1112CN8/IN8 LT1112S8/IS8, LT1114CN/S/IS LT1114S/IS (Notes 6, 8) (Notes 6, 8) VCM = ± 13.5V VS = ± 1.2V to ± 20V VO = ± 12V, RL = 10kΩ VO = ± 10V, RL = 2kΩ RL = 10kΩ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ± 13.0 ± 13.85 ± 13.0 ± 13.85 510 225 270 1.0 1.9 770 1300 µA µV µV µV/°C µV/°C pA pA dB dB Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime. Note 2: Differential input voltages greater than 1V will cause excessive current to flow through the input protection diodes unless limiting resistance is used. Note 3: Typical parameters are defined as the 60% yield of parameter distributions of individual amplifiers; i.e., out of 100 LT1114s (or 100 LT1112s) typically 240 op amps (or 120) will be better than the indicated specification. Note 4: This parameter is guaranteed by design and is not tested. 111214fb 5 LT1112/LT1114 ELECTRICAL CHARACTERISTICS Note 5: Offset voltage, supply current and power supply rejection ratio are measured at the minimum supply voltage. Note 6: Matching parameters are the difference between amplifiers A and D and between B and C on the LT1114; between the two amplifiers on the LT1112. Note 7: This parameter is the difference between two noninverting input bias currents. Note 8: ∆CMRR and ∆PSRR are defined as follows: (1) CMRR and PSRR are measured in µV/V on the individual amplifiers. (2) The difference is calculated between the matching sides in µV/V. (3) The result is converted to dB. Note 9: This parameter is not 100% tested. Note 10: These parameters are not tested. More than 99% of the op amps tested during product characterization have passed the maximum limits. 100% passed at 1kHz. Note 11: The LT1112AC/LT1112C/LT1112S8/LT1112I and LT1114AC/ LT1114C/LT1114S/LT1114I are guaranteed functional over the temperature range of –40°C to 85°C. Note 12: The LT1112AC/LT1112C/LT1112S8/LT1114AC/LT1114C/ LT1114S are guaranteed to meet specified performance from 0°C to 70°C and are designed, characterized and expected to meet specified performance from –40°C to 85°C, but are not tested or QA sampled at these temperatures. The LT1112I/LT1114I are guaranteed to meet specified performance from –40°C to 85°C. TYPICAL PERFOR A CE CHARACTERISTICS Input Bias and Offset Current, Noninverting Bias Current Match vs Temperature INPUT BIAS, OFFSET, MATCH CURRENT (pA) 200 ∆IB+ IOS 0 IB (UNDERCANCELLED) 100 INPUT BIAS CURRENT (pA) PERCENT OF UNITS –100 –100 VS = ± 15V –200 –75 –50 –25 0 25 50 75 TEMPERATURE (°C) VCM 100 125 –150 –15 10 –5 0 5 –10 COMMON MODE INPUT VOLTAGE (V) LT1112/14 • TPC01 Drift with Temperature LT1112N8/J8, LT1114J 20 850 OP AMPS TESTED 100 LT1112J8 165 LT1112N8 80 LT1114J Drift with Temperature LT1112S8, LT1114N/S 25 VS = ± 15V 20 PERCENT OF UNITS PERCENT OF INPUTS 15 960 OP AMPS TESTED 240 LT1112S8 80 LT1114N 40 LT1114S PERCENT OF UNITS 15 10 10 5 5 0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) LT1112/14 • TPC04 0 –1.4 –1.0 –0.6 –0.2 0.2 0.6 1.0 1.4 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) LT1112/14 • TPC05 6 + IB – IB (OVERCANCELLED) UW Input Bias Current Over Common Mode Range 150 100 50 0 –50 VS = ±15V TA = 25°C RINCM = 800GΩ DEVICE WITH POSITIVE INPUT CURRENT DEVICE WITH NEGATIVE INPUT CURRENT Distribution of Input Bias Current (In All Packages Except LT1114S) 30 VS = ± 15V TA = 25°C 20 10 15 0 200 –300 –200 –100 0 100 INPUT BIAS CURRENT (pA) 300 LT1112/14 • TPC02 LT1112/14 • TPC03 Distribution of Offset Voltage at VS = ± 1.0V (In All Packages) VS = ± 15V 30 25 20 15 10 5 0 –80 –60 –40 –20 0 20 40 60 80 100 INPUT OFFSET VOLTAGE (µV) LT1112/14 • TPC06 TA = 25°C 111214fb LT1112/LT1114 TYPICAL PERFOR A CE CHARACTERISTICS Distribution of Offset Voltage Match 25 VS = ±15V TA = 25°C PERCENT ON UNITS 20 PERCENT OF UNITS 20 15 10 5 0 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 OFFSET VOLTAGE MATCH DRIFT (µV/°C) LT1112/14 • TPC08 15 PERCENT OF UNITS 10 5 0 –100 –80 –60 – 40 –20 0 20 40 60 80 100 ∆VOS, OFFSET VOLTAGE MATCH (µV) LT1112/14 • TPC07 Noise Spectrum 1000 VOLTAGE NOISE DENSITY (nV/√Hz) CURRENT NOISE DENSITY (fA/√Hz) VS = ±1V TO ±20V TA = 25°C NOISE VOLTAGE (0.2µV/DIV) 100 CURRENT NOISE VOLTAGE NOISE 10 1/fCORNER 2.5Hz 1/fCORNER 140Hz 10 100 FREQUENCY (Hz) 1000 LT1112/14 • TPC10 1 1 0 2 6 4 TIME (SEC) 8 10 0 20 60 40 TIME (SEC) 80 100 LT1112/14 • TPC11 NOISE VOLTAGE (0.2µV/DIV) Warm-Up Drift 3 CHANGE IN OFFSET VOLTAGE (µV) CHANGE IN OFFSET VOLTAGE (µV) 2A 4 2 0 –2 –4 –6 SUPPLY CURRENT PER AMPLIFIER (µA) VS = ±15V TA = 25°C 2 LT1112S8, LT1114N/S PACKAGES 1 LT1114J PACKAGE LT1112J8, N8 PACKAGES 0 0 0.5 1.0 1.5 2.0 TIME AFTER POWER ON (MINUTES) 2.5 UW LT1112/14 • TPC13 Distribution of Offset Voltage Match Drift (LT1112J8, LT1112N8, LT1114J Packages) 30 25 VS = ±15V 342 PAIRS TESTED 20 Distribution of Offset Voltage Match Drift (LT1112S8, LT1114N, LT1114S Packages) VS = ±15V 364 PAIRS TESTED 15 10 5 0 –1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2 1.6 OFFSET VOLTAGE MATCH DRIFT (µV/°C) LT1112/14 • TPC09 0.1Hz to 10Hz Noise VS = ± 15V TA = 25°C 0.01Hz to 1Hz Noise VS = ±15V TA = 25°C LT1112/14 • TPC12 Long Term Stability of Three Representative Units 6 VS = ±15V TA = 25°C Supply Current per Amplifier vs Supply Voltage 600 500 3A 2B 1A 3B 1B 400 TA = 125°C TA = 25°C TA = – 55°C 300 0 1 2 3 4 TIME (MONTHS) 5 6 200 0 ± 10 ± 15 ±5 SUPPLY VOLTAGE (V) ± 20 LT1112/14 • TPC14 LT1112/14 • TPC15 111214fb 7 LT1112/LT1114 TYPICAL PERFOR A CE CHARACTERISTICS Minimum Supply Voltage vs Temp Voltage Gain at Minimum Supply Voltage COMMON MODE RANGE OR OUTPUT SWING (V) ± 1.2 ± 1.1 ± 1.0 ± 0.9 MINIMUM SUPPLY (V) V + – 0.8 V + – 1.0 V – + 0.8 V – + 0.6 V – + 0.4 V – + 0.2 V– –75 OUTPUT SWING (V) VOLTAGE GAIN (V/mV) 100 80 60 40 –50 –25 50 25 0 75 TEMPERATURE (°C) Voltage Gain –15 CHANGE IN OFFSET VOLTAGE (µV) –10 –5 RL = 10k 0 RL = 2k 5 10 15 –15 VS = ±15V TA = 25°C VOLTAGE GAIN (dB) GAIN (dB) –10 –5 0 5 OUTPUT VOLTAGE (V) Common Mode Rejection vs Frequency 140 COMMON MODE REJECTION RATIO (dB) 120 100 80 60 40 20 0 1 10 10k 1k 100 FREQUENCY (Hz) POWER SUPPLY REJECTION RATIO (dB) VS = ±15V TA = 25°C NEGATIVE SUPPLY CHANNEL SEPARATION (dB) 8 UW 100 LT1112/14 • TPC16 Common Mode Range and Voltage Swing with Respect to Supply Voltages V+ V – 0.2 V + – 0.4 V + – 0.6 SWING CM RANGE + Output Voltage Swing vs Load Current V+ V+ – 1 V+ – 2 V+ – 3 V– + 3 V– + 2 V– + 1 VS = ±1V TO ± 20V IL < 100µA VS = ±1V TO ± 20V TA = 25°C MAX IL AT ±1V = 1.3mA AT ±1.5V = 3mA SWING CM RANGE 125 –25 75 25 TEMPERATURE (°C) 125 V– –9 –6 SINK 6 SOURCE OUTPUT CURRENT (mA) –3 0 3 9 LT1112/14 • TPC17 LT1112/14 • TPC18 Voltage Gain vs Frequency 140 120 100 VS = ±15V TA = 25°C Gain, Phase Shift vs Frequency 40 VS = ±15V TA = 25°C 100 30 PHASE 80 60 40 20 0 120 PHASE SHIFT (DEG) 20 GAIN 10 140 160 0 PHASE MARGIN = 70°C 180 10 15 –20 0.01 0.1 1 10 100 1k 10k 100k 1M 10M FREQUENCY (Hz) LT1112/14 • TPC20 –10 0.01 200 0.1 1 10 LT1112/14 • TPC21 FREQUENCY (MHz) LT1112/14 • TPC19 Power Supply Rejection vs Frequency 140 120 100 80 POSITIVE SUPPLY 60 40 VS = ±15V TA = 25°C Channel Separation vs Frequency 160 VS = ±15V TA = 25°C 140 120 100 AMP 1 IN UNITY-GAIN 20VP-P, RL = 2k AMP 2 IN GAIN = 1000 RS = 100Ω, RF = 100k 1 10 1k 100 10k FREQUENCY (Hz) 100k 1M 80 20 0.1 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 100k 1M LT1112/14 • TPC22 LT1112/14 • TPC23 LT1112/14 • TPC24 111214fb LT1112/LT1114 TYPICAL PERFOR A CE CHARACTERISTICS Slew Rate, Gain-Bandwidth Product and Phase Margin vs Temperature SLEW RATE (V/µs) 0.4 SLEW 80 0.2 OUTPUT IMPEDANCE (Ω) 0.3 φm AV = 100 1 0.1 0.01 AV = + 1 70 OVERSHOOT (%) GAIN-BANDWIDTH PRODUCT (kHz) 800 GBW 700 60 600 –50 –25 50 25 0 75 TEMPERATURE (°C) Small-Signal Transient Response PEAK-TO-PEAK OUTPUT VOLTAGE (V) 20mV/DIV 5V/DIV 2µs/DIV AV = +1 CL = 500pF VS = ±15V AV = +1 RF = 10k CF = 100pF VS = ±15V UW 100 Closed-Loop Output Impedance 1000 100 PHASE MARGIN (DEG) Capacitive Loading Handling 120 100 80 60 AV = + 1 40 AV = 10 20 0 0.1 0.00001 0.0001 0.001 0.01 CAPACITIVE LOAD (µF) VS = ±15V TA = 25°C VS = ±15V TA = 25°C 10 125 0.001 1 10 100 1k 10k FREQUENCY (Hz) 100k 1M 1 10 LT1112/14 • TPC25 LT1112/14 • TPC26 LT1112/14 • TPC27 Large-Signal Transient Response 28 24 Undistorted Output Voltage vs Frequency TA = 25°C RL = 10k VS = ±15V 20 16 12 8 4 0 1 10 100 FREQUENCY (kHz) 1000 LT1112/14 • TPC30 VS = ± 5V 50µs/DIV 111214fb 9 LT1112/LT1114 APPLICATIO S I FOR ATIO The LT1112 dual and LT1114 quad in the plastic and ceramic DIP packages are pin compatible to and directly replace such precision op amps as the OP-200, OP-297, AD706 duals and OP-400, OP-497, AD704 quads with improved price/performance. The LT1112 in the S8 surface mount package has the standard pin configuration, i.e., the same configuration as the plastic and ceramic DIP packages. The LT1114 quad is offered in the narrow 16-pin surface mount package. All competitors are in the wide 16-pin package which occupies 1.8 times the area of the narrow package. The wide package is also 1.8 times thicker than the narrow package. The inputs of the LT1112/1114 are protected with back-toback diodes. In the voltage follower configuration, when the input is driven by a fast large-signal pulse (>1V), the input protection diodes effectively short the output to the input during slewing, and a current, limited only by the output short-circuit protection, will flow through the diodes. The use of a feedback resistor is recommended because this resistor keeps the current below the short-circuit limit, resulting in faster recovery and settling of the output. The input voltage of the LT1112/1114 should never exceed the supply voltages by more than a diode drop. However, the example below shows that as the input voltage exceeds the common mode range, the LT1112’s Voltage Follower with Input Exceeding the Common Mode Range (VS = ± 5V) INPUT: ± 5.2V Sine Wave 10 U output clips cleanly, without any glitches or phase reversal. The OP-297 exhibits phase reversal. The photos also illustrate that both the input and output ranges of the LT1112 are within 800mV of the supplies. The effect of input and output overdrive on the other amplifiers in the LT1112 or LT1114 packages is negligible, as each amplifier is biased independently. Advantages of Matched Dual and Quad Op Amps In many applications the performance of a system depends on the matching between two operational amplifiers rather than the individual characteristics of the two op amps. Two or three op amp instrumentation amplifiers, tracking voltage references and low drift active filters are some of the circuits requiring matching between two op amps. The well-known triple op amp configuration illustrates these concepts. Output offset is a function of the difference between the offsets of the two halves of the LT1112. This error cancellation principle holds for a considerable number of input referred parameters in addition to offset voltage and its drift with temperature. Input bias current will be the average of the two noninverting input currents (IB+). The difference between these two currents (∆IB+) is the offset current of the instrumentation amplifier. Common mode and power supply rejections will be dependent only on the match between the two amplifiers (assuming perfect resistor matching). LT1112 Output OP-297 Output 111214fb W UU LT1112/LT1114 APPLICATIO S I FOR ATIO Three Op Amp Instrumentation Amplifier R4 100Ω 0.5% R1 10k 1% R6 10k 0.5% IN– 1/2 LT1112 OR 1/4 LT1114 –A + R8 200Ω R2 R5 10k 100Ω 1% 0.5% IN+ 1/2 LT1112 OR 1/4 LT1114 D R7 9.88k 0.5% R9 200Ω The concepts of common mode and power supply rejection ratio match (∆CMRR and ∆PSRR) are best demonstrated with a numerical example: Assume CMRRA = + 1µV/V or 120dB, and CMRRB = + 0.75µV/V or 122.5dB, then ∆CMRR = 0.25µV/V or 132dB; if CMRRB = – 0.75µV/V which is still 122.5dB, then ∆CMRR = 1.75µV/V or 115dB. Clearly the LT1112/LT1114, by specifying and guaranteeing all of these matching parameters, can significantly improve the performance of matching-dependent circuits. + C1 33pF R10 1M LT1097 OR 1/4LT1114 B OR C – R3 2.1k 1% GAIN = 1000 TRIM R8 FOR GAIN TRIM R9 FOR DC COMMON MODE REJECTION TRIM R10 FOR AC COMMON MODE REJECTION U Typical performance of the instrumentation amplifier: Input offset voltage = 35µV Offset voltage drift = 0.3µV/°C Input bias current = 80pA Input offset current = 100pA Input resistance = 800GΩ Input noise = 0.42µVP-P OUTPUT W UU When the instrumentation amplifier is used with high impedance sources, the LT1114 is recommended because its CMRR vs frequency performance is better than the LT1112’s. For example, with two matched 1MΩ source resistors, CMRR at 100Hz is 100dB with the LT1114, 76dB with the LT1112. This difference is explained by the fact that capacitance between adjacent pins on an IC package is about 0.25pF (including package, socket and PC board trace capacitances). On the dual op amp package, positive input A is next to the V – pin (AC ground), while positive input B has no AC ground pin adjacent to it, resulting in a 0.25pF input capacitance mismatch. At 100Hz, 0.25pF represents a 6.4 • 109 input impedance mismatch, which is only 76dB higher than the 1MΩ source resistors. On the quad package, all four inputs are adjacent to a power supply terminal—therefore, there is no mismatch. + – LT1112/14 • AI02 111214fb 11 LT1112/LT1114 SCHE ATIC DIAGRA 12pF 30k Q35 Q34 30k 800Ω 30pF Q5 Q6 S Q8 Q7 Q13 Q4 3k Q11 Q23 Q24 INVERTING INPUT S Q1 Q2 S S Q3 50k 1.5k Q12 J1 Q16 10k Q18 460Ω 15µA 5µA 5µA V– 460Ω 460Ω Q14 Q15 200Ω Q17 Q30 Q20 Q26 – Q9 NONINVERTING INPUT Q10 + 12 W W (1/2 LT1112, 1/4 LT1114) V+ 20µA 35µA Q19 1.5k Q21 Q25 Q27 Q29 28Ω 90Ω 2.5k Q28 Q32 30Ω OUT Q33 80µA Q22 4k Q31 200Ω Q1 TO Q4 ARE SUPERGAIN TRANSISTORS LT1112/14 • SD01 111214fb LT1112/LT1114 PACKAGE DESCRIPTIO U J8 Package 8-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) CORNER LEADS OPTION (4 PLCS) .405 (10.287) MAX 8 7 6 5 .005 (0.127) MIN .023 – .045 (0.584 – 1.143) HALF LEAD OPTION .045 – .068 (1.143 – 1.650) FULL LEAD OPTION .300 BSC (7.62 BSC) .025 (0.635) RAD TYP 1 2 3 .220 – .310 (5.588 – 7.874) 4 .200 (5.080) MAX .015 – .060 (0.381 – 1.524) 0° – 15° .045 – .065 (1.143 – 1.651) .014 – .026 (0.360 – 0.660) .100 (2.54) BSC .125 3.175 MIN J8 0801 .008 – .018 (0.203 – 0.457) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS J Package 14-Lead CERDIP (Narrow .300 Inch, Hermetic) (Reference LTC DWG # 05-08-1110) .785 (19.939) MAX 14 13 12 11 10 9 8 .005 (0.127) MIN .025 (0.635) RAD TYP .220 – .310 (5.588 – 7.874) 1 .300 BSC (7.62 BSC) 2 3 4 5 6 7 .200 (5.080) MAX .015 – .060 (0.381 – 1.524) .008 – .018 (0.203 – 0.457) 0° – 15° .045 – .065 (1.143 – 1.651) NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS .014 – .026 (0.360 – 0.660) .100 (2.54) BSC .125 (3.175) MIN J14 0801 OBSOLETE PACKAGES 111214fb 13 LT1112/LT1114 PACKAGE DESCRIPTIO U N8 Package 8-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .400* (10.160) MAX 8 7 6 5 .255 ± .015* (6.477 ± 0.381) 1 .300 – .325 (7.620 – 8.255) 2 3 4 .130 ± .005 (3.302 ± 0.127) .045 – .065 (1.143 – 1.651) .065 (1.651) TYP .120 (3.048) .020 MIN (0.508) MIN .018 ± .003 (0.457 ± 0.076) N8 1002 .008 – .015 (0.203 – 0.381) ( +.035 .325 –.015 +0.889 8.255 –0.381 ) .100 (2.54) BSC INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) NOTE: 1. DIMENSIONS ARE N Package 14-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510) .770* (19.558) MAX 14 13 12 11 10 9 8 .255 ± .015* (6.477 ± 0.381) 1 .300 – .325 (7.620 – 8.255) .130 ± .005 (3.302 ± 0.127) .020 (0.508) MIN .008 – .015 (0.203 – 0.381) +.035 .325 –.015 2 3 4 5 6 7 .045 – .065 (1.143 – 1.651) .065 (1.651) TYP .120 (3.048) MIN .005 (0.127) .100 MIN (2.54) BSC .018 ± .003 (0.457 ± 0.076) N14 1103 ( +0.889 8.255 –0.381 ) INCHES MILLIMETERS *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm) 111214fb NOTE: 1. DIMENSIONS ARE 14 LT1112/LT1114 PACKAGE DESCRIPTIO U S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 (4.801 – 5.004) NOTE 3 8 7 6 5 .045 ±.005 .050 BSC .245 MIN .160 ±.005 .228 – .244 (5.791 – 6.197) .150 – .157 (3.810 – 3.988) NOTE 3 .030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 0°– 8° TYP 1 2 3 4 .053 – .069 (1.346 – 1.752) .004 – .010 (0.101 – 0.254) .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) .014 – .019 (0.355 – 0.483) TYP .050 (1.270) BSC SO8 0303 S Package 16-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .386 – .394 (9.804 – 10.008) NOTE 3 16 15 14 13 12 11 10 9 .045 ±.005 .050 BSC N .245 MIN N .160 ±.005 .228 – .244 (5.791 – 6.197) 1 2 3 N/2 N/2 .150 – .157 (3.810 – 3.988) NOTE 3 .030 ±.005 TYP RECOMMENDED SOLDER PAD LAYOUT 1 .010 – .020 × 45° (0.254 – 0.508) 2 3 4 5 6 7 8 .053 – .069 (1.346 – 1.752) 0° – 8° TYP .008 – .010 (0.203 – 0.254) .004 – .010 (0.101 – 0.254) .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN .014 – .019 (0.355 – 0.483) TYP .050 (1.270) BSC S16 0502 INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) 111214fb Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 15 LT1112/LT1114 TYPICAL APPLICATIO Dual Buffered ± 0.617V Reference Powered by Two AA Batteries +1.5V 15k 3 RX* + – 2 LT1004-1.2 100pF 7 RY* 1/2 LT1112 5 20k 0.1% 4 *OPTIONAL –1.5V –0.617V LT1112/14 • TA03 RELATED PARTS PART NUMBER LT1880 LT1881/LT1882 LT1884/LT1885 LT6011/LT6012 DESCRIPTION Rail-to-Rail Output, Picoamp Input Precision Op Amp Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp Dual/Quad Rail-to-Rail Output, Picoamp Input Precision Op Amp COMMENTS SOT-23 CLOAD Up to 1000pF 9.5nV/√Hz Input Noise 135µA Supply Current, 14nV/√Hz 16 Linear Technology Corporation 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com – + U 8 *OPTIONAL 1 0.617V 1/2 LT1112 20k 0.1% 6 TOTAL SUPPLY CURRENT = 700µA WORKS WITH BATTERIES DISCHARGED TO ±1.3V AT ±1.5V: MAXIMUM LOAD CURRENT = 800µA; CAN BE INCREASED WITH OPTIONAL RX, RY; AT RX = RY = 750Ω LOAD CURRENT = 2mA TEMPERATURE COEFFICIENT LIMITED BY REFERENCE = 20ppm/°C 111214fb LT 0207 REV B • PRINTED IN USA © LINEAR TECHNOLOGY CORPORATION 1992
LT1112MJ8 价格&库存

很抱歉,暂时无法提供与“LT1112MJ8”相匹配的价格&库存,您可以联系我们找货

免费人工找货