LT1218/LT1219
Precision Rail-to-Rail Input
and Output Op Amps
U
DESCRIPTION
FEATURES
■
■
■
■
■
■
■
■
■
■
■
Rail-to-Rail Input and Output
90µV VOS(MAX) for VCM = V – to V +
High Common Mode Rejection Ratio: 97dB Min
C-LoadTM Stable Version (LT1219)
High AVOL: 500V/mV Minimum Driving 10kΩ Load
Wide Supply Range:
2V to ±15V (LT1218/LT1219)
2V to ±5V (LT1218L/LT1219L)
Shutdown Mode: IS < 30µA
Low Supply Current: 420µA Max
Low Input Bias Current: 18nA Typical
300kHz Gain-Bandwidth Product (LT1218)
Slew Rate: 0.10V/µs (LT1218)
U
APPLICATIONS
■
■
■
Driving A/D Converters
Test Equipment Amplifiers
MUX Amplifiers
, LTC and LT are registered trademarks of Linear Technology Corporation.
C-Load is a trademark of Linear Technology Corporation.
The LT ®1218/LT1219 are bipolar op amps which combine
rail-to-rail input and output operation with precision specifications. Unlike other rail-to-rail amplifiers, the LT1218/
LT1219’s input offset voltage is a low 90µV across the
entire rail-to-rail input range, not just a portion of it. Using
a patented technique, both input stages of the LT1218/
LT1219 are trimmed: one at the negative supply and the
other at the positive supply. The resulting common mode
rejection of 97dB minimum is much better than other railto-rail input op amps. A minimum open-loop gain of
500V/mV into a 10k load virtually eliminates all gain error.
The LT1218 has conventional compensation which
assures stability for capacitive loads of 1000pF or less.
The LT1219 has compensation that requires the use of a
0.1µF output capacitor, which improves the amplifier’s
supply rejection and reduces output impedance at high
frequencies. The output capacitor’s filtering action also
reduces high frequency noise, which is beneficial when
driving A/D converters.
High and low voltage versions of the devices are offered.
Operation is specified for 3V, 5V and ±5V supplies for the
LT1218L/LT1219L and 3V, 5V and ±15V for the LT1218/
LT1219.
U
TYPICAL APPLICATION
MUX Amplifier
Voltage Follower Input to Output Error
10
5V
VS = 5V
AV = 1
NO LOAD
+
VOUT
LT1218L
–
ERROR (mV)
VIN1
SHDN
5V
1.0
MAX ERROR = 110µV
0.05V ≤ VIN ≤ 4.8V
0.1
+
VIN2
LT1218L
–
INPUT
SELECT
74HCO4
SHDN
MAXIMUM IN
TO OUT ERROR
= 110µV FOR
0.05V ≤ VIN ≤ 4.8V
RL = 10k
0.01
0
0.05
1
2
3
4
4.95
5
INPUT VOLTAGE (V)
LT1218/19 • TA02
1218/19 • TA01
1
LT1218/LT1219
W
U
U
W W
W
Supply Voltage
LT1218/LT1219 ................................................. ±18V
LT1218L/LT1219L ............................................... ±8V
Input Current ...................................................... ±15mA
Output Short-Circuit Duration (Note 1) ......... Continuous
Operating Temperature Range ................ – 40°C to 85°C
Specified Temperature Range (Note 3) ... – 40°C to 85°C
Storage Temperature Range ................. – 65°C to 150°C
Junction Temperature........................................... 150°C
Lead Temperature (Soldering, 10 sec).................. 300°C
U
ABSOLUTE MAXIMUM RATINGS
PACKAGE/ORDER INFORMATION
ORDER PART
NUMBER
TOP VIEW
VOS TRIM 1
8
VOS TRIM
–IN 2
7
V+
+IN 3
6
OUT
–
5
SHDN
V
4
N8 PACKAGE
8-LEAD PDIP
LT1218CN8
LT1218CS8
LT1218LCN8
LT1218LCS8
LT1219CN8
LT1219CS8
LT1219LCN8
LT1219LCS8
S8 PACKAGE
8-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 130°C/ W (N8)
TJMAX = 150°C, θJA = 190°C/ W (S8)
S8 PART MARKING
1218 1219
1218L 1219L
Consult factory for Industrial and Military grades.
ELECTRICAL CHARACTERISTICS
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current Shift
Input Offset Current
∆IOS
en
in
AVOL
Input Offset Current Shift
Input Noise Voltage Density
Input Noise Current Density
Large-Signal Voltage Gain
CMRR
Common Mode Rejection Ratio
PSRR
VOL
Power Supply Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
Short-Circuit Current
IS
Supply Current
Positive Supply Current, SHDN
2
CONDITIONS
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
f = 1kHz
f = 1kHz
VS = 5V, VO = 50mV to 4.8V, RL = 10k
VS = 3V, VO = 50mV to 2.8V, RL = 10k
VS = 5V, VCM = V – to V +
VS = 3V, VCM = V – to V +
VS = 2.3V to 12V, VCM = 0V, VO = 0.5V
No Load
ISINK = 0.5mA
ISINK = 2.5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
VS = 5V
VS = 3V
VS = 5V
VS = 3V
VS = 5V, VSHDN = 0V
VS = 3V, VSHDN = 0V
MIN
– 70
250
200
97
92
90
V+ – 0.012
V+ – 0.130
V+ – 0.400
5
4
TYP
25
25
15
30
– 18
50
5
2
5
33
0.09
1000
750
110
106
100
4
45
120
+
V – 0.003
V+ – 0.065
V+ – 0.210
10
7
370
370
9
6
MAX
90
90
70
70
140
18
18
18
12
90
240
420
410
30
20
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
nV/√Hz
pA/√Hz
V/mV
V/mV
dB
dB
dB
mV
mV
mV
V
V
V
mA
mA
µA
µA
µA
µA
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
TA = 25°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted.
SYMBOL
SR
GBW
PARAMETER
Slew Rate (LT1218/LT1218L)
(LT1219/LT1219L)
Gain Bandwidth Product
(LT1218/LT1218L)
(LT1219/LT1219L)
CONDITIONS
AV = – 1
AV = – 1
MIN
AV = 1000
AV = 1000
TYP
0.10
0.05
MAX
0.30
0.15
UNITS
V/µs
V/µs
MHz
MHz
0°C ≤ TA ≤ 70°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
VOS TC
∆VOS
IB
Input Offset Drift
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current Shift
Input Offset Current
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
Common Mode Rejection Ratio
PSRR
VOL
Power Supply Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
Short-Circuit Current
IS
Supply Current
Positive Supply Current, SHDN
CONDITIONS
VCM = V+
VCM = V–
(Note 2)
VCM = V– to V+
VCM = V+
VCM = V–
VCM = V– to V+
VCM = V+
VCM = V–
VCM = V– to V+
VS = 5V, VO = 50mV to 4.8V, RL = 10k
VS = 3V, VO = 50mV to 2.8V, RL = 10k
VS = 5V, VCM = V – to V+
VS = 3V, VCM = V – to V+
VS = 2.3V to 12V, VCM = 0V, VO = 0.5V
No Load
ISINK = 0.5mA
ISINK = 2.5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
VS = 5V
VS = 3V
VS = 5V
VS = 3V
VS = 5V, VSHDN = 0V
VS = 3V, VSHDN = 0V
MIN
●
●
●
●
●
●
– 75
●
●
●
●
●
●
●
●
●
250
150
96
91
88
●
●
●
●
●
●
●
●
V+ – 0.014
V+ – 0.150
V+ – 0.480
4
3
●
●
●
●
TYP
75
75
1
25
30
– 18
50
5
3
5
1000
750
104
106
100
4
45
130
V+ – 0.004
V+ – 0.075
V+ – 0.240
7
6
370
370
9
6
MAX
200
200
3
80
75
150
25
25
25
14
100
290
485
475
36
26
UNITS
µV
µV
µV/°C
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
dB
dB
mV
mV
mV
V
V
V
mA
mA
µA
µA
µA
µA
– 40°C ≤ TA ≤ 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. (Note 3)
SYMBOL
VOS
PARAMETER
Input Offset Voltage
VOS TC
∆VOS
IB
Input Offset Drift
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current Shift
Input Offset Current
∆IOS
Input Offset Current Shift
CONDITIONS
VCM = V + – 0.15
VCM = V – + 0.15
(Note 2)
VCM = V + – 0.15 to V – + 0.15
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
MIN
TYP
●
●
1
30
●
●
●
●
●
●
●
●
MAX
400
400
4
105
80
– 80
160
40
40
40
UNITS
µV
µV
µV/°C
µV
nA
nA
nA
nA
nA
nA
3
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
– 40°C ≤ TA ≤ 85°C, VS = 5V, 0V; VS = 3V, 0V; VCM = VO = half supply, VSHDN = V +, unless otherwise noted. (Note 3)
SYMBOL
AVOL
PARAMETER
Large-Signal Voltage Gain
CMRR
Common Mode Rejection Ratio
PSRR
VOL
Power Supply Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
Short-Circuit Current
IS
Supply Current
Positive Supply Current, SHDN
CONDITIONS
VS = 5V, VO = 50mV to 4.8V, RL = 10k
VS = 3V, VO = 50mV to 2.8V, RL = 10k
VS = 5V, VCM = V + – 0.15 to V – + 0.15
VS = 3V, VCM = V + – 0.15 to V – + 0.15
VS = 2.3V to 12V, VCM = 0V, VO = 0.5V
No Load
ISINK = 0.5mA
ISINK = 2.5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
VS = 5V
VS = 3V
VS = 5V
VS = 3V
VS = 5V, VSHDN = 0V
VS = 3V, VSHDN = 0V
●
●
●
●
●
MIN
150
100
93
88
86
●
●
●
●
●
●
●
●
V+ – 0.015
V+ – 0.160
V+ – 0.500
4
3
●
●
●
●
TYP
500
500
102
100
100
5
50
130
V+ – 0.004
V+ – 0.070
V+ – 0.250
7
7
410
400
15
13
MAX
MAX
140
140
70
70
15
105
300
505
495
50
40
UNITS
V/mV
V/mV
dB
dB
dB
mV
mV
mV
mV
mV
mV
mA
mA
µA
µA
µA
µA
LT1218L/LT1219L only; TA = 25°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current Shift
Input Offset Current
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
VOL
Common Mode Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
IS
Short-Circuit Current
Supply Current
Positive Supply Current, SHDN
Slew Rate (LT1218/LT1218L)
(LT1219/LT1219L)
Gain-Bandwidth Product
(LT1218/LT1218L)
(LT1219/LT1219L)
SR
GBW
4
CONDITIONS
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VO = – 4.7V to 4.7V, RL = 10k
VO = – 4.5V to 4.5V, RL = 2k
VCM = V – to V +
No Load
ISINK = 0.5mA
ISINK = 5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 5mA
MIN
VSHDN = 0V
AV = – 1, RL = Open, VO = ±3.5V
AV = – 1, RL = Open, VO = ±3.5V
0.06
0.03
TYP
35
35
20
30
– 18
50
5
2
5
2800
1300
114
–
V + 0.004
V– + 0.045
V– + 0.180
V+ – 0.003
V+ – 0.065
V+ – 0.350
12
400
10
0.10
0.05
AV = 1000
AV = 1000
0.2
0.1
0.30
0.15
– 70
500
300
103
V+ – 0.012
V+ – 0.130
V+ – 0.800
6
140
18
18
18
V– + 0.012
V– + 0.090
V– + 0.525
430
40
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
V
V
V
V
V
V
mA
µA
µA
V/µs
V/µs
MHz
MHz
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
LT1218L/LT1219L only; 0°C ≤ TA ≤ 70°C, VS = ±5V, VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current
Input Offset Current
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
VOL
Common Mode Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
IS
Short-Circuit Current
Supply Current
Positive Supply Current, SHDN
CONDITIONS
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VO = – 4.7V to 4.7V, RL = 10k
VO = – 4.5V to 4.5V, RL = 2k
VCM = V – to V +
No Load
ISINK = 0.5mA
ISINK = 5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 5mA
MIN
●
●
●
●
●
– 75
●
●
●
●
●
●
●
375
275
100
●
●
●
●
●
●
●
V+ – 0.014
V+ – 0.150
V+ – 0.920
5
●
VSHDN = 0V
●
TYP
100
100
30
30
– 18
50
5
3
5
2800
1300
110
V – + 0.004
V – + 0.045
V – + 0.200
V+ – 0.004
V+ – 0.075
V+ – 0.450
10
400
11
MAX
250
250
90
75
150
25
25
20
V – + 0.014
V – + 0.100
V – + 0.580
495
54
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
V
V
V
V
V
V
mA
µA
µA
LT1218L, LT1219L only; – 40°C ≤ TA ≤ 85°C, VS = ±5V; VCM = 0V, VO = 0V, VSHDN = 5V, unless otherwise noted. (Note 3)
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current
Input Offset Current Shift
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
VOL
Common Mode Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
IS
Short-Circuit Current
Supply Current
Positive Supply Current, SHDN
CONDITIONS
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VO = – 4.7V to 4.7V, RL = 10k
VO = – 4.5V to 4.5V, RL = 2k
VCM = V + – 0.15 to V – + 0.15
No Load
ISINK = 0.5mA
ISINK = 2.5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
MIN
●
●
●
●
●
160
40
40
40
●
●
●
●
●
●
300
200
98
●
●
●
●
●
●
●
●
MAX
500
500
120
80
– 80
●
●
VSHDN = 0V
TYP
125
125
35
V+ – 0.015
V+ – 0.160
V+ – 1.000
5
2000
600
109
V – + 0.005
V – + 0.050
V – + 0.200
V+ – 0.004
V+ – 0.070
V+ – 0.400
10
420
18
V – + 0.015
V – + 0.105
V – + 0.620
525
60
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
V
V
V
V
V
V
mA
µA
µA
5
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
LT1218/LT1219 only; TA = 25°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current
Input Offset Current
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
PSRR
VOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
IS
Short-Circuit Current
Supply Current
Positive Supply Current, SHDN
Slew Rate (LT1218/LT1218L)
(LT1219/LT1219L
Gain Bandwidth Product
(LT1218/LT1218L)
(LT1219/LT1219L)
SR
GBW
CONDITIONS
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VO = – 14.7V to 14.7V, RL = 10k
VO = – 10V to 10V, RL = 2k
VCM = V – to V +
VS = ±5V to ±15V
No Load
ISINK = 0.5mA
ISINK = 5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 5mA
MIN
VSHDN = 0V
AV = – 1
AV = – 1
TYP
85
85
30
30
– 18
50
5
2
5
4000
2000
120
110
V – + 0.004
V – + 0.045
V – + 0.270
V+ – 0.003
V+ – 0.065
V+ – 0.580
20
425
15
0.10
0.05
AV = 1000
AV = 1000
0.28
0.15
– 70
1000
500
113
100
V+ – 0.012
V+ – 0.130
V+ – 0.800
10
MAX
200
200
70
70
140
18
18
18
V – + 0.012
V – + 0.090
V – + 0.525
550
40
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
dB
V
V
V
V
V
V
mA
µA
µA
V/µs
V/µs
MHz
MHz
LT1218/LT1219 only; 0°C ≤ TA ≤ 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current
Input Offset Current
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
PSRR
VOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
6
CONDITIONS
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VCM = V +
VCM = V –
VCM = V – to V +
VO = – 14.7V to 14.7V, RL = 10k
VO = – 10V to 10V, RL = 2k
VCM = V – to V +
VS = ±5V to ±15V
No Load
ISINK = 0.5mA
ISINK = 5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 5mA
MIN
●
●
●
●
●
– 75
●
●
●
●
●
●
●
●
750
500
109
97
●
●
●
●
●
●
V+ – 0.014
V+ – 0.150
V+ – 0.920
TYP
120
120
50
30
– 18
50
5
3
5
3000
1500
114
110
V – + 0.004
V – + 0.045
V – + 0.310
V+ – 0.003
V+ – 0.075
V+ – 0.700
MAX
300
300
105
75
150
25
25
20
V – + 0.014
V – + 0.100
V – + 0.580
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
dB
V
V
V
V
V
V
LT1218/LT1219
ELECTRICAL CHARACTERISTICS
LT1218/LT1219 only; 0°C ≤ TA ≤ 70°C, VS = ±15V, VCM = 0V, VO = 0V, VSHDN = 15V, unless otherwise noted.
SYMBOL
ISC
IS
PARAMETER
Short-Circuit Current
Supply Current
Positive Supply Current, SHDN
CONDITIONS
●
MIN
8
●
VSHDN = 0V
●
TYP
17
450
20
MAX
600
54
UNITS
mA
µA
µA
LT1218, LT1219 only; – 40°C ≤ TA ≤ 85°C, VS = ±15V; VCM = 0V = VO = 0V, VSHDN = 15V, unless otherwise noted. (Note 3)
SYMBOL
VOS
PARAMETER
Input Offset Voltage
∆VOS
IB
Input Offset Voltage Shift
Input Bias Current
∆IB
IOS
Input Bias Current
Input Offset Current
∆IOS
AVOL
Input Offset Current Shift
Large-Signal Voltage Gain
CMRR
PSRR
VOL
Common Mode Rejection Ratio
Power Supply Rejection Ratio
Output Voltage Swing LOW
VOH
Output Voltage Swing HIGH
ISC
IS
Short-Circuit Current
Supply Current
Positive Supply Current, SHDN
CONDITIONS
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VCM = V + – 0.15
VCM = V – + 0.15
VCM = V + – 0.15 to V – + 0.15
VO = – 14.7V to 14.7V, RL = 10k
VO = – 10V to 10V, RL = 2k
VCM = V + – 0.15 to V – + 0.15
VS = ±5V to ±15V
No Load
ISINK = 0.5mA
ISINK = 2.5mA
No Load
ISOURCE = 0.5mA
ISOURCE = 2.5mA
MIN
●
●
●
●
●
●
●
●
500
400
105
96
●
●
●
●
●
●
●
The ● denotes specifications which apply over the full operating
temperature range.
Note 1: A heat sink may be required to keep the junction temperature
below the Absolute Maximum Rating when the output is shorted
indefinitely.
160
40
40
40
●
●
●
●
●
MAX
600
600
165
80
– 80
●
●
VSHDN = 0V
TYP
150
150
50
V+ – 0.015
V+ – 0.160
V+ – 1.000
5
3000
1000
114
110
V – + 0.005
V – + 0.050
V – + 0.200
V+ – 0.004
V+ – 0.070
V+ – 0.400
14
V – + 0.015
V – + 0.105
V – + 0.620
650
60
UNITS
µV
µV
µV
nA
nA
nA
nA
nA
nA
V/mV
V/mV
dB
dB
V
V
V
V
V
V
mA
µA
µA
Note 2: This parameter is not 100% tested.
Note 3: The LT1218/LT1219 are designed, characterized and expected to
meet these extended temperature limits, but are not tested at –40°C and
85°C. Guaranteed I grade part are available: consult factory.
7
LT1218/LT1219
U W
TYPICAL PERFORMANCE CHARACTERISTICS
VOS Distribution, VCM = 0V
VOS Shift, VCM = 0V to 5V
30
35
20
15
10
5
30
VS = 5V, 0V
VCM = 0V TO 5V
25
30
PERCENT OF UNITS (%)
VS = 5V, 0V
VCM = 0V
PERCENT OF UNITS (%)
25
20
15
10
0
–100
100
–60
–20
20
60
INPUT OFFSET VOLTAGE (µV)
–60
20
60
–20
INPUT OFFSET VOLTAGE (µV)
VS = ±2.5V
300
200
100
0
–40 –20
40
20
0
60
TEMPERATURE (°C)
80
50
150
TA = 25°C
100
TA = 85°C
50
0
25
TA = 25°C
TA = 85°C
TA = – 40°C
0
–25
TA = 25°C
–50
1.0 1.5
100
VS = 5V, 0V
TA = –40°C
INPUT BIAS CURRENT (nA)
CHANGE IN OFFSET VOLTAGE (µV)
400
2.0 2.5 3.0 3.5 4.0 4.5
TOTAL SUPPLY VOLTAGE (V)
5.0
–50
–1
0
3
4
1
5
2
6
COMMON MODE VOLTAGE (V)
7
LT1218/19 • TPC06
LT1218/19 • TPC05
LT1218/19 • TPC04
Output Saturation Voltage vs
Load Current (Output Low)
100
Input Bias Current vs
Common Mode Voltage
200
VS = ±15V
–60
–20
20
60
INPUT OFFSET VOLTAGE (µV)
LT1218/19 • TPC03
Minimum Supply Voltage
500
SUPPLY CURRENT (µA)
0
–100
100
LT1218/19 • TPC02
Supply Current vs Temperature
Output Saturation Voltage vs
Load Current (Output High)
0.1Hz to 10Hz Output
Voltage Noise
10
10
VS = 5V, 0V
SATURATION VOLTAGE (V)
VS = 5V, 0V
SATURATION VOLTAGE (V)
10
5
LT1218/19 • TPC01
1
0.1
0.01
0.001
0.001
TA = 25°C
TA = 85°C
TA = –40°C
1
0.01
0.1
LOAD CURRENT (mA)
10
LT1218/19 • TPC07
8
15
5
0
–100
VS = 5V, 0V
VCM = 5V
20
1
0.1
TA = 25°C
TA = 85°C
TA = –40°C
0.01
0.001
0.001
1
0.01
0.1
LOAD CURRENT (mA)
10
LT1218/19 • TPC08
OUTPUT VOLTAGE (400nV/DIV)
PERCENT OF UNITS (%)
25
VOS Distribution, VCM = 5V
40
VS = ±2.5V
VCM = 0V
TIME (1s/DIV)
LT1218/19 • TPC09
LT1218/LT1219
U W
TYPICAL PERFORMANCE CHARACTERISTICS
Noise Voltage Spectrum
100
2.5
VS = 5V, 0V
90
VS = 5V, 0V
80
70
60
50
40
VCM = 4V
30
VCM = 2.5V
2.0
CURRENT NOISE (pA/√Hz)
NOISE VOLTAGE (nV/√Hz)
Noise Current Spectrum
20
1.5
1.0
VCM = 2.5V
0.5
VCM = 4V
10
0
0
10
100
FREQUENCY (Hz)
1
10
100
FREQUENCY (Hz)
1
1000
LT1218/19 • TPC11
LT1218/19 • TPC10
LT1218 Gain and Phase
Shift vs Frequency
LT1219 Gain and Phase
Shift vs Frequency
VS = ±2.5V
60
PHASE
60
100
50
100
80
40
80
30
60
30
60
20
40
GAIN
10
20
0
0
–20
–40
–20
–60
10000
–30
100
1000
FREQUENCY (kHz)
0
–20
GAIN
1
10
LT1218 Common Mode Rejection
Ratio vs Frequency
PHASE MARGIN
FREQUENCY (kHz)
60
GBW
250
50
200
40
150
30
100
20
50
10
0
0
0
5
10
20
15
SUPPLY VOLTAGE (V)
25
30
LT1218/19 • TPC
PHASE MARGIN (DEG)
300
VS = ±2.5V
90
80
70
60
50
40
30
20
10
0
LT1219 Power Supply Rejection
Ratio vs Frequency
100
POWER SUPPLY REJECTION RATIO (dB)
70
100
COMMON MODE REJECTION RATIO (dB)
350
–60
10000
LT1218/19 • TPC13
LT1218 Gain Bandwidth and
Phase Margin vs Supply Voltage
80
–40
100
1000
FREQUENCY (kHz)
LT1218/19 • TPC12
400
20
0
–10
10
40
PHASE
10
–20
1
120
20
–10
–30
140
VS = ±2.5V
CL = 0.1µF
PHASE SHIFT (DEG)
40
70
120
PHASE SHIFT (DEG)
VOLTAGE GAIN (dB)
50
140
VOLTAGE GAIN (dB)
70
1000
VS = ±2.5V
90
80
70
POSITIVE SUPPLY
60
50
40
30
NEGATIVE SUPPLY
20
10
0
1
10
100
FREQUENCY (kHz)
1000
LT1218/19 • TPC15
1
10
100
FREQUENCY (kHz)
1000
LT1218/19 • TPC16
9
LT1218/LT1219
U W
TYPICAL PERFORMANCE CHARACTERISTICS
LT1218 Power Supply Rejection
Ratio vs Frequency
1000
VS = ±2.5V
90
1000
VS = ±2.5V
60
POSITIVE SUPPLY
50
40
30
20
100
AV = 10
10
AV = 1
1.0
AV = 10
10
AV = 1
1.0
NEGATIVE SUPPLY
10
10
100
FREQUENCY (kHz)
1
0.1
0.1
1000
1
10
100
FREQUENCY (kHz)
LT1218/19 • TPC17
80
0.1
0.1
1000
1
10
100
FREQUENCY (kHz)
LT1218/19 • TPC18
LT1219 Overshoot vs Load
Current, VS = ±15V
70
70
VS = ±2.5V
70
VS = ±2.5V
AV = 1
60
1000
LT1218/19 • TPC19
LT1219 Overshoot vs Load
Current, VS = ± 2.5V
LT1218 Capacitive Load Handling
VS = ±15V
AV = 1
60
OVERSHOOT (%)
50
AV = 1
40
30
AV = 5
50
CL = 0.22µF
40
CL = 0.047µF
30
OVERSHOOT (%)
CL = 0.22µF
60
10
10
AV = 10
0
10
100
1000
10000
CAPACITIVE LOAD (pF)
–5
0
Open-Loop Gain, VS = ±15V
CL = 0.1µF
0
–10
10
–5
CHANGE IN OFFSET VOLTAGE (µV)
VS = ±15V
RL = 10k
0
RL = 2k
–10
–20
–30
20
LT1218/19 • TPC23
10
5
LT1218/19 • TPC22
THD + Noise vs Frequency
1
30
VS = ±1.5V
VIN = 2VP-P
RL = 10k
20
10
VS = ±15V
0
VS = ±2.5V
–10
0.1
AV = 1
0.01
–20
AV = –1
–30
–40
15
0
LOAD CURRENT (mA)
Input Offset Drift vs Time
20
10
5
40
–40
5
–20 –15 –10 –5 0
10
OUTPUT VOLTAGE (V)
30
LT1218/19 • TPC21
40
10
CL = 0.047µF
LOAD CURRENT (mA)
LT1218/19 • TPC20
30
40
10
CL = 0.1µF
0
–10
100000
50
20
20
20
THD + NOISE (%)
OVERSHOOT (%)
VS = ±2.5V
CL = 0.1µF
100
OUTPUT IMPEDANCE (Ω)
70
0
OFFSET VOLTAGE CHANGE (µV)
LT1219 Closed Loop Output
Impedance vs Frequency
80
OUTPUT IMPEDANCE (Ω)
POWER SUPPLY REJECTION RATIO (dB)
100
LT1218 Closed Loop Output
Impedance vs Frequency
0
20 40 60 80 100 120 140 160 180 200
TIME AFTER POWER-UP (SEC)
LT1218/19 • TPC24
0.001
0.01
0.1
1
FREQUENCY (kHz)
10
LT1218/19 • TPC25
LT1218/LT1219
U W
TYPICAL PERFORMANCE CHARACTERISTICS
THD + Noise vs
Peak-to-Peak Voltage
10
Small-Signal Response
VS = ±15V
Large-Signal Response
VS = ±15V
AV = 1
VS = ±15V
AV = 1
VS = ±15V
f = 1kHz
RL = 10k
(ALL CURVES)
THD + NOISE (%)
1
VS = ±1.5V
AV = –1
0.1
VS = ±1.5V
AV = 1
VS = ±2.5V
AV = 1
0.01
VS = ±2.5V
AV = –1
0.001
1
2
3
4
INPUT VOLTAGE (PEAK-TO-PEAK)
0
LT1218/18 • TPC27
LT1218/18 • TPC28
5
LT1218/19 • TPC26
U
U
W
U
APPLICATIONS INFORMATION
Q1/Q2 and an NPN stage Q3/Q4, which are active over
different portions of the input common mode range.
Lateral devices are used in both input stages, eliminating
the need for clamps across the input pins. Each input stage
is trimmed for offset voltage. A complementary output
configuration (Q23 through Q26) is employed to create an
Rail-to-Rail Operation
The LT1218/LT1219 differ from conventional op amps in
the design of both the input and output stages. Figure 1
shows a simplified schematic of the amplifier. The input
stage consists of two differential amplifiers, a PNP stage
TRIM
V+
D4
BIAS
CONTROL
I1
D7
D6
D5
Q21
Q17
Q10
Q11
SHDN
Q5
Q16
V–
V–
V–
V
V+
Q1 Q2
D1
V+
V+
OUT
C2
V+
CC
D2
Q3 Q4
Q12
Q6
Q9
Q25
Q26
Q22
Q18
Q13
D3
Q20
Q14 Q15
Q7
Q8
V+
– 300mV
C1
–
IN+
IN –
Q24
Q23
Q19
D8
D7
V–
LT1218/19 • F01
Figure 1. LT1218 Simplified Schematic Diagram
11
LT1218/LT1219
U
W
U
U
APPLICATIONS INFORMATION
output stage with rail-to-rail swing. The amplifier is fabricated on Linear Technology’s proprietary complementary
bipolar process, which ensures very similar DC and AC
characteristics for the output devices Q24 and Q26.
ure 1) turns on, pulling the output of the second stage low,
which forces the output high. For input below the negative
supply, diodes D1 and D2 turn on, overcoming the saturation of the input pair Q1/Q2.
A simple comparator Q5 steers current from current
source I1 between the two input stages. When the input
common mode voltage VCM is near the negative supply,
Q5 is reverse biased, and I1 becomes the tail current for the
PNP differential pair Q1/Q2. At the other extreme, when
VCM is within about 1.3V from the positive supply, Q5
diverts I1 to the current mirror D3/Q6, which furnishes the
tail current for the NPN differential pair Q3/Q4.
When overdriven, the amplifier draws input current that
exceeds the normal input bias current. Figures 2 and 3
show typical input current as a function of input voltage.
The input current must be less than 10mA for the phase
reversal protection to work properly. When the amplifier is
severely overdriven, an external resistor should be used to
limit the overdrive current.
110
MEASURED AS A
FOLLOWER
100
90
INPUT BIAS CURRENT (nA)
The collector currents of the two input pairs are combined
in the second stage, consisting of Q7 through Q11. Most
of the voltage gain in the amplifier is contained in this
stage. Differential amplifier Q14/Q15 buffers the output of
the second stage, converting the output voltage to differential currents. The differential currents pass through
current mirrors D4/Q17 and D5/Q16, and are converted to
differential voltages by Q18 and Q19. These voltages are
also buffered and applied to the output Darlington pairs
Q23/Q24 and Q25/Q26. Capacitors C1 and C2 form local
feedback loops around the output devices, lowering the
output impedance at high frequencies.
+
80
–
70
T = 25°C
60
50
T = 85°C
40
T = –55°C
T = 70°C
30
20
10
0
–500
–300
–100 VS 100
300
500
COMMON MODE VOLTAGE RELATIVE TO
POSITIVE SUPPLY (mV)
LT1218/19 • F02
Since the amplifier has two input stages, the input offset
voltage changes depending upon which stage is active.
The input offsets are random, but bounded voltages.
When the amplifier switches between stages, offset voltages may go up, down or remain flat; but will not exceed
the guaranteed limits. This behavior is illustrated in three
distribution plots of input offset voltage in the Typical
Performance Characteristics section.
Overdrive Protection
Two circuits prevent the output from reversing polarity
when the input voltage exceeds the common mode range.
When the noninverting input exceeds the positive supply
by approximately 300mV, the clamp transistor Q12 (Fig-
12
Figure 2. Input Bias Current vs Common Mode Voltage
0
–10
INPUT BIAS CURRENT (nA)
Input Offset Voltage
MEASURED AS A FOLLOWER
+
–20
–
–30
–40
–50
T = – 55°C T = 25°C
–60
T = 70°C
T = 85°C
–70
– 80
– 90
–100
–110
–800
–600
– 400
–200
VS
200
COMMON MODE VOLTAGE RELATIVE TO
NEGATIVE SUPPLY (mV)
LT1218/19 • F03
Figure 3. Input Bias Current vs Common Mode Voltage
LT1218/LT1219
U
W
U
U
APPLICATIONS INFORMATION
Shutdown
The biasing of the LT1218/LT1219 is controlled by the
SHDN pin. When the SHDN pin is low, the part is shut
down. In the shutdown mode, the output looks like a 40pF
capacitor and the supply current is less than 30µA. The
SHDN pin is referenced to the positive supply through an
internal bias circuit (see Figure 1). The SHDN pin current
with the pin low is typically 3µA.
The SHDN pin can be driven directly from CMOS logic if the
logic and the LT1218/LT1219 are operated from the same
supplies. For higher supply operation, an interface is
required. An easy way to interface between supplies is to
use open-drain logic, an example is shown in Figure 5.
Because the SHDN pin is referenced to the positive supply,
the logic used should have a breakdown voltage greater
than the positive supply.
15V
The switching time between the shutdown and active
states is about 20µs, however, the total time to settle will
be greater by the slew time of the amplifier. For example,
if the DC voltage at the amplifier output is 0V in shutdown
and –2V in the active mode, an additional 20µs is required.
Figures 4a and 4b show the switching waveforms for a
sinusoidal and a –2V DC input to the LT1218.
LT1218/
LT1219
+
SHDN
–
–15V
5V
SHDN
74C906
0V
LT1218/19 • F05
VOUT
Figure 5. Shutdown Interface
Trim Pins
SHDN
0V
Trim pins are provided for compatibility with other single
op amps. Input offset voltage can be adjusted over a
±2.3mV range with a 10k potentiometer.
V+
RL = 10V
VS = ±2.5V
LT1218/19 • F04a
Figure 4a
10k
1
2
0V
3
VOUT
–
8
LT1218/
LT1219
+
7
OUT
4
V–
LT1218/19 • F06
Figure 6. Optional Offset Nulling
SHDN
0V
RL = 10V
VS = ±2.5V
LT1218/19 • F04a
Figure 4b
Improved Supply Rejection in the LT1219
The LT1219 is a variation of the LT1218 offering greater
supply rejection and lower high frequency output impedance. The LT1219 requires a 0.1µF load capacitance for
13
LT1218/LT1219
U
U
W
U
APPLICATIONS INFORMATION
compensation. The output capacitance forms a filter,
which reduces pickup from the supply and lowers the
output impedance. This additional filtering is helpful in
mixed analog/digital systems with common supplies or
systems employing switching supplies. Filtering also
reduces high frequency noise, which may be beneficial
when driving A/D converters.
positive supply. The LT1219 power supply rejection is
about ten times greater than that of the LT1218 at 50kHz.
Note the 5-to-1 scale change in the output voltage traces.
The tolerance of the external compensation capacitor is
not critical. The plots of Overshoot vs Load Current in the
Typical Performance Characteristics section illustrate the
effect of a capacitive load.
Figures 7a and 7b show the outputs of the LT1218/LT1219
perturbed by a 200mVP-P 50kHz square wave added to the
V+
(AC)
V+
(AC)
VOUT
VOUT
LT1218/19 • F07b
LT1218/19 • F07a
Figure 7b. LT1219 Power Supply Rejection Test
Figure 7a. LT1218 Power Supply Rejection Test
U
TYPICAL APPLICATIONS
Buffer for 12-Bit A/D Converter
High-Side Current Source
VCC
3V
1µF
0.1µF
VIN
RSENSE
0.2Ω
1k
+
LT1004-1.2
LT1219
–
1
0.1µF
2
3
4
VREF
VCC
+ IN
CLK
LTC1285
– IN
DOUT
GND
CS/SHDN
RP
10k
7
6
5
0.0033µF
–
8
100Ω
LT1218
Q1
MTP23P06
+
ILOAD
TO µP
40k
5V < VCC < 30V
0A < ILOAD < 1A AT VCC = 5V
0mA < ILOAD < 160mA AT VCC = 30V
LT1218/19 • TA03
Q2
2N4340
LT1218/19 • TA04
14
LT1218/LT1219
U
TYPICAL APPLICATIONS
Positive Supply Current Sense
VCC
R1
200Ω
–
RS
0.2Ω
Q1
TP0610L
LT1218
+
ILOAD
VO
( )
R2
VO = (ILOAD)(RS)
R1
LOAD
R2
20k
= (ILOAD)(20Ω)
1218/19 • TA06
U
PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted.
N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
0.300 – 0.325
(7.620 – 8.255)
0.009 – 0.015
(0.229 – 0.381)
(
+0.025
0.325 –0.015
8.255
+0.635
–0.381
)
0.045 – 0.065
(1.143 – 1.651)
0.130 ± 0.005
(3.302 ± 0.127)
0.065
(1.651)
TYP
0.125
(3.175)
MIN
0.005
(0.127)
MIN
0.400*
(10.160)
MAX
7
6
5
1
2
3
4
0.255 ± 0.015*
0.015 (6.477 ± 0.381)
(0.380)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
0.100 ± 0.010
(2.540 ± 0.254)
8
N8 0695
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.189 – 0.197*
(4.801 – 5.004)
8
0.010 – 0.020
× 45°
(0.254 – 0.508)
0.008 – 0.010
(0.203 – 0.254)
0.016 – 0.050
0.406 – 1.270
0.014 – 0.019
(0.355 – 0.483)
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
6
5
0.228 – 0.244
(5.791 – 6.197)
0.053 – 0.069
(1.346 – 1.752)
0°– 8° TYP
7
0.150 – 0.157**
(3.810 – 3.988)
0.004 – 0.010
(0.101 – 0.254)
0.050
(1.270)
TYP
1
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
2
3
4
SO8 0996
15
LT1218/LT1219
U
TYPICAL APPLICATION
8-Channel, 12-Bit Data Acquisition System with Programmable Gain
5V
5V
1µF
1
2
3
4
INPUTS
5
6
7
8
CH0
CH1
CH2
16
V+
15
D
14
V–
13
+
12
–
CH3
DOUT
CH4
DIN
CH5
CS
CH6
CLK
CH7
GND
1µF
LT1219L
5V
0.1µF
17
ADCIN
11
10
9
LTC1391
8-CHANNEL
MUX
GAIN
MUX
CHANNEL GAIN
0
1
1
2
2
4
3
8
4
16
5
32
6
64
7
128
64R
20
CH0
32R
21
CH1
16R
22
CH2
8R
23
CH3
4R
24
CH4
2R
1
CH5
R
2
CH6
R
3
CH7
16
15, 19
VREF VCC
CSADC
CSMUX
8-CHANNEL
MUX
+
12-BIT
SAMPLING
ADC
–
CLK
DOUT
DIN
LTC1598
18
8
MUXOUT
COM
NC
GND
NC
1µF
10
6
5, 14
µP/µC
11
7
12
13
4, 9
1218/19 • TA05
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LTC 1152
Rail-to-Rail Input and Output, Zero-Drift Op Amp
High DC Accuracy, 10µV VOS(MAX), 100nV/°C Drift, 0.7MHz GBW, 0.5V/µs
Slew Rate, Maximum Supply Current 3mA
LT1366/LT1367
Dual/Quad Precision, Rail-to-Rail Input and Output
Op Amps
475µV VOS(MAX), 400kHz GBW, 0.13V/µs Slew Rate,
Maximum Supply Current 520µA per Op Amp
LT1466/LT1467
Dual/Quad Micropower, Rail-to-Rail Input and Output
Op Amps
Maximum Supply Current 75µA per Op Amp, 390µV VOS(MAX),
120kHz Gain Bandwidth
®
16
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417● (408) 432-1900
FAX: (408) 434-0507● TELEX: 499-3977 ● www.linear-tech.com
12189f LT/TP 0697 7K • PRINTED IN USA
LINEAR TECHNOLOGY CORPORATION 1997